¼¼°èÀÇ ÇÁ¶óÀ̹ö½Ã °­È­ ±â¼ú ½ÃÀå
Privacy Enhancing Technologies
»óǰÄÚµå : 1784051
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 205 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,209,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,629,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

ÇÁ¶óÀ̹ö½Ã °­È­ ±â¼ú ¼¼°è ½ÃÀåÀº 2030³â±îÁö 128¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 36¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ÇÁ¶óÀ̹ö½Ã °­È­ ±â¼ú ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö 23.5%ÀÇ CAGR·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 128¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ÇÁ¶óÀ̹ö½Ã °­È­ ¼ÒÇÁÆ®¿þ¾î´Â CAGR 21.5%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 83¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÇÁ¶óÀ̹ö½Ã °­È­ ¼­ºñ½º ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 27.8%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 9¾ï 4,920¸¸ ´Þ·¯, Áß±¹Àº CAGR 22.3%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹Ãø

¹Ì±¹ÀÇ ÇÁ¶óÀ̹ö½Ã °­È­ ±â¼ú ½ÃÀåÀº 2024³â¿¡´Â 9¾ï 4,920¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 22.3%·Î ¼ºÀåÇÏ¿© 2030³â±îÁö 20¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 21.1%¿Í 20.4%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 16.4%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°è ÇÁ¶óÀ̹ö½Ã °­È­ ±â¼ú ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ Á¤¸®

ÇÁ¶óÀ̹ö½Ã °­È­ ±â¼úÀÌ µðÁöÅÐ ½Ã´ë¿¡ ÇʼöÀûÀÎ ÀÌÀ¯´Â ¹«¾ùÀϱî?

ÇÁ¶óÀ̹ö½Ã °­È­ ±â¼ú(PET)Àº ÁøÈ­ÇÏ´Â ÇÁ¶óÀ̹ö½Ã ±ÔÁ¦¸¦ ÁؼöÇϸ鼭 ±â¹Ð µ¥ÀÌÅ͸¦ º¸È£ÇϰíÀÚ ÇÏ´Â Á¶Á÷°ú °³Àο¡°Ô Áß¿äÇÑ µµ±¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. °¢ »ê¾÷ ºÐ¾ß¿¡¼­ µðÁöÅÐ »óÈ£ ÀÛ¿ëÀÌ Áõ°¡ÇÔ¿¡ µû¶ó µ¥ÀÌÅÍ º¸¾È, »çÀ̹ö À§Çù, ¹ý±Ô Áؼö¿¡ ´ëÇÑ ¿ì·Á·Î ÀÎÇØ °íµµÀÇ ÇÁ¶óÀ̹ö½Ã º¸È£ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. PET´Â Â÷µî ÇÁ¶óÀ̹ö½Ã, È£¸ð¸ðÇÈ ¾Ïȣȭ, SMPC(Secure Multi-Party Computation), ¿µÁö½Ä Áõ¸í, ¿¬°è ÇнÀ µî ´Ù¾çÇÑ ±â¼úÀ» Æ÷ÇÔÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼Ö·ç¼ÇÀº ±â¹ÝÀÌ µÇ´Â °³ÀÎ Á¤º¸³ª µ¶Á¡ Á¤º¸¸¦ °ø°³ÇÏÁö ¾Ê°íµµ ¾ÈÀüÇÑ µ¥ÀÌÅÍ Ã³¸®, ºÐ¼®, °øÀ¯¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ±ÝÀ¶, ÇコÄɾî, Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ »ç¾÷À» ¿µÀ§ÇÏ´Â ±â¾÷µéÀº PET¸¦ ÅëÇÕÇÏ¿© µ¥ÀÌÅÍÀÇ ±â¹Ð¼ºÀ» º¸ÀåÇÏ´Â µ¿½Ã¿¡ ºÐ¼®À» ÅëÇØ ÀλçÀÌÆ®¿Í ÀÇ»ç°áÁ¤À» ³»¸®°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, GDPR, CCPA ¹× ±âŸ ¼¼°è ÇÁ·¹ÀÓ¿öÅ©¸¦ Æ÷ÇÔÇÏ¿© °¢±¹ Á¤ºÎ°¡ º¸´Ù ¾ö°ÝÇÑ µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹ýÀ» µµÀÔÇÔ¿¡ µû¶ó PETÀÇ Ã¤ÅÃÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. µðÁöÅÐ ÇÁ¶óÀ̹ö½Ã À§Çè¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ÀνÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó, ±â¾÷µéÀº ¾÷¹«ÀÇ ½Å·Ú¼º, ¾ÈÀü¼º, ±ÔÁ¦ Áؼö¸¦ °­È­Çϱâ À§ÇØ ÀÌ·¯ÇÑ ±â¼ú¿¡ Á¡Á¡ ´õ ¸¹Àº °ü½ÉÀ» ±â¿ïÀ̰í ÀÖ½À´Ï´Ù.

ÇÁ¶óÀ̹ö½Ã °­È­ ±â¼ú ½ÃÀåÀÇ ¼ºÀåÀ» ÀúÇØÇÏ´Â ¿äÀÎÀº ¹«¾ùÀϱî?

ÇÁ¶óÀ̹ö½Ã °­È­ ±â¼úÀÇ Ã¤ÅÃÀÌ È®´ëµÇ°í ÀÖÀ½¿¡µµ ºÒ±¸Çϰí, ±¤¹üÀ§ÇÑ ±¸Çö°ú È®À强¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ¸î °¡Áö °úÁ¦¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ÁÖ¿ä À庮 Áß Çϳª´Â ±âÁ¸ IT ÀÎÇÁ¶ó¿¡ PET¸¦ ÅëÇÕÇÏ´Â °ÍÀÌ º¹ÀâÇÏ°í ±â¼úÀû Àü¹®¼º°ú ÄÄÇ»ÆÃ ¸®¼Ò½º¿¡ ´ëÇÑ ¸·´ëÇÑ ÅõÀÚ°¡ ÇÊ¿äÇÏ´Ù´Â Á¡ÀÔ´Ï´Ù. µ¿Çü¾ÏÈ£³ª ¾ÈÀüÇÑ ´ÙÀÚ°£ °è»ê µî ¸¹Àº PET´Â °è»ê Áý¾àÀûÀ̱⠶§¹®¿¡ ½ÇÁ¦ ¾ÖÇø®ÄÉÀ̼ǿ¡¼­ ó¸® ¼Óµµ¿Í È¿À²¼º¿¡ ´ëÇÑ ¿ì·Á°¡ ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±â¾÷Àº ÄÄÇöóÀ̾𽺸¦ ÁؼöÇÏ´Â µ¿½Ã¿¡ ´Ù¾çÇÑ µ¥ÀÌÅÍ º¸È£¹ýÀ» ÁؼöÇØ¾ß Çϱ⠶§¹®¿¡ ¿©·¯ °üÇұǿ¡¼­ ±ÔÁ¦ÀÇ ºÐÀý·Î ÀÎÇØ ±¸ÇöÀÌ º¹ÀâÇØÁý´Ï´Ù. PET ¼Ö·ç¼Ç¿¡ ´ëÇÑ Ç¥ÁØÈ­°¡ ¾ø´Â °Íµµ »óÈ£¿î¿ë¼º ¹®Á¦¸¦ ¾ß±âÇϰí, ±â¾÷ÀÌ ¿©·¯ Ç÷§Æû¿¡¼­ ÅëÀÏµÈ Á¢±Ù ¹æ½ÄÀ» äÅÃÇÏ´Â °ÍÀ» ¾î·Æ°Ô ¸¸µì´Ï´Ù. ¶ÇÇÑ, PET´Â ÇÁ¶óÀ̹ö½Ã¸¦ °­È­ÇÏ´Â ¹Ý¸é, °æ¿ì¿¡ µû¶ó¼­´Â µ¥ÀÌÅÍ »ç¿ë¼ºÀ» Á¦ÇÑÇÒ ¼ö ÀÖ¾î º¸¾È°ú ¿î¿µÀÇ À¯¿¬¼ºÀ̶ó´Â µÎ °¡Áö Ãø¸éÀÌ »óÃæµÇ´Â ¹®Á¦°¡ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦¸¦ ÇØ°áÇϱâ À§Çؼ­´Â PETÀÇ È¿À²¼ºÀ» Áö¼ÓÀûÀ¸·Î °³¼±Çϰí, ±ÔÁ¦¸¦ Á¶Á¤Çϰí, º¸¾È°ú ºñÁî´Ï½º ¿ä±¸ÀÇ ±ÕÇüÀ» ¸ÂÃß´Â »ç¿ëÇϱ⠽¬¿î ÇÁ¶óÀ̹ö½Ã º¸È£ ÇÁ·¹ÀÓ¿öÅ©¸¦ °³¹ßÇØ¾ß ÇÕ´Ï´Ù.

AI, ºí·ÏüÀÎ, °í±Þ ¾Ïȣȭ ±â¼úÀº ¾î¶»°Ô ÇÁ¶óÀ̹ö½Ã °­È­ ±â¼úÀ» °­È­Çϴ°¡?

ÀΰøÁö´É, ºí·ÏüÀÎ, ¾Ïȣȭ ±â¼úÀÇ Çõ½ÅÀº ÇÁ¶óÀ̹ö½Ã °­È­ ±â¼úÀÇ ±â´ÉÀ» Å©°Ô Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. Â÷µî ÇÁ¶óÀ̹ö½Ã ¾Ë°í¸®Áò°ú °°Àº AI ±â¹Ý ÇÁ¶óÀ̹ö½Ã µµ±¸´Â Á¶Á÷ÀÌ °³ÀÎÀÇ ½Å¿øÀ» º¸È£Çϸ鼭 ´ë±Ô¸ð µ¥ÀÌÅͼ¼Æ®¸¦ ºÐ¼®ÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ºí·ÏüÀÎ ±â¹Ý PET´Â Åõ¸í¼º°ú Å»Áß¾ÓÈ­¸¦ °­È­Çϰí Áß¾Ó ÁýÁᫎ µ¥ÀÌÅÍ ÀúÀå¼Ò¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ã߸鼭 ºÒº¯ÀÇ µ¥ÀÌÅÍ º¸¾ÈÀ» Á¦°øÇÕ´Ï´Ù. ¾ÏȣȭµÈ µ¥ÀÌÅ͸¦ º¹È£È­ÇÏÁö ¾Ê°íµµ °è»êÇÒ ¼ö ÀÖ´Â µ¿Çü¾ÏÈ£´Â ÇÁ¶óÀ̹ö½Ã¸¦ º¸È£ÇÑ µ¥ÀÌÅÍ ºÐ¼®À» °¡´ÉÇϰÔÇÔÀ¸·Î½á ¾ÈÀüÇÑ Å¬¶ó¿ìµå ÄÄÇ»ÆÃ¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ¶Ç ´Ù¸¥ »õ·Î¿î PETÀÎ Æä´õ·¹ÀÌÆ¼µå ·¯´×(Federated Learning)Àº ¸Ó½Å·¯´× ¸ðµ¨À» ºÐ»êµÈ ±â±âµé »çÀÌ¿¡¼­ ÇнÀ½ÃŰ´Â µ¿½Ã¿¡ µ¥ÀÌÅ͸¦ ±¹ÁöÈ­ÇÏ¿© »çÀ̹ö À§Çù¿¡ ³ëÃâµÉ ±âȸ¸¦ ÁÙÀÔ´Ï´Ù. ¶ÇÇÑ, ¿µÁö½Ä Áõ¸í°ú °°Àº ÇÁ¶óÀ̹ö½Ã¸¦ º¸È£ÇÏ´Â ID ¼Ö·ç¼ÇÀÇ µîÀåÀ¸·Î »ç¿ëÀÚÀÇ ÀÍ¸í¼ºÀ» ÈѼÕÇÏÁö ¾ÊÀ¸¸é¼­µµ ÀÎÁõ ÇÁ·Î¼¼½º°¡ °³¼±µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀÇ ¹ßÀü°ú ÇÔ²² ÇÁ¶óÀ̹ö½Ã °­È­ ¼Ö·ç¼ÇÀº ´õ¿í È¿À²ÀûÀ̰í È®Àå °¡´ÉÇϸç, ´Ù¾çÇÑ »ê¾÷¿¡ Àû¿ëÇÒ ¼ö ÀÖ°Ô µÇ¾î ¾ÈÀüÇÑ µ¥ÀÌÅÍ °ü¸®ÀÇ Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

ÇÁ¶óÀ̹ö½Ã °­È­ ±â¼ú ½ÃÀåÀÇ ¼ºÀå ¿øµ¿·ÂÀº?

ÇÁ¶óÀ̹ö½Ã °­È­ ±â¼ú ½ÃÀåÀÇ ¼ºÀåÀº ±ÔÁ¦ °­È­, »çÀ̹ö À§Çù Áõ°¡, ÇÁ¶óÀ̹ö½Ã Áß½ÉÀÇ µðÁöÅÐ ¼­ºñ½º È®´ë µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. Àü ¼¼°èÀûÀ¸·Î ¾ö°ÝÇÑ µ¥ÀÌÅÍ º¸È£¹ýÀÌ ½ÃÇàµÊ¿¡ µû¶ó ±â¾÷µéÀº ÄÄÇöóÀ̾𽺸¦ º¸ÀåÇÏ°í ¹ýÀû ¸®½ºÅ©¸¦ ÁÙÀ̱â À§ÇØ PET¸¦ äÅÃÇÒ ¼ö¹Û¿¡ ¾ø°Ô µÇ¾ú½À´Ï´Ù. »çÀ̹ö ¹üÁË, µ¥ÀÌÅÍ À¯Ãâ, °³ÀÎÁ¤º¸ µµ³­ »ç°ÇÀÌ ±ÞÁõÇϸ鼭 °­·ÂÇÑ ÇÁ¶óÀ̹ö½Ã º¸È£ ¼Ö·ç¼ÇÀÇ Çʿ伺ÀÌ ´õ¿í Ä¿Áö°í ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ°ú IoT ±â±âÀÇ ±Þ¼ÓÇÑ È®»êÀº ±â¾÷µéÀÌ ºÐ»ê ³×Æ®¿öÅ©¿¡¼­ ±â¹Ð Á¤º¸¸¦ º¸È£ÇÏ·Á´Â ³ë·ÂÀ¸·Î ÀÎÇØ PETÀÇ Ã¤ÅÃÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹× µðÁöÅÐ ÀúÀÛ±Ç º¸È£¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ¿ä±¸°¡ ³ô¾ÆÁü¿¡ µû¶ó ±â¾÷µéÀº °æÀï Â÷º°È­ ¿ä¼Ò·Î PET¸¦ ÀÚ»ç Ç÷§Æû¿¡ ÅëÇÕÇÒ °ÍÀ» Ã˱¸Çϰí ÀÖ½À´Ï´Ù. ÇÁ¶óÀ̹ö½Ã¿¡ ´ëÇÑ ¿ì·Á°¡ µðÁöÅÐ Á¤¼¼¸¦ °è¼Ó Çü¼ºÇÔ¿¡ µû¶ó PET ½ÃÀåÀº Áö¼ÓÀûÀÎ ¼ºÀåÀÌ ¿¹»óµÇ¸ç, º¸´Ù °íµµÈ­µÇ°í È¿À²ÀûÀ̸ç Á¢±ÙÇϱ⠽¬¿î ÇÁ¶óÀ̹ö½Ã º¸È£ ±â¼úÀÇ °³¹ßÀÌ ÃËÁøµÉ °ÍÀÔ´Ï´Ù.

ºÎ¹®

ÄÄÆ÷³ÍÆ® À¯Çü(ÇÁ¶óÀ̹ö½Ã °­È­ ¼ÒÇÁÆ®¿þ¾î, ÇÁ¶óÀ̹ö½Ã °­È­ ¼­ºñ½º), ±â¼ú À¯Çü(¾ÏÈ£ ±â¼ú, À͸íÈ­ ±â¼ú, °¡¸íÈ­ ±â¼ú), ¿ëµµ(ÄÄÇöóÀ̾𽺠°ü¸®, ¸®½ºÅ© °ü¸®, º¸°í ¹× ºÐ¼®, ±âŸ ±â¼ú À¯Çü), ÃÖÁ¾ ¿ëµµ(BFSI ÃÖÁ¾ ¿ëµµ, ÇコÄɾî ÃÖÁ¾ ¿ëµµ, IT¡¤Åë½Å ÃÖÁ¾ ¿ëµµ, Á¤ºÎ ÃÖÁ¾ ¿ëµµ, ¼Ò¸Å ÃÖÁ¾ ¿ëµµ, Á¦Á¶ ÃÖÁ¾ ¿ëµµ, ±âŸ ÃÖÁ¾ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°èº° SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Privacy Enhancing Technologies Market to Reach US$12.8 Billion by 2030

The global market for Privacy Enhancing Technologies estimated at US$3.6 Billion in the year 2024, is expected to reach US$12.8 Billion by 2030, growing at a CAGR of 23.5% over the analysis period 2024-2030. Privacy Enhancing Software, one of the segments analyzed in the report, is expected to record a 21.5% CAGR and reach US$8.3 Billion by the end of the analysis period. Growth in the Privacy Enhancing Services segment is estimated at 27.8% CAGR over the analysis period.

The U.S. Market is Estimated at US$949.2 Million While China is Forecast to Grow at 22.3% CAGR

The Privacy Enhancing Technologies market in the U.S. is estimated at US$949.2 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$2.0 Billion by the year 2030 trailing a CAGR of 22.3% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 21.1% and 20.4% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 16.4% CAGR.

Global Privacy Enhancing Technologies Market - Key Trends & Drivers Summarized

Why Are Privacy Enhancing Technologies Becoming Essential in the Digital Age?

Privacy Enhancing Technologies (PETs) have emerged as critical tools for organizations and individuals seeking to protect sensitive data while maintaining compliance with evolving privacy regulations. As digital interactions increase across industries, concerns over data security, cyber threats, and regulatory compliance have driven demand for advanced privacy-preserving solutions. PETs encompass various technologies, including differential privacy, homomorphic encryption, secure multi-party computation (SMPC), zero-knowledge proofs, and federated learning. These solutions enable secure data processing, analysis, and sharing without exposing underlying personal or proprietary information. Businesses operating in finance, healthcare, and cloud computing are integrating PETs to ensure data confidentiality while leveraging analytics for insights and decision-making. Additionally, as governments worldwide implement stricter data privacy laws, including the GDPR, CCPA, and other global frameworks, the adoption of PETs has accelerated. With growing consumer awareness of digital privacy risks, organizations are increasingly turning to these technologies to enhance trust, security, and regulatory adherence in their operations.

What Challenges Are Hindering the Growth of the Privacy Enhancing Technologies Market?

Despite their growing adoption, privacy enhancing technologies face several challenges that impact widespread implementation and scalability. One of the key barriers is the complexity of integrating PETs into existing IT infrastructure, requiring significant investment in technical expertise and computational resources. Many PETs, such as homomorphic encryption and secure multi-party computation, are computationally intensive, leading to concerns about processing speed and efficiency in real-world applications. Additionally, regulatory fragmentation across different jurisdictions complicates implementation, as businesses must navigate varying data protection laws while ensuring compliance. The lack of standardization in PET solutions also presents interoperability challenges, making it difficult for enterprises to adopt a unified approach across multiple platforms. Moreover, while PETs enhance privacy, they can limit data usability in certain cases, creating a tradeoff between security and operational flexibility. Addressing these challenges requires continued advancements in PET efficiency, regulatory alignment, and the development of user-friendly privacy-preserving frameworks that balance security with business needs.

How Are AI, Blockchain, and Advanced Cryptographic Techniques Enhancing Privacy Enhancing Technologies?

Innovations in artificial intelligence, blockchain, and cryptographic techniques are significantly advancing the capabilities of privacy enhancing technologies. AI-driven privacy tools, such as differential privacy algorithms, are enabling organizations to analyze large datasets while protecting individual identities. Blockchain-based PETs are enhancing transparency and decentralization, offering immutable data security while reducing reliance on centralized data storage. Homomorphic encryption, which allows computations on encrypted data without decryption, is revolutionizing secure cloud computing by enabling privacy-preserving data analytics. Federated learning, another emerging PET, allows machine learning models to be trained across decentralized devices while keeping data localized, reducing exposure to cyber threats. Additionally, the rise of privacy-preserving identity solutions, such as zero-knowledge proofs, is improving authentication processes without compromising user anonymity. As these technologies evolve, privacy enhancing solutions are becoming more efficient, scalable, and applicable across various industries, driving innovation in secure data management.

What Is Driving the Growth of the Privacy Enhancing Technologies Market?

The growth in the privacy enhancing technologies market is driven by several factors, including increasing regulatory pressures, rising cyber threats, and the expansion of privacy-conscious digital services. The enforcement of stringent data protection laws worldwide has compelled organizations to adopt PETs to ensure compliance and mitigate legal risks. The surge in cybercrime, data breaches, and identity theft incidents has further heightened the need for robust privacy-preserving solutions. The rapid expansion of cloud computing and IoT devices has also accelerated PET adoption, as enterprises seek to protect sensitive information across distributed networks. Additionally, growing consumer demand for data privacy and digital rights protection has encouraged businesses to integrate PETs into their platforms as a competitive differentiator. As privacy concerns continue to shape the digital landscape, the PET market is expected to experience sustained growth, driving the development of more advanced, efficient, and accessible privacy-preserving technologies.

SCOPE OF STUDY:

The report analyzes the Privacy Enhancing Technologies market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Component Type (Privacy Enhancing Software, Privacy Enhancing Services); Technique Type (Cryptographic Technique, Anonymization Technique, Pseudonymization Techniques); Application (Compliance Management, Risk Management, Reporting & Analytics, Other Technique Types); End-Use (BFSI End-Use, Healthcare End-Use, IT & Telecommunications End-Use, Government End-Use, Retail End-Use, Manufacturing End-Use, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 33 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â