¼¼°èÀÇ ¾à¹°À¯ÀüüÇÐ ±â¼ú ½ÃÀå
Pharmacogenomics Technology
»óǰÄÚµå : 1784008
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 291 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,222,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,666,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¾à¹°À¯ÀüüÇÐ ±â¼ú ¼¼°è ½ÃÀåÀº 2030³â±îÁö 114¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 71¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¾à¹°À¯ÀüüÇÐ ±â¼ú ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 8.2%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 114¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ Á¾¾çÇÐÀº CAGR 9.4%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 53¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ½Å°æÁúȯ ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 8.9%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 19¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 12.9%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ¾à¹°À¯ÀüüÇÐ ±â¼ú ½ÃÀåÀº 2024³â¿¡ 19¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 25¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 12.9%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 4.1%¿Í 7.9%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 5.4%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¾à¹°À¯ÀüüÇÐ ±â¼ú ½ÃÀå, ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

¾à¹°À¯ÀüüÇÐÀº ÀǾàǰ °³¹ß°ú ¸ÂÃãÇü ÀǷḦ ¾î¶»°Ô º¯È­½Ãų °ÍÀΰ¡?

¾à¹°À¯ÀüüÇÐ ±â¼úÀº °³ÀÎÀÇ À¯ÀüÀÚ ±¸¼º¿¡ ±â¹ÝÇÑ ¸ÂÃã ÀǷḦ °¡´ÉÇϰÔÇÔÀ¸·Î½á Á¦¾à »ê¾÷¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. À¯ÀüÀÚ º¯À̰¡ ¾à¹° ¹ÝÀÀ¿¡ ¾î¶² ¿µÇâÀ» ¹ÌÄ¡´ÂÁö ¿¬±¸ÇÔÀ¸·Î½á ¾à¹°À¯ÀüüÇÐÀº Ç¥Àû Ä¡·áÁ¦ °³¹ß, ¾à¹° ¿ë·® ÃÖÀûÈ­, ºÎÀÛ¿ë °¨¼Ò¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ȹÀÏÀûÀÎ Á¢±Ù ¹æ½Ä¿¡¼­ Á¤¹ÐÀÇ·á·ÎÀÇ ÀüȯÀº Ä¡·á È¿°ú¸¦ ³ôÀ̰í, ½ÃÇàÂø¿À¸¦ ÃÖ¼ÒÈ­Çϸç, ȯÀÚ °á°ú¸¦ Å©°Ô °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù.

¹Ì±¹ ½ÄǰÀǾ౹(FDA), À¯·´ÀǾàǰû(EMA), ±¹Á¦ÀǾàǰ±ÔÁ¦Á¶È­À§¿øÈ¸(ICH) µî ±ÔÁ¦±â°üÀº ÀǾàǰÀÇ ½ÂÀÎ, Ç¥½Ã, ½ÃÆÇ ÈÄ Á¶»ç¿¡¼­ ¾à¸®À¯ÀüÇÐÀ» Á¡Á¡ ´õ ¸¹ÀÌ ÀÎÁ¤Çϰí ÀÖ½À´Ï´Ù. ¸¹Àº Á¦¾à»çµéÀº ¹ÙÀÌ¿À¸¶Ä¿ ½Äº°, ȯÀÚ±º °èÃþÈ­, ÀǾàǰ °³¹ß ±â°£ ´ÜÃàÀ» À§ÇØ ÀÓ»ó½ÃÇè¿¡ ¾à¸®À¯Àüü µ¥ÀÌÅ͸¦ ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. Â÷¼¼´ë ¿°±â¼­¿­ºÐ¼®(NGS), Å©¸®½ºÆÛ(CRISPR) ±â¹Ý À¯ÀüÀÚ ÆíÁý, ÀΰøÁö´É(AI)À» Ȱ¿ëÇÑ À¯ÀüÀÚ ºÐ¼®ÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀ¸·Î ¾à¸®À¯ÀüüÇÐÀº Á¤¹ÐÀÇ·áÀÇ Ãʼ®ÀÌ µÉ Áغñ°¡ µÇ¾î ÀÖ½À´Ï´Ù.

¾à¹°À¯ÀüüÇÐ ±â¼úÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â ÁÖ¿ä µ¿ÇâÀº ¹«¾ùÀΰ¡?

À¯Àüü ¿°±â¼­¿­, ¹ÙÀÌ¿ÀÀÎÆ÷¸Åƽ½º, AI¸¦ Ȱ¿ëÇÑ ½Å¾à°³¹ßÀÇ ºñ¾àÀûÀÎ ¹ßÀüÀ¸·Î ¾à¹°À¯ÀüüÇÐ ºÐ¾ß´Â ºü¸£°Ô ÁøÈ­Çϰí ÀÖ½À´Ï´Ù. °¡Àå Áß¿äÇÑ Æ®·»µå Áß Çϳª´Â ¾à¹° ´ë»ç¿Í °ü·ÃµÈ À¯ÀüÀÚ º¯À̸¦ ½Å¼ÓÇÏ°í ºñ¿ë È¿À²ÀûÀ¸·Î È®ÀÎÇÒ ¼ö ÀÖ´Â ÀüÀå À¯Àüü ¿°±â¼­¿­ ºÐ¼®(WGS) ¹× Â÷¼¼´ë ¿°±â¼­¿­ ºÐ¼®(NGS)ÀÇ ±¤¹üÀ§ÇÑ Ã¤ÅÃÀÔ´Ï´Ù. ¿°±â¼­¿­ ºÐ¼® ±â¼úÀÇ Àúºñ¿ëÈ­¿¡ µû¶ó ¾à¹°À¯ÀüüÇÐ °Ë»ç´Â ÀÓ»ó Àû¿ë ¹× Áý´Ü ¿°±â¼­¿­ ºÐ¼® ¿¬±¸¿¡ ´õ¿í ½±°Ô ÀÌ¿ëÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ Æ®·»µå´Â ¾à¹°À¯ÀüüÇÐ ¿¬±¸¿¡ AI¿Í ¸Ó½Å·¯´×(ML)ÀÇ ÅëÇÕÀÔ´Ï´Ù. AI¸¦ Ȱ¿ëÇÑ ¾Ë°í¸®ÁòÀº ¹æ´ëÇÑ À¯ÀüÀÚ µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© ¾à¹°°ú À¯ÀüÀÚÀÇ »óÈ£ÀÛ¿ëÀ» ÆÄ¾ÇÇϰí, Ä¡·á ¹ÝÀÀÀ» ¿¹ÃøÇÏ¿© ¸ÂÃãÇü ¾à¹° ¿ä¹ýÀ» °³¹ßÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, AI¸¦ Ȱ¿ëÇÑ ½Å¾à°³¹ß Ç÷§ÆûÀº ½Å±Ô ¹ÙÀÌ¿À¸¶Ä¿ ¹× Ä¡·á Ç¥Àû ¹ß±¼À» °¡¼ÓÈ­ÇÏ¿© ±âÁ¸ ÀǾàǰ °³¹ß¿¡ ¼Ò¿äµÇ´Â ½Ã°£°ú ºñ¿ëÀ» Àý°¨Çϰí ÀÖ½À´Ï´Ù.

DTC(Direct-to-Consumer) ¾à¸®À¯Àüü °Ë»çÀÇ µîÀåÀº ¶Ç ´Ù¸¥ º¯È­ÀÇ È帧ÀÔ´Ï´Ù. 23andMe¿Í Color Genomics¿Í °°Àº ±â¾÷µéÀº ¼ÒºñÀÚ¿¡°Ô ¾à¹° ´ë»ç ¹× ÀáÀçÀû ¾à¹° ºÎÀÛ¿ë¿¡ ´ëÇÑ ÀλçÀÌÆ®¸¦ Á¦°øÇÏ´Â À¯ÀüÀÚ °Ë»ç ŰƮ¸¦ Á¦°øÇϰí ÀÖ½À´Ï´Ù. ±ÔÁ¦ ´ç±¹ÀÇ °¨½Ã°¡ ¿©ÀüÈ÷ °úÁ¦·Î ³²¾ÆÀÖÁö¸¸, ¼ÒºñÀÚ ÁÖµµÇü ÇコÄɾ ´ëÇÑ ¼ö¿ä Áõ°¡°¡ ÀÌ ½ÃÀåÀÇ ¼ºÀåÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù.

¶ÇÇÑ, CRISPRÀ» ±â¹ÝÀ¸·Î ÇÑ À¯ÀüÀÚ ÆíÁý°ú À¯ÀüÀÚ Ä¡·áÀÇ ¹ßÀüÀº ¾à¸®À¯ÀüüÇÐÀÇ ¹üÀ§¸¦ Áø´Ü¿¡ ±×Ä¡Áö ¾Ê°í Ä¡·áÀû ÀÀ¿ëÀ¸·Î±îÁö È®ÀåÇϰí ÀÖ½À´Ï´Ù. À¯ÀüÀÚ ÆíÁý ±â¼úÀº ¸ÂÃãÇü ÀǾàǰ °³¹ß, Ç¥Àû ¾Ï Ä¡·á, Èñ±ÍÁúȯ Ä¡·á¸¦ °¡´ÉÇÏ°Ô Çϰí, ¾à¸®À¯ÀüüÇÐ Áß½ÉÀÇ Á¤¹ÐÀÇ·á¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù.

ÃÖÁ¾ ¿ëµµ´Â ¾à¹°À¯ÀüüÇÐ ½ÃÀåÀ» ¾î¶»°Ô Çü¼ºÇϰí Àִ°¡?

¾à¹°À¯ÀüüÇÐ ±â¼úÀº Á¾¾çÇÐ, ½ÉÀåÇÐ, Á¤½ÅÀÇÇÐ, ½Å°æÇÐ, °¨¿°ÇÐ µî ¿©·¯ Ä¡·á ºÐ¾ß¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. °¢ ºÐ¾ß´Â °íÀ¯ÇÑ ¹æ½ÄÀ¸·Î ¾à¹° ¼±Åðú Ä¡·á Àü·«À» ÃÖÀûÈ­Çϱâ À§ÇØ ¾à¹°À¯ÀüüÇÐÀÇ ÇýÅÃÀ» ´©¸®°í ÀÖ½À´Ï´Ù.

Á¾¾çÇÐÀº ¾à¸®À¯ÀüüÇÐÀÌ ¿µÇâÀ» ¹ÌÄ¡´Â °¡Àå Áß¿äÇÑ ºÐ¾ß Áß ÇϳªÀÔ´Ï´Ù. À¯¹æ¾ÏÀÇ HER2 ¾ïÁ¦Á¦(Æ®¶ó½ºÅõÁÖ¸¿), Æó¾ÏÀÇ EGFR ¾ïÁ¦Á¦(°ÔÇÇÆ¼´Õ) µî Ç¥Àû ¾Ï Ä¡·áÁ¦´Â À¯ÀüÀÚ ÇÁ·ÎÆÄÀϸµÀ» ±â¹ÝÀ¸·Î ÇÕ´Ï´Ù. ¾à¹°À¯ÀüüÇÐ °Ë»ç´Â Á¾¾ç Àü¹®Àǰ¡ ¾î¶² ȯÀÚ°¡ ƯÁ¤ Ä¡·áÀÇ ÇýÅÃÀ» °¡Àå ¸¹ÀÌ ¹ÞÀ» ¼ö ÀÖ´ÂÁö ÆÇ´ÜÇϰí, µ¶¼ºÀ» ÁÙÀÌ°í »ýÁ¸À²À» °³¼±ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. À¯ÀüÀÚ °Ë»ç¿Í ƯÁ¤ Ç×¾ÏÁ¦¸¦ °áÇÕÇÑ µ¿¹ÝÁø´Ü¾àÀÇ µîÀåÀº ÀÌ ºÐ¾ßÀÇ ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

½ÉÀ庴Çп¡¼­´Â ¾à¸®À¯ÀüüÇÐÀÌ °íÇ÷¾Ð, Ç×ÀÀ°í, ÄÝ·¹½ºÅ×·Ñ °ü¸® Ä¡·á¸¦ Á¶Á¤ÇÏ´Â µ¥ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. À¯ÀüÀÚ °Ë»ç¸¦ ÅëÇØ ȯÀÚ°¡ Ŭ·ÎÇǵµ±×·¼(Çöóºò½º), ¿ÍÆÄ¸°, ½ºÅ¸Æ¾À» ¾î¶»°Ô ´ë»çÇÏ´ÂÁö ¿¹ÃøÇÏ¿© °¡Àå È¿°úÀûÀÌ°í ¾ÈÀüÇÑ ¿ë·®À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ ºÎÀÛ¿ë(ADR) ¹× Ç÷Àü¼º ÇÕº´Áõ À§ÇèÀ» ÁÙÀÌ°í ½ÉÇ÷°üÁúȯ °ü¸®¸¦ °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù.

Á¤½ÅÀÇÇÐ ¹× ½Å°æÇÐ ¶ÇÇÑ ¾à¸®À¯ÀüüÇп¡ ÀÇÇØ Å« ÁøÀüÀ» ÀÌ·ç°í ÀÖ½À´Ï´Ù. Ç׿ì¿ïÁ¦, Ç×Á¤½Åº´¾à, °£ÁúÄ¡·áÁ¦´Â Á¾Á¾ ȯÀÚÀÇ ¹ÝÀÀ¼º¿¡ ³ôÀº ÆíÂ÷¸¦ º¸ÀÔ´Ï´Ù. À¯ÀüÀÚ °Ë»ç´Â SSRI, ¸®Æ¬, Ä«¸£¹Ù¸¶Á¦ÇÉ µîÀÇ ¾à¹°ÀÌ ¾î¶»°Ô ´ë»çµÇ´ÂÁö ¿¹ÃøÇÏ´Â µ¥ µµ¿òÀÌ µÇ¸ç, Ä¡·á ÀúÇ×¼º ¹× ºÎÀÛ¿ëÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¾à¹°À¯ÀüüÇÐÀº ¾ËÃ÷ÇÏÀ̸Ӻ´°ú ÆÄŲ½¼º´¿¡ ´ëÇÑ ¿¬±¸¿¡µµ µµ¿òÀÌ µÇ°í ÀÖÀ¸¸ç, À¯ÀüÀû À§Çè ¿äÀο¡ ±â¹ÝÇÑ ÀáÀçÀû Ä¡·á Ç¥ÀûÀ» ã¾Æ³»´Â µ¥¿¡µµ µµ¿òÀÌ µÇ°í ÀÖ½À´Ï´Ù.

°¨¿°º´ ºÐ¾ß¿¡¼­´Â Ç×¹ÙÀÌ·¯½º Ä¡·á, Ç×»ýÁ¦ ³»¼º ¿¬±¸, ¹é½Å °³¹ß¿¡ ¾à¹°À¯ÀüüÇÐÀÌ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, À¯ÀüÀÚ °Ë»ç´Â ¾Æ¹ÙÄ«ºñ¸£¿Í °°Àº HIV Ä¡·á(HLA-B*5701 ½ºÅ©¸®´×) ¹× CÇü °£¿° Ä¡·á¿¡ ´ëÇÑ È¯ÀÚÀÇ ¹ÝÀÀÀ» °áÁ¤Çϰí, Ç×¹ÙÀÌ·¯½º È¿°ú¸¦ Çâ»ó½Ã۰í, °ú¹Î¹ÝÀÀÀ» °¨¼Ò½Ãų ¼ö ÀÖ½À´Ï´Ù.

¶ÇÇÑ, ¾à¹°À¯ÀüüÇÐÀº Èñ±ÍÁúȯ Ä¡·áÁ¦ °³¹ß ¹× Èñ±ÍÁúȯ Ä¡·áÁ¦ ½ÂÀο¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ¸¹Àº À¯Àü¼º ÁúȯÀº °íµµÀÇ Ç¥Àû Ä¡·á°¡ ÇÊ¿äÇϸç, ¾à¸®À¯ÀüüÇÐÀº ³¶Æ÷¼º¼¶À¯Áõ, °â»ó ÀûÇ÷±¸Áõ, µà¼ÏÇü ±ÙÀÌ¿µ¾çÁõ°ú °°Àº Áúȯ¿¡ ´ëÇÑ À¯ÀüÀÚ ±â¹Ý Ä¡·á Àü·«ÀÇ ½Äº°À» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

¾à¹°À¯ÀüüÇÐ ±â¼ú ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

¾à¹°À¯ÀüüÇÐ ±â¼ú ½ÃÀåÀÇ ¼ºÀåÀº À¯Àüü ½ÃÄö½ÌÀÇ ¹ßÀü, ¸ÂÃãÇü ÀÇ·á¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ±ÔÁ¦ ´ç±¹ÀÇ Áö¿ø, ÀǾàǰ °³¹ß¿¡¼­ÀÇ ÀÀ¿ë ºÐ¾ß È®´ë µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÀÇ·á°¡ Á¤¹ÐÀÇ·á·Î ÀüȯµÇ¸é¼­ Á¦¾à»ç, ¿¬±¸±â°ü, ÀÇ·á¼­ºñ½º Á¦°øÀÚµéÀº À¯ÀüÀÚ °Ë»ç, ¹ÙÀÌ¿ÀÀÎÆ÷¸Åƽ½º Ç÷§Æû, AI ±â¹Ý ½Å¾à°³¹ß µµ±¸¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù.

ÁÖ¿ä ¼ºÀå ¿äÀÎ Áß Çϳª´Â À¯ÀüÀÚ ¿°±â¼­¿­ ºÐ¼® ºñ¿ëÀÌ ³·¾ÆÁö°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ÀüÀå À¯Àüü ¿°±â¼­¿­ ºÐ¼® ºñ¿ëÀÌ Å©°Ô ³·¾ÆÁ® ¾à¸®À¯ÀüüÇÐ °Ë»ç°¡ ´õ¿í Ä£¼÷ÇÏ°í ºñ¿ë È¿À²ÀûÀÏ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ±× °á°ú, ÀÇ·á ¼­ºñ½º Á¦°øÀÚµéÀº À¯ÀüÀÚ ÇÁ·ÎÆÄÀϸµÀ» ÀÏ»óÀûÀÎ ÀÓ»ó¿¡ µµÀÔÇϰí, ¾à¹°À¯ÀüüÇп¡ ±â¹ÝÇÑ Áø´Ü ¹× Ä¡·áÁ¦ÀÇ ½ÃÀåÀ» È®´ëÇϰí ÀÖ½À´Ï´Ù.

±ÔÁ¦ ´ç±¹ ¶ÇÇÑ ¾à¹°À¯ÀüüÇÐÀ» ÃßÁøÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. FDA´Â 300°³ ÀÌ»óÀÇ ÀǾàǰ¿¡ ¾à¹°À¯ÀüüÇÐ ¶óº§À» ºÎÂøÇÏ¿© ¾à¹°ÀÇ ´ë»ç ¹× È¿´É¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â À¯ÀüÀÚ ¸¶Ä¿¸¦ °­Á¶Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, All of Us Research Program(¹Ì±¹)À̳ª UK Biobank Project(¿µ±¹ ¹ÙÀÌ¿À¹ðÅ© ÇÁ·ÎÁ§Æ®)¿Í °°Àº ÀÌ´Ï¼ÅÆ¼ºê°¡ ¾à¸®À¯ÀüüÇÐ ¿¬±¸¸¦ ÃËÁøÇϱâ À§ÇÑ ´ë±Ô¸ð À¯ÀüÀÚ µ¥ÀÌÅÍ ¼öÁýÀ» ÃßÁøÇϰí ÀÖ¾î ÀÌ ±â¼úÀÇ º¸±Þ¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù.

¸¸¼ºÁúȯ, ¾Ï, ¾àÁ¦ ³»¼º °¨¿°ÁõÀÇ È®»êµµ ¾à¸®À¯ÀüüÇÐ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ Ä¡·á Á¢±Ù¹ýÀ¸·Î´Â ¾à¹° ¹ÝÀÀ°ú ºÎÀÛ¿ëÀÌ ´Ù¾çÇϱ⠶§¹®¿¡ ¾à¸®À¯ÀüüÇÐÀº Á¤¹ÐÇÑ Ã³¹æ°ú °³º°È­µÈ Ä¡·á Àü·«À» °¡´ÉÇϰÔÇÔÀ¸·Î½á ÇØ°áÃ¥À» Á¦½ÃÇÕ´Ï´Ù. ¶ÇÇÑ, Á¦¾à»çµéÀº ¾à¸®À¯ÀüüÇÐÀ» Ȱ¿ëÇÏ¿© ÀÓ»ó½ÃÇèÀ» ÃÖÀûÈ­Çϰí ÀǾàǰ °³¹ßÀ» °¡¼ÓÈ­Çϱâ À§ÇØ ¾à¸®À¯ÀüüÇÐÀ» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. À¯ÀüÀÚ ÇÁ·ÎÆÄÀÏÀ» ±â¹ÝÀ¸·Î ȯÀÚ Áý´ÜÀ» °èÃþÈ­ÇÔÀ¸·Î½á ±â¾÷Àº ÀÓ»ó½ÃÇè ¼º°ø·üÀ» ³ôÀ̰í, ½Å¾à °³¹ß ºñ¿ëÀ» Àý°¨Çϸç, Ä¡·áÁ¦¸¦ ´õ »¡¸® ½ÃÀå¿¡ Ãâ½ÃÇÒ ¼ö ÀÖ½À´Ï´Ù. µ¿¹ÝÁø´Ü¾à°ú ¹ÙÀÌ¿À¸¶Ä¿ Áß½ÉÀÇ ÀǾàǰ ½ÂÀÎÀÌ Áõ°¡Çϸ鼭 ¾à¸®À¯ÀüüÇаú ÀǾàǰ Çõ½ÅÀÇ ¿¬°á°í¸®´Â ´õ¿í °­È­µÇ°í ÀÖ½À´Ï´Ù.

¶ÇÇÑ, Á¤ºÎÀÇ ÀÚ±Ý Áö¿ø°ú ¹Î°ü ÆÄÆ®³Ê½ÊÀÌ Á¶»ç¿Í »ó¾÷È­ ³ë·ÂÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¹Ì±¹ ±¹¸³º¸°Ç¿ø(NIH), À¯·´ÀǾàǰû(EMA), ÀϺ» ÀǷῬ±¸°³¹ß±â±¸(AMED) µîÀÇ ±â°üÀÌ ¾à¸®À¯ÀüüÇÐ ¿¬±¸¿¡ ÅõÀÚÇϰí ÀÖÀ¸¸ç, À¯ÀüÀÚ ±â¹Ý Ä¡·á¹ý °³¹ß ¹× Áý´Ü Àüü¿¡ ´ëÇÑ À¯ÀüÀÚ ½ºÅ©¸®´× ³ë·Â¿¡¼­ ȹ±âÀûÀÎ ¹ßÀüÀ» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. ¾à¹°À¯ÀüüÇÐÀÌ AI, ºòµ¥ÀÌÅÍ, Á¤¹Ð ½Å¾à°³¹ß°ú Áö¼ÓÀûÀ¸·Î ÅëÇյǸ鼭 ÀÌ ºÐ¾ß´Â ºñ¾àÀûÀÎ ¼ºÀåÀ» °ÅµìÇϰí ÀÖÀ¸¸ç, ÀǾàǰ °³¹ß, ó¹æ, ¸ð´ÏÅ͸µ ¹æ½ÄÀ» º¯È­½Ãų Áغñ°¡ µÇ¾î ÀÖ½À´Ï´Ù. À¯ÀüÀÚ ½ÃÄö½Ì, ¹ÙÀÌ¿À¸¶Ä¿ ½Äº°, AI ±â¹Ý ºÐ¼®ÀÇ ¹ßÀüÀ¸·Î ¾à¸®À¯ÀüüÇÐÀº ¸ÂÃãÇü ÀÇ·á¿Í Á¤¹Ð ÀÇ·áÀÇ ¹Ì·¡¸¦ Çü¼ºÇÏ´Â µ¥ ÀÖ¾î Á¡Á¡ ´õ Áß½ÉÀûÀÎ ¿ªÇÒÀ» ÇÏ°Ô µÉ °ÍÀÔ´Ï´Ù.

ºÎ¹®

Ä¡·á ºÐ¾ß(Á¾¾çÇÐ, ½Å°æÁúȯ, ½ÉÇ÷°üÁúȯ, ¸é¿ªÁúȯ, °¨¿°Áõ), ±â¼ú(PCR, ISH(In Situ Hybridization), ¸é¿ªÁ¶Á÷È­ÇÐ, ½ÃÄö½Ì, ±âŸ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ÀÇ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹üÀ» µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡°¡ ¼±º°ÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Pharmacogenomics Technology Market to Reach US$11.4 Billion by 2030

The global market for Pharmacogenomics Technology estimated at US$7.1 Billion in the year 2024, is expected to reach US$11.4 Billion by 2030, growing at a CAGR of 8.2% over the analysis period 2024-2030. Oncology, one of the segments analyzed in the report, is expected to record a 9.4% CAGR and reach US$5.3 Billion by the end of the analysis period. Growth in the Neurological Disorders segment is estimated at 8.9% CAGR over the analysis period.

The U.S. Market is Estimated at US$1.9 Billion While China is Forecast to Grow at 12.9% CAGR

The Pharmacogenomics Technology market in the U.S. is estimated at US$1.9 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$2.5 Billion by the year 2030 trailing a CAGR of 12.9% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 4.1% and 7.9% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 5.4% CAGR.

Pharmacogenomics Technology Market: Key Trends & Drivers Summarized

How Is Pharmacogenomics Transforming Drug Development and Personalized Medicine?

Pharmacogenomics technology is revolutionizing the pharmaceutical industry by enabling personalized medicine based on an individual’s genetic makeup. By studying how genetic variations influence drug response, pharmacogenomics allows for the development of targeted therapies, optimized drug dosages, and reduced adverse reactions. This shift from a one-size-fits-all approach to precision medicine enhances treatment efficacy and minimizes trial-and-error prescribing, significantly improving patient outcomes.

Regulatory agencies such as the U.S. Food and Drug Administration (FDA), European Medicines Agency (EMA), and the International Council for Harmonisation (ICH) are increasingly recognizing pharmacogenomics in drug approvals, labeling, and post-market surveillance. Many pharmaceutical companies are integrating pharmacogenomic data into clinical trials to identify biomarkers, stratify patient populations, and accelerate drug development timelines. With the rapid advancement of next-generation sequencing (NGS), CRISPR-based gene editing, and artificial intelligence (AI)-powered genetic analysis, pharmacogenomics is poised to become a cornerstone of precision medicine.

What Are the Key Trends Driving the Growth of Pharmacogenomics Technology?

The field of pharmacogenomics is evolving rapidly, driven by breakthroughs in genomic sequencing, bioinformatics, and AI-driven drug discovery. One of the most significant trends is the widespread adoption of whole-genome sequencing (WGS) and next-generation sequencing (NGS), which enable rapid and cost-effective identification of genetic variants linked to drug metabolism. With the decreasing cost of sequencing technologies, pharmacogenomics testing is becoming more accessible for clinical applications and population-wide studies.

Another key trend is the integration of AI and machine learning (ML) in pharmacogenomics research. AI-powered algorithms can analyze vast amounts of genetic data to identify drug-gene interactions, predict treatment responses, and develop personalized drug regimens. AI-driven drug discovery platforms are also accelerating the identification of novel biomarkers and therapeutic targets, reducing the time and cost associated with traditional drug development.

The rise of direct-to-consumer (DTC) pharmacogenomics testing is another transformative trend. Companies like 23andMe and Color Genomics are offering genetic testing kits that provide consumers with insights into their drug metabolism and potential adverse drug reactions. While regulatory oversight remains a challenge, the increasing demand for consumer-driven healthcare is fueling the growth of this market.

Furthermore, CRISPR-based gene editing and gene therapy advancements are expanding the scope of pharmacogenomics beyond diagnostics into therapeutic applications. Gene-editing technologies are enabling customized drug development, targeted cancer therapies, and rare disease treatments, further propelling the demand for pharmacogenomics-driven precision medicine.

How Are End-Use Applications Shaping the Pharmacogenomics Market?

Pharmacogenomics technology is influencing multiple therapeutic areas, including oncology, cardiology, psychiatry, neurology, and infectious diseases. Each segment benefits from pharmacogenomics in unique ways, optimizing drug selection and treatment strategies.

Oncology is one of the most significant areas where pharmacogenomics is making an impact. Targeted cancer therapies such as HER2 inhibitors for breast cancer (trastuzumab) and EGFR inhibitors for lung cancer (gefitinib) are based on genetic profiling. Pharmacogenomic testing helps oncologists determine which patients will benefit most from specific treatments, reducing toxicity and improving survival rates. The rise of companion diagnostics, which pair genetic testing with specific cancer drugs, is further driving growth in this sector.

In cardiology, pharmacogenomics is being used to tailor treatments for hypertension, anticoagulation, and cholesterol management. Genetic testing can predict how patients metabolize clopidogrel (Plavix), warfarin, and statins, ensuring that they receive the most effective and safest dosage. This reduces the risk of adverse drug reactions (ADRs) and thrombotic complications, improving cardiovascular disease management.

Psychiatry and neurology are also experiencing significant advancements due to pharmacogenomics. Antidepressants, antipsychotics, and epilepsy medications often exhibit high variability in patient response. Genetic testing helps predict how individuals metabolize drugs such as SSRIs, lithium, and carbamazepine, reducing treatment resistance and side effects. Pharmacogenomics is also playing a role in Alzheimer’s and Parkinson’s disease research, helping to identify potential therapeutic targets based on genetic risk factors.

In the infectious disease sector, pharmacogenomics is being applied to antiviral therapies, antibiotic resistance studies, and vaccine development. For example, genetic testing can determine how patients respond to HIV treatments like abacavir (HLA-B*5701 screening) or hepatitis C therapies, improving antiviral efficacy and reducing hypersensitivity reactions.

Additionally, pharmacogenomics is playing a crucial role in rare disease drug development and orphan drug approvals. Many genetic disorders require highly targeted therapies, and pharmacogenomics is enabling the identification of gene-based treatment strategies for conditions like cystic fibrosis, sickle cell disease, and Duchenne muscular dystrophy.

What Factors Are Driving the Growth of the Pharmacogenomics Technology Market?

The growth in the pharmacogenomics technology market is driven by several factors, including advancements in genomic sequencing, increasing demand for personalized medicine, regulatory support, and expanding applications in drug development. As healthcare shifts toward precision medicine, pharmaceutical companies, research institutions, and healthcare providers are investing heavily in genetic testing, bioinformatics platforms, and AI-driven drug discovery tools.

One of the primary growth drivers is the decreasing cost of genetic sequencing. The cost of whole-genome sequencing has dropped significantly, making pharmacogenomics testing more accessible and cost-effective. As a result, healthcare providers are incorporating genetic profiling into routine clinical practice, expanding the market for pharmacogenomics-based diagnostics and therapeutics.

Regulatory agencies are also playing a key role in promoting pharmacogenomics. The FDA has issued pharmacogenomic labeling for over 300 drugs, highlighting genetic markers that influence drug metabolism and efficacy. Additionally, initiatives such as the All of Us Research Program (U.S.) and the UK Biobank Project are collecting large-scale genetic data to advance pharmacogenomics research, fueling further adoption of the technology.

The increasing prevalence of chronic diseases, cancer, and drug-resistant infections is also driving demand for pharmacogenomics solutions. As traditional treatment approaches often result in variable drug responses and adverse reactions, pharmacogenomics provides a solution by enabling precision prescribing and individualized treatment strategies. Furthermore, pharmaceutical companies are leveraging pharmacogenomics to optimize clinical trials and accelerate drug development. By stratifying patient populations based on genetic profiles, companies can improve trial success rates, reduce drug development costs, and bring therapies to market faster. The rise of companion diagnostics and biomarker-driven drug approvals is further strengthening the link between pharmacogenomics and pharmaceutical innovation.

Additionally, government funding and public-private partnerships are fueling research and commercialization efforts. Organizations such as the National Institutes of Health (NIH), the European Medicines Agency (EMA), and the Japan Agency for Medical Research and Development (AMED) are investing in pharmacogenomics research, enabling breakthroughs in gene-based therapy development and population-wide genetic screening initiatives. As pharmacogenomics continues to integrate with AI, big data, and precision drug discovery, the field is poised for exponential growth, transforming the way drugs are developed, prescribed, and monitored. With advancements in gene sequencing, biomarker identification, and AI-driven analysis, pharmacogenomics will play an increasingly central role in shaping the future of personalized medicine and precision healthcare.

SCOPE OF STUDY:

The report analyzes the Pharmacogenomics Technology market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Therapeutic Area (Oncology, Neurological Disorders, Cardiovascular Disease, Immunological Disorders, Infectious Diseases); Technology (PCR, In-situ Hybridization, Immunohistochemistry, Sequencing, Others)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 42 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â