¼¼°èÀÇ ÀǾàǰ ¾ÈÁ¤¼º ¹× º¸°ü ¼­ºñ½º ½ÃÀå
Pharmaceutical Stability and Storage Services
»óǰÄÚµå : 1784007
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 279 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,180,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,541,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

ÀǾàǰ ¾ÈÁ¤¼º ¹× º¸°ü ¼­ºñ½º ¼¼°è ½ÃÀåÀº 2030³â±îÁö 25¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 19¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ÀǾàǰ ¾ÈÁ¤¼º ¹× º¸°ü ¼­ºñ½º ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 4.8%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 25¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¾ÈÁ¤¼ºÀº CAGR 3.9%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 15¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º¸°ü ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 6.5%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 5¾ï 750¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 7.4%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ÀǾàǰ ¾ÈÁ¤¼º ¹× º¸°ü ¼­ºñ½º ½ÃÀåÀº 2024³â¿¡ 5¾ï 750¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 7.4%·Î 2030³â±îÁö 4¾ï 8,140¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 2.4%¿Í 4.7%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 3.0%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÀǾàǰ ¾ÈÁ¤¼º ¹× º¸°ü ¼­ºñ½º ½ÃÀå, ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Á¦¾à ¾÷°è¿¡¼­ ¾ÈÁ¤Àû º¸°ü ¼­ºñ½º°¡ Áß¿äÇÑ ÀÌÀ¯

ÀǾàǰ ¾ÈÁ¤¼º ¹× º¸°ü ¼­ºñ½º´Â ÀǾàǰÀÇ ¾ÈÀü¼º, À¯È¿¼º, ǰÁúÀ» º¸ÀåÇÏ´Â µ¥ ÀÖ¾î Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¾ÈÁ¤¼º ½ÃÇèÀº ¹Ì±¹ ½ÄǰÀǾ౹(FDA), À¯·´ÀǾàǰû(EMA), ±¹Á¦ÀǾàǰ±â¼ú¿ä°ÇÁ¶È­È¸ÀÇ(ICH), ¼¼°èº¸°Ç±â±¸(WHO) µîÀÇ ±â°ü¿¡¼­ Àǹ«ÀûÀ¸·Î ¿ä±¸ÇÏ´Â ±ÔÁ¦ ¿ä°ÇÀÔ´Ï´Ù. ÀÌ ¼­ºñ½º´Â ¿Âµµ, ½Àµµ, ºû ³ëÃâ, ¿ë±â Æó¼âÀÇ »óÈ£ ÀÛ¿ë°ú °°Àº ȯ°æÀû ¿äÀÎÀÌ ½Ã°£ÀÌ Áö³²¿¡ µû¶ó Á¦Á¦¿¡ ¾î¶² ¿µÇâÀ» ¹ÌÄ¡´ÂÁö Æò°¡ÇÕ´Ï´Ù. ¾ÈÁ¤¼º ½ÃÇè¿¡¼­ ¾òÀº µ¥ÀÌÅÍ´Â ÀǾàǰÀÇ º¸°ü ±â°£, ±ÇÀå º¸°ü Á¶°Ç, À¯È¿±â°£ °áÁ¤¿¡ »ç¿ëµË´Ï´Ù.

ÀǾàǰÀÇ ÀûÀýÇÑ º¸°ü ¹× À¯ÅëÀº ƯÈ÷ ¿Âµµ¿¡ ¹Î°¨ÇÑ »ý¹°ÇÐÀû Á¦Á¦, ¹é½Å ¹× Ư¼ö ÀǾàǰÀÇ °æ¿ì ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ÄݵåüÀÎ ¹°·ù ¹× ÅëÁ¦µÈ ȯ°æ¿¡¼­ÀÇ º¸°ü ¼Ö·ç¼ÇÀº ÀǾàǰÀÌ Á¦Á¶¿¡¼­ ÃÖÁ¾»ç¿ëÀÚ¿¡°Ô Àü´ÞµÉ ¶§±îÁö ¾ÈÁ¤¼ºÀ» À¯ÁöÇÒ ¼ö ÀÖµµ·Ï º¸ÀåÇÕ´Ï´Ù. ¼¼°è °ø±Þ¸ÁÀÌ º¹ÀâÇØÁö°í ±ÔÁ¦ ´ç±¹ÀÇ °¨½Ã°¡ °­È­µÊ¿¡ µû¶ó Á¦¾à»çµéÀº ÀǾàǰÀÇ ¹«°á¼ºÀ» º¸È£ÇÏ°í ±ÔÁ¦ ±âÁØÀ» ÁؼöÇϱâ À§ÇØ Æ¯¼ö º¸°ü ½Ã¼³, ÷´Ü ¸ð´ÏÅ͸µ ±â¼ú, ÀûÁ¤ À¯Åë ±Ô¹ü(GDP)À» ÁؼöÇÏ´Â ¹°·ù ¼Ö·ç¼Ç¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù.

ÀǾàǰ ¾ÈÁ¤¼º ¹× º¸°ü ¼­ºñ½º¸¦ Çü¼ºÇÏ´Â ÁÖ¿ä µ¿ÇâÀº ¹«¾ùÀΰ¡?

ÀǾàǰ ¾ÈÁ¤¼º ¹× º¸°ü ¼­ºñ½º ½ÃÀåÀº ÁøÈ­ÇÏ´Â ±ÔÁ¦ ¿ä°Ç, ±â¼ú Çõ½Å, »ý¹°ÇÐÀû Á¦Á¦, ¸ÂÃãÇü ÀÇ·á, ¿Âµµ º¯È­¿¡ ¹Î°¨ÇÑ ÀǾàǰ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ Å« ÁøÀüÀ» ÀÌ·ç°í ÀÖ½À´Ï´Ù. °¡Àå Áß¿äÇÑ Æ®·»µå Áß Çϳª´Â ICH¿¡ ºÎÇÕÇÏ´Â ¾ÈÁ¤¼º ½ÃÇè ÇÁ·ÎÅäÄÝÀÌ °­Á¶µÇ°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ¾ÈÁ¤¼º ½ÃÇèÀº ICH Q1A-Q1F °¡À̵å¶óÀο¡ ¸í½ÃµÈ ¹Ù¿Í °°ÀÌ °¡¼Ó Á¶°Ç, Àå±â Á¶°Ç, Áß°£ Á¶°Ç, ½ºÆ®·¹½º Á¶°Ç¿¡¼­ ½Ç½ÃµË´Ï´Ù. ±ÔÁ¦ ´ç±¹ÀÌ ½Å¾à°ú Á¦³×¸¯ ÀǾàǰ¿¡ ´ëÇÑ ¾ÈÁ¤¼º ½ÃÇè ¿ä°ÇÀ» °­È­ÇÔ¿¡ µû¶ó Á¦¾à»çµéÀº ¾ÈÁ¤¼º ½ÃÇè¿¡ ´ëÇÑ Àü¹®¼ºÀ» °®Ãá CRO(ÀÓ»ó½ÃÇè¼öʱâ°ü)³ª CDMO(À§Å¹°³¹ß ¹× Á¦Á¶¼öʱâ°ü)¿¡ ¾Æ¿ô¼Ò½ÌÀ» ´Ã¸®°í ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ ÁÖ¿ä Æ®·»µå´Â ƯÈ÷ ÃÊÀú¿Â(ULT) º¸°üÀÌ ÇÊ¿äÇÑ »ý¹°ÇÐÀû Á¦Á¦, ¹é½Å, À¯ÀüÀÚ Ä¡·áÁ¦¿¡ ´ëÇÑ ÄݵåüÀÎ º¸°ü ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. mRNA ±â¹Ý ¹é½Å°ú ´ÜŬ·ÐÇ×ü(mAbs)ÀÇ È®´ë·Î ÀÎÇØ -80¡É ¶Ç´Â ±ØÀú¿Â(¼¼Æ÷ Ä¡·á ¹× À¯ÀüÀÚ Ä¡·áÀÇ °æ¿ì -196¡É)¿¡¼­ÀÇ Æ¯¼ö º¸°ü¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. À̸¦ À§ÇØ °ø±Þ¸Á Àü¹Ý¿¡ °ÉÃÄ ÀǾàǰÀÇ ¾ÈÁ¤¼ºÀ» À¯ÁöÇϱâ À§ÇØ Ã·´Ü ³ÃÀå ±â¼ú, ¿Âµµ °ü¸® â°í, ½Ç½Ã°£ ¸ð´ÏÅ͸µ ½Ã½ºÅÛ¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù.

¾ÈÁ¤¼º°ú º¸°ü °ü¸®ÀÇ µðÁöÅÐ Çõ½Å°ú ÀÚµ¿È­ ¶ÇÇÑ ¾÷°è¸¦ À籸¼ºÇϰí ÀÖ½À´Ï´Ù. ±â¾÷µéÀº »ç¹°ÀÎÅͳÝ(IoT) Áö¿ø ¸ð´ÏÅ͸µ ½Ã½ºÅÛ, AI ±â¹Ý ¿¹Ãø ºÐ¼®, ºí·ÏüÀÎ ±â¹Ý ÃßÀû ¹× ÃßÀû ¼Ö·ç¼ÇÀ» Ȱ¿ëÇÏ¿© ÄÄÇöóÀ̾𽺠°­È­, ÀÏÅ» °¨¼Ò, º¸°ü »óȲÀÇ ½Ç½Ã°£ °¡½Ã¼ºÀ» ½ÇÇöÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Çõ½ÅÀ» ÅëÇØ Á¦¾à»çµéÀº ÀáÀçÀûÀÎ ¾ÈÁ¤¼º À§ÇèÀ» »çÀü¿¡ ÆÄ¾ÇÇϰí, Àç°í °ü¸®¸¦ ÃÖÀûÈ­Çϸç, ÀÚµ¿È­µÈ ¹®¼­È­ ¹× º¸°í¸¦ ÅëÇØ ±ÔÁ¦ Áؼö¸¦ º¸ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù.

¶ÇÇÑ, ¸ÂÃãÇü ÀÇ·á¿Í ¼Ò·® »ý»êÀÇ Áõ°¡·Î ÀÎÇØ ¸ÂÃãÇü ¾ÈÁ¤¼º Å×½ºÆ®¿Í À¯¿¬ÇÑ º¸°ü ¼Ö·ç¼Ç¿¡ ´ëÇÑ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ƯÁ¤ ȯÀÚ Áý´Ü¿¡ ¸ÂÃá Á¤¹Ð Ä¡·á¸¦ À§ÇØ Á¦Á¶¾÷ü´Â ´õ ÀÛÀº ¹èÄ¡ Å©±â, °³º°È­µÈ Åõ¿© ¿ä¹ý, ´Ù¾çÇÑ º¸°ü ¿ä°ÇÀ» ÃæÁ·ÇÏ´Â ÀûÀÀÇü ¾ÈÁ¤¼º ÇÁ·Î±×·¥À» ÇÊ¿ä·Î ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ¾ö°ÝÇÑ ¾ÈÁ¤¼º°ú ºÀ¼â ÇÁ·ÎÅäÄÝÀÌ ÇʼöÀûÀÎ Èñ±ÍÁúȯ Ä¡·áÁ¦, ¼¼Æ÷ ±â¹Ý Ä¡·áÁ¦, °í¿ª°¡ È­ÇÕ¹° °³¹ß¿¡¼­ ƯÈ÷ µÎµå·¯Áö°Ô ³ªÅ¸³ª°í ÀÖ½À´Ï´Ù.

ÃÖÁ¾ ¿ëµµ´Â ¾ÈÁ¤¼º ¹× º¸°ü ¼­ºñ½º ½ÃÀåÀ» ¾î¶»°Ô Çü¼ºÇϰí Àִ°¡?

ÀǾàǰ ¾ÈÁ¤¼º ¹× º¸°ü ¼­ºñ½º¿¡ ´ëÇÑ ¼ö¿ä´Â ÀúºÐÀÚ ÀǾàǰ, »ý¹°ÇÐÀû Á¦Á¦, ¹é½Å, ÀÇ·á±â±â, ¹èÇÕÁ¦ µî ÃÖÁ¾ ¿ëµµ¿¡ µû¶ó ´Ù¸¨´Ï´Ù. °¢ Ä«Å×°í¸®¸¶´Ù °íÀ¯ÇÑ ¾ÈÁ¤¼º ¹®Á¦°¡ ÀÖÀ¸¸ç, ÀÌ´Â ÇÊ¿äÇÑ Å×½ºÆ® ¹× º¸°ü ¼Ö·ç¼ÇÀÇ Á¾·ù¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù.

ÀúºÐÀÚ ÀǾàǰÀÇ °æ¿ì, ¾ÈÁ¤¼º ½ÃÇèÀº ºÐÇØ ¼Óµµ·Ð, ºÒ¼ø¹° ÇÁ·ÎÆÄÀϸµ, ºÎÇüÁ¦ ÀûÇÕ¼º¿¡ ÁßÁ¡À» µÓ´Ï´Ù. Àå±â ¾ÈÁ¤¼º ½ÃÇèÀº 25¡É/60%RH(»ó´ë½Àµµ), °¡¼Ó ½ÃÇèÀº 40¡É/75%RH¿Í °°Àº Ç¥ÁØÈ­µÈ ÀúÀå Á¶°ÇÀÌ ÀϹÝÀûÀ¸·Î ÀúÀå °¡´É ±â°£°ú ºÐÇØ ÆÐÅÏÀ» °áÁ¤Çϱâ À§ÇØ Ã¤Åõǰí ÀÖ½À´Ï´Ù. ±ÔÁ¦ ´ç±¹Àº Á¦³×¸¯ ÀǾàǰ ½ÂÀÎ(ANDA) ¹× ½Å¾à Çã°¡ ½Åû(NDA)À» À§ÇØ ±¤¹üÀ§ÇÑ ¾ÈÁ¤¼º µ¥ÀÌÅ͸¦ ¿ä±¸Çϰí ÀÖÀ¸¸ç, ¾ÈÁ¤¼º ¼­ºñ½º´Â ÀǾàǰ °³¹ßÀÇ Áß¿äÇÑ Ãø¸éÀÌ µÇ°í ÀÖ½À´Ï´Ù.

»ý¹°ÇÐÀû Á¦Á¦¿Í ¹ÙÀÌ¿À½Ã¹Ð·¯´Â ±¸Á¶Àû ¹Î°¨¼º°ú ¿­È­ °¡´É¼ºÀ¸·Î ÀÎÇØ º¸´Ù º¹ÀâÇÑ ¾ÈÁ¤¼º ¹®Á¦°¡ ÀÖ½À´Ï´Ù. ´Ü¹éÁú, ´ÜŬ·ÐÇ×ü(mAbs), À¯ÀüÀÚ Ä¡·áÁ¦´Â È¿´ÉÀ» À¯ÁöÇϱâ À§ÇØ Á¤È®ÇÑ ¿Âµµ °ü¸®, ±³¹Ý °¨¼Ò, »êÈ­·ÎºÎÅÍÀÇ º¸È£°¡ ÇÊ¿äÇÕ´Ï´Ù. »ý¹°ÇÐÀû Á¦Á¦ÀÇ ¾ÈÁ¤¼º ½ÃÇè¿¡´Â °­Á¦ºÐÇØ½ÃÇè, ±¤¾ÈÁ¤¼º Æò°¡, ½ÇÁ¦ Ãë±ÞÁ¶°ÇÀ» ¸ð»çÇÑ µ¿°áÀ¶ÇØ »çÀÌŬ ½ÃÇè µîÀÌ Æ÷ÇԵǴ °æ¿ì°¡ ¸¹½À´Ï´Ù. 20¡É, -80¡É ¶Ç´Â ±ØÀú¿Â(¼¼Æ÷ ±â¹Ý Ä¡·áÁ¦ÀÇ °æ¿ì -196¡É)¿¡¼­ÀÇ ÄݵåüÀÎ º¸°ü¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖÀ¸¸ç, Á¦¾àȸ»ç´Â Ư¼ö ³Ãµ¿°í, ¾×ü Áú¼Ò º¸°ü ½Ã½ºÅÛ, ½Ç½Ã°£ ¿Âµµ ÃßÀû ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÅõÀÚ°¡ ÇÊ¿äÇÕ´Ï´Ù.

mRNA ±â¹Ý Ä¡·á, ¼¼Æ÷ ¹× À¯ÀüÀÚ Ä¡·á¿Í °°Àº ¹é½Å ¹× °í±Þ Ä¡·áÁ¦´Â °íµµ·Î ÅëÁ¦µÈ º¸°ü ȯ°æÀÌ ÇÊ¿äÇϸç, ÃÊÀú¿Â Á¶°Ç°ú ¾ö°ÝÇÑ ¹°·ù Á¶Á¤ÀÌ ÇÊ¿äÇÑ °æ¿ì°¡ ¸¹½À´Ï´Ù. COVID-19 ÆÒµ¥¹ÍÀº ÄݵåüÀÎ ¹°·ùÀÇ Á߿伺À» ºÎ°¢½ÃÄ×°í, º¸¿Â Æ÷Àå, ½º¸¶Æ® ¼¾¼­, µ¥ÀÌÅÍ ±â¹Ý °ø±Þ¸Á ¸ð´ÏÅ͸µ¿¡ ´ëÇÑ ÅõÀÚ¸¦ °¡¼ÓÈ­Çß½À´Ï´Ù. ¹é½Å °³¹ßÀÌ °è¼Ó È®´ëµÊ¿¡ µû¶ó ¾ÈÁ¤¼º ¹× º¸°ü ¼­ºñ½º Á¦°ø¾÷üµéÀº ´ë·® ¹× ¿Âµµ¿¡ ¹Î°¨ÇÑ º¸°ü ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇØ ÀÎÇÁ¶ó¸¦ È®ÀåÇϰí ÀÖ½À´Ï´Ù.

ÀÇ·á±â±â ¹× ¹èÇÕÁ¦ ºÐ¾ß¿¡¼­ ¾ÈÁ¤¼º ½ÃÇèÀº ±â±â¿Í Àç·áÀÇ ÀûÇÕ¼º, Æ÷ÀåÀÇ ¹«°á¼º, ¾à¹°°ú ±â±âÀÇ »óÈ£ ÀÛ¿ë ½ÃÇè¿¡ ÁßÁ¡À» µÎ°í ÀÖ½À´Ï´Ù. ÈíÀÔ±â, °æÇÇÈí¼öÆÐÄ¡, ÇÁ¸®ÇÊµå ½Ã¸°Áö µîÀÇ Á¦Ç°¿¡¼­´Â ±â´É¼º°ú Á¦Á¦ÀÇ ½Ã°£Àû ¾ÈÁ¤¼ºÀ» Æò°¡Çϱâ À§ÇØ ´Ù¾çÇÑ ½Àµµ ¹× ¿Âµµ Á¶°Ç¿¡¼­ ¾ÈÁ¤¼º ½ÃÇèÀÌ ÇÊ¿äÇÕ´Ï´Ù. ±ÔÁ¦ ´ç±¹Àº ÀǾàǰ-±â±â ½Ã½ºÅÛÀÌ º¸°ü ±â°£ µ¿¾È ¹«±Õ ¹× À¯È¿¼ºÀ» º¸ÀåÇϱâ À§ÇØ ¿ë±â Æó¼â ¹«°á¼º(CCI) Å×½ºÆ®¸¦ Àǹ«È­Çϰí ÀÖ½À´Ï´Ù.

ÀǾàǰ ¾ÈÁ¤¼º ¹× º¸°ü ¼­ºñ½º ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

ÀǾàǰ ¾ÈÁ¤¼º ¹× º¸°ü ¼­ºñ½º ½ÃÀåÀÇ ¼ºÀåÀº ±ÔÁ¦ ´ç±¹ÀÇ °¨½Ã °­È­, »ý¹°ÇÐÀû Á¦Á¦¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, º¸°ü ¼Ö·ç¼ÇÀÇ ±â¼ú ¹ßÀü µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ±ÔÁ¦ ´ç±¹ÀÇ ¾ÈÁ¤¼º Å×½ºÆ® ¿ä°ÇÀÌ °­È­µÊ¿¡ µû¶ó Á¦¾à»çµéÀº Á¦Ç°ÀÇ ¹«°á¼ºÀ» À¯ÁöÇÏ°í ºñ¿ëÀÌ ¸¹ÀÌ µå´Â ¸®ÄÝÀ» ÇÇÇϱâ À§ÇØ ICH Áؼö ¾ÈÁ¤¼º Å×½ºÆ®, ½Ç½Ã°£ ¾ÈÁ¤¼º ¸ð´ÏÅ͸µ, ÷´Ü º¸°ü ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ¸¦ È®´ëÇϰí ÀÖ½À´Ï´Ù.

ƯÈ÷ »ý¹°ÇÐÀû Á¦Á¦, Ư¼ö ÀǾàǰ, º´¿ë¿ä¹ý µî ÀǾàǰÀÇ Á¦Á¦°¡ º¹ÀâÇØÁü¿¡ µû¶ó Ư¼ö ¾ÈÁ¤¼º ½ÃÇè½Ç, ÃÊÀú¿Â ÀúÀåÀåÄ¡, °øÁ¶°ü¸® â°í¿¡ ´ëÇÑ ¼ö¿ä°¡ ´õ¿í Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Á¦¾à»çµéÀº CRO, CDMO, Á¦3ÀÚ º¸°ü Á¦°ø¾÷ü¿Í Á¦ÈÞÇÏ¿© ÀÚü ÅõÀÚ ¾øÀÌ ÃÖ÷´Ü ¾ÈÁ¤¼º ½ÃÇè ÀÎÇÁ¶ó¸¦ ÀÌ¿ëÇÏ´Â »ç·Ê°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Å« ¿øµ¿·ÂÀº ¼¼°è ÀǾàǰ °ø±Þ¸Á È®´ëÀÔ´Ï´Ù. ÀǾàǰÀº ¿©·¯ ±¹°¡¿¡¼­ Á¦Á¶, º¸°ü, À¯ÅëµÇ±â ¶§¹®¿¡ °ø±Þ¸Á Àü¹Ý¿¡ °ÉÃÄ ÀϰüµÈ ¾ÈÁ¤¼º°ú º¸°ü Á¶°ÇÀ» À¯ÁöÇÏ´Â °ÍÀÌ °¡Àå Áß¿äÇÑ °úÁ¦ÀÔ´Ï´Ù. Á÷·ÄÈ­, ÃßÀû ¼Ö·ç¼Ç, GDP ÄÄÇöóÀ̾𽺠°ü·Ã ±ÔÁ¦ Àǹ«È­·Î ÀÎÇØ ±â¾÷µéÀº °ø±Þ¸Á Åõ¸í¼ºÀ» ³ôÀÌ°í ¿Âµµ ÆíÂ÷¸¦ ¹æÁöÇϱâ À§ÇØ ºí·ÏüÀÎ ±â¼ú, IoT Áö¿ø ÃßÀû, AI ±â¹Ý ¿¹Ãø ºÐ¼®À» äÅÃÇϰí ÀÖ½À´Ï´Ù.

¶ÇÇÑ, ¸ÂÃãÇü ÀÇ·á¿Í ºÐ»êÇü ÀÓ»ó½ÃÇèÀÇ ºÎ»óÀ¸·Î À¯¿¬ÇÏ°í ¼Ò±Ô¸ðÀÇ º¸°ü ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Á¦¾àȸ»ç´Â Ç¥Àû Ä¡·áÁ¦ ¹× ȯÀÚº° Á¦Á¦ °³¹ßÀ» À§ÇØ ÀûÀÀ °¡´ÉÇÑ ¾ÈÁ¤¼º ½ÃÇè ÇÁ·ÎÅäÄݰú °íÀ¯ÇÑ º¸°ü ¹× À¯Åë ¿ä±¸¸¦ ÃæÁ·ÇÏ´Â ¸ÂÃãÇü º¸°ü ȯ°æÀ» ÇÊ¿ä·Î ÇÕ´Ï´Ù.

Á¦¾à ¾÷°èÀÇ ±â¼ú Çõ½Å°ú ±ÔÁ¦ ´ç±¹ÀÇ ±ÔÁ¦ Áؼö ¿ä°Ç °­È­¿¡ µû¶ó, µðÁöÅÐ Çõ½Å, ÷´Ü ¸ð´ÏÅ͸µ ¼Ö·ç¼Ç, ÃÖ÷´Ü ÄݵåüÀÎ ÀÎÇÁ¶ó¸¦ ÅëÇÑ °íÁ¤¹Ð ±â¼ú ±â¹Ý ¾ÈÁ¤¼º ¹× º¸°ü ¼­ºñ½º¿¡ ´ëÇÑ ¼ö¿ä´Â °è¼Ó Áõ°¡ÇÒ °ÍÀÔ´Ï´Ù. ÀǾàǰ °³¹ß ¹× °ø±Þ¸Á ¹°·ùÀÇ ¹Ì·¡¸¦ ¸¸µé¾î °¥ °ÍÀÔ´Ï´Ù.

ºÎ¹®

¼­ºñ½º(¾ÈÁ¤¼º, º¸°ü), ºÐÀÚ(ÀúºÐÀÚ, °íºÐÀÚ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

¿ì¸®´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ÀÇ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹üÀ» µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Pharmaceutical Stability and Storage Services Market to Reach US$2.5 Billion by 2030

The global market for Pharmaceutical Stability and Storage Services estimated at US$1.9 Billion in the year 2024, is expected to reach US$2.5 Billion by 2030, growing at a CAGR of 4.8% over the analysis period 2024-2030. Stability, one of the segments analyzed in the report, is expected to record a 3.9% CAGR and reach US$1.5 Billion by the end of the analysis period. Growth in the Storage segment is estimated at 6.5% CAGR over the analysis period.

The U.S. Market is Estimated at US$507.5 Million While China is Forecast to Grow at 7.4% CAGR

The Pharmaceutical Stability and Storage Services market in the U.S. is estimated at US$507.5 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$481.4 Million by the year 2030 trailing a CAGR of 7.4% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 2.4% and 4.7% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 3.0% CAGR.

Pharmaceutical Stability and Storage Services Market : Key Trends & Drivers Summarized

Why Are Stability and Storage Services Critical in the Pharmaceutical Industry?

Pharmaceutical stability and storage services play a crucial role in ensuring the safety, efficacy, and quality of drug products throughout their lifecycle. Stability testing is a regulatory requirement mandated by agencies such as the U.S. Food and Drug Administration (FDA), European Medicines Agency (EMA), International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH), and World Health Organization (WHO). These services assess how environmental factors such as temperature, humidity, light exposure, and container-closure interactions affect drug formulations over time. The data generated from stability studies are used to determine shelf life, recommended storage conditions, and expiration dates for pharmaceutical products.

Proper storage and distribution of pharmaceuticals are equally vital, particularly for temperature-sensitive biologics, vaccines, and specialty drugs. Cold chain logistics and controlled-environment storage solutions ensure that medications maintain their stability from manufacturing to end-user delivery. As global supply chains become more complex and regulatory scrutiny increases, pharmaceutical companies are investing in specialized storage facilities, advanced monitoring technologies, and Good Distribution Practices (GDP)-compliant logistics solutions to safeguard drug integrity and ensure compliance with regulatory standards.

What Are the Key Trends Shaping Pharmaceutical Stability and Storage Services?

The pharmaceutical stability and storage services market is experiencing significant advancements driven by evolving regulatory requirements, technological innovations, and the increasing demand for biologics, personalized medicine, and temperature-sensitive pharmaceuticals. One of the most significant trends is the growing emphasis on ICH-compliant stability testing protocols. Stability studies are conducted under accelerated, long-term, intermediate, and stress conditions as outlined in ICH Q1A-Q1F guidelines. With regulatory agencies enforcing stricter stability testing requirements for new and generic drugs, pharmaceutical companies are increasingly outsourcing these services to contract research organizations (CROs) and contract development and manufacturing organizations (CDMOs) with expertise in stability testing.

Another key trend is the rising demand for cold chain storage solutions, particularly for biologics, vaccines, and gene therapies that require ultra-low temperature (ULT) storage. The expansion of mRNA-based vaccines and monoclonal antibodies (mAbs) has intensified the need for specialized storage at -80°C or even cryogenic conditions (-196°C for cell and gene therapies). This has led to investments in advanced refrigeration technologies, temperature-controlled warehouses, and real-time monitoring systems to maintain drug stability throughout the supply chain.

Digital transformation and automation in stability and storage management are also reshaping the industry. Companies are leveraging Internet of Things (IoT)-enabled monitoring systems, AI-driven predictive analytics, and blockchain-based track-and-trace solutions to enhance compliance, reduce deviations, and ensure real-time visibility into storage conditions. These innovations allow pharmaceutical manufacturers to proactively identify potential stability risks, optimize inventory management, and ensure regulatory adherence through automated documentation and reporting.

Furthermore, the rise in personalized medicine and small-batch drug production is driving the need for customized stability testing and flexible storage solutions. With precision therapies tailored to specific patient populations, manufacturers require adaptive stability programs that accommodate smaller batch sizes, individualized dosing regimens, and variable storage requirements. This trend is particularly evident in the development of orphan drugs, cell-based therapies, and high-potency compounds, where stringent stability and containment protocols are essential.

How Are End-Use Applications Shaping the Stability and Storage Services Market?

The demand for pharmaceutical stability and storage services varies across different end-use applications, including small-molecule drugs, biologics, vaccines, medical devices, and combination products. Each category presents unique stability challenges, influencing the type of testing and storage solutions required.

For small-molecule pharmaceuticals, stability testing focuses on degradation kinetics, impurity profiling, and excipient compatibility. Standardized storage conditions such as 25°C/60% RH (Relative Humidity) for long-term stability testing and 40°C/75% RH for accelerated studies are commonly employed to determine shelf life and degradation patterns. Regulatory agencies require extensive stability data for generic drug approvals (ANDA) and new drug applications (NDA), making stability services a critical aspect of pharmaceutical development.

Biologics and biosimilars present more complex stability challenges due to their structural sensitivity and susceptibility to degradation. Proteins, monoclonal antibodies (mAbs), and gene therapies require precise temperature control, reduced agitation, and protection from oxidation to maintain efficacy. Stability studies for biologics often include forced degradation studies, photostability assessments, and freeze-thaw cycle testing to simulate real-world handling conditions. The demand for cold chain storage at -20°C, -80°C, or even cryogenic temperatures (-196°C for cell-based therapies) has surged, requiring pharmaceutical companies to invest in specialized freezers, liquid nitrogen storage systems, and real-time temperature tracking solutions.

Vaccines and advanced therapeutics such as mRNA-based treatments and cell and gene therapies require highly controlled storage environments, often involving ultra-low temperature conditions and strict logistics coordination. The COVID-19 pandemic underscored the importance of cold chain logistics, accelerating investments in thermal packaging, smart sensors, and data-driven supply chain monitoring. As vaccine development continues to expand, stability and storage service providers are scaling their infrastructure to meet the increasing demand for high-volume and temperature-sensitive storage solutions.

In the medical device and combination product sector, stability testing focuses on device-material compatibility, packaging integrity, and drug-device interaction studies. Products such as inhalers, transdermal patches, and pre-filled syringes require stability testing under varying humidity and temperature conditions to assess functionality and formulation stability over time. Regulatory agencies mandate container-closure integrity (CCI) testing to ensure that drug-device systems remain sterile and effective throughout their shelf life.

What Factors Are Driving the Growth of the Pharmaceutical Stability and Storage Services Market?

The growth in the pharmaceutical stability and storage services market is driven by several factors, including increasing regulatory scrutiny, the rising demand for biologics, and technological advancements in storage solutions. As regulatory agencies enforce stricter stability testing requirements, pharmaceutical companies are expanding their investment in ICH-compliant stability studies, real-time stability monitoring, and advanced storage technologies to maintain product integrity and avoid costly recalls.

The growing complexity of pharmaceutical formulations, particularly in biologics, specialty drugs, and combination therapies, has further fueled demand for specialized stability chambers, ultra-low temperature storage units, and climate-controlled warehouses. Pharmaceutical companies are increasingly partnering with CROs, CDMOs, and third-party storage providers to access state-of-the-art stability testing infrastructure without the need for in-house investments.

Another major driver is the expansion of global pharmaceutical supply chains. With drugs being manufactured, stored, and distributed across multiple countries, maintaining consistent stability and storage conditions throughout the supply chain has become a top priority. Regulatory mandates for serialization, track-and-trace solutions, and GDP compliance are pushing companies to adopt blockchain technology, IoT-enabled tracking, and AI-driven predictive analytics to enhance supply chain transparency and prevent temperature excursions.

Furthermore, the rise of personalized medicine and decentralized clinical trials is increasing demand for flexible, small-scale storage solutions. As pharmaceutical companies develop targeted therapies and patient-specific formulations, they require adaptable stability testing protocols and customized storage environments that accommodate unique storage and distribution needs.

As pharmaceutical companies continue to innovate and regulatory agencies tighten compliance requirements, the demand for high-precision, technology-driven stability and storage services will continue to grow, shaping the future of drug development and supply chain logistics through digital transformation, advanced monitoring solutions, and cutting-edge cold chain infrastructure.

SCOPE OF STUDY:

The report analyzes the Pharmaceutical Stability and Storage Services market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Service (Stability, Storage); Molecule (Small Molecule, Large Molecule)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 48 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â