Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ AI ±¸¼º ¿ä¼Ò ÀçÆÇ¸Å ½ÃÀåÀº 2025³â¿¡ 23¾ï 6,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇÏ°í ¿¹Ãø ±â°£ µ¿¾È CAGR 12.4%¸¦ ³ªÅ¸³» 2032³â¿¡´Â 53¾ï 4,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹»óµÇ°í ÀÖ½À´Ï´Ù.
AI ±¸¼º ¿ä¼Ò ÀçÆÇ¸Å´Â Ĩ, ¼¾¼, ¾Ë°í¸®Áò, »çÀü ÇнÀµÈ ¸ðµ¨°ú °°Àº ÀΰøÁö´É Çϵå¿þ¾î, ¼ÒÇÁÆ®¿þ¾î ¸ðµâ, ½Ã½ºÅÛ ¿ä¼Ò¸¦ ¿ø·¡ °³¹ßÀÚ ¹× Á¦Á¶¾÷ü¿¡¼ °¡Á®¿Í ÃÖÁ¾ »ç¿ëÀÚ ¹× ÅëÇÕÀÚ¿¡°Ô ¹èÆ÷ÇÏ´Â »ó¾÷Àû °üÇàÀÔ´Ï´Ù. ÀÌ ¸ðµ¨À» ÅëÇØ Ÿ»ç °ø±Þ¾÷ü´Â »ç³» R&D ÅõÀÚ ¾øÀÌ °í±Þ AI ±â´ÉÀ» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ¸®¼¿·¯´Â ƯÁ¤ ½ÃÀå ¿ä±¸¿¡ ¸Â°Ô ±¸¼º ¿ä¼Ò¸¦ ºê·£µå º¯°æ, ¹øµé ¹× »ç¿ëÀÚ Á¤ÀÇÇÒ ¼ö ÀÖ¾î ¶óÀ̼±½º ¹× ¼º´É ±âÁØ Áؼö¸¦ À¯ÁöÇÏ¸é¼ ¾÷°è Àü¹Ý¿¡ °ÉÃÄ ±¤¹üÀ§ÇÑ µµÀÔÀ» ÃËÁøÇÕ´Ï´Ù.
±â¼úÀÇ ÁøºÎȰ¡ ±Þ¼ÓÈ÷ ÁøÇàµÇ°í ÀÖ´Â °¡¿îµ¥, ¾÷°è Àüü¿¡¼ AIÀÇ Ã¤¿ëÀÌ È®´ë
Çõ½ÅÀÇ »çÀÌŬÀÌ Âª¾ÆÁü¿¡ µû¶ó ¸¹Àº Á¶Á÷ÀÌ ½Ã½ºÅÛÀ» ÀÚÁÖ ¾÷±×·¹À̵åÇϰí À׿© Àç°í¿Í ÁøºÎÇÑ Àç°í¸¦ º¸À¯Çϰí ÀÖ½À´Ï´Ù. ÀÌ ±Þ¼ÓÇÑ ÁøºÎÈ´Â GPU, TPU, ½Å°æ ÇÁ·Î¼¼¼¿Í °°Àº ±¸¼º ¿ä¼Ò°¡ ºñ¿ë¿¡ ¹Î°¨ÇÑ ±¸¸ÅÀÚ¿¡°Ô ÀçÆÇ¸ÅµÇ´Â °·ÂÇÑ 2Â÷ ½ÃÀåÀ» Çü¼ºÇÕ´Ï´Ù. ÀÌ µ¿ÇâÀº µ¶ÀÚÀûÀÎ Çϵå¿þ¾î¿¡ ÅõÀÚÇÏÁö ¾Ê°í AI ±â´ÉÀ» Àú·ÅÇÑ °¡°ÝÀ¸·Î ÀÌ¿ëÇÏ·Á°í ÇÏ´Â ½ÅÈï±â¾÷À̳ª Áß¼Ò±â¾÷¿¡ ÀÇÇØ ´õ¿í ÁõÆøµÇ¾î ½ÃÀå ¼ºÀåÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.
¼ö¿ä°¡ ³ôÀº ºÎǰ°ø±ÞÀÌ Á¦ÇÑÀû
¼ö¿ä°¡ Áõ°¡ÇÔ¿¡µµ ºÒ±¸ÇÏ°í °í±Þ ASIC, ¾çÀÚ ÇÁ·Î¼¼¼, °í´ë¿ªÆø ¸Þ¸ð¸® ¸ðµâ µî ÃÖ»ó±Þ AI ±¸¼º ¿ä¼Ò°ø±Þ¿¡´Â Á¦¾àÀÌ ÀÖ½À´Ï´Ù. °ø±Þ¸ÁÀÇ º´¸ñ, ÁöÁ¤ÇÐÀû ±äÀå, ±â¹Ð±â¼úÀÇ ¼öÃâ ±ÔÁ¦°¡ °ø±Þ ºÎÁ·À» ¾ÇȽÃ۰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Á¦Á¶¾÷ü´Â OEM Á¦Á¶¾÷ü¿¡ Á÷Á¢ ÆÇ¸Å¸¦ ¼±È£ÇÏ´Â °æ¿ì°¡ ¸¹À¸¸ç ÀçÆÇ¸Å °¡´ÉÇÑ ¼ö·®ÀÌ Á¦Çѵ˴ϴÙ. ÀÌ·¯ÇÑ ¼ö¿ä ¹× °ø±Þ ºÒ±ÕÇüÀº ƯÈ÷ ¼Ò±Ô¸ð ¸®¼¿·¯ ¹× ÅëÇÕ¾÷üÀÇ °æ¿ì °¡°ÝÀ» ¿Ã¸®°í ½ÃÀåÀÇ È®À强À» ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.
Àü¹®ÀûÀÎ ÀçÆÇ¸Å¡¤Àç»ý ¼ºñ½ºÀÇ Áøº¸
½ÅÈï ±â¾÷Àº Å×½ºÆ®, À籸¼º, º¸ÁõÀÌ Æ÷ÇÔµÈ ÀçÆÇ¸Å¿Í °°Àº ºÎ°¡°¡Ä¡ ¼ºñ½º¸¦ Á¦°øÇÔÀ¸·Î½á ÀÎÁõµÈ Áß°í AI ±¸¼º ¿ä¼ÒÀÇ ¿ä±¸¸¦ Ȱ¿ëÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Ç÷§ÆûÀº Åõ¸íÇÑ Á¶´Þ, ¼º´É °ËÁõ, ±¹Á¦ Ç¥ÁØ Áؼö¸¦ ÅëÇØ ½Å·Ú¸¦ ±¸ÃàÇϰí ÀÖ½À´Ï´Ù. ±¸¼º ¿ä¼Ò µî±ÞÈ, ¼ö¸íÁÖ±â ÃßÀû, °íÀå ¿¹Ãø ºÐ¼®ÀÇ Çõ½ÅÀº ±¸¸ÅÀÚÀÇ ½Å·Ú¸¦ ³ôÀ̰í ÀÖ½À´Ï´Ù. °Ô´Ù°¡, ÃßÀû¼ºÀ» À§ÇÑ ºí·ÏüÀΰú ÀçÆÇ¸Å °Å·¡¸¦ À§ÇÑ ½º¸¶Æ® °è¾àÀÇ ÅëÇÕÀº ÀçÆÇ¸Å »óȲÀ» À籸¼ºÇϰí ÀÖ½À´Ï´Ù.
IP ¹× µ¥ÀÌÅÍ º¸¾È À§Çè ¹× ±ÔÁ¦ ¸ð´ÏÅ͸µ
AI ±¸¼º ¿ä¼ÒÀÇ ÀçÆÇ¸Å¿¡´Â µ¶ÀÚÀûÀÎ Æß¿þ¾î, ÀÓº£µðµå ¾Ë°í¸®Áò, µ¥ÀÌÅÍ ±â¹Ð ¸ðµâÀÌ Æ÷ÇԵǴ °æ¿ì°¡ ¸¹¾Æ IP Ä§ÇØ³ª »çÀ̹ö º¸¾È¿¡ °üÇÑ ¿ì·Á°¡ »ý±é´Ï´Ù. ÀÓº£µðµå ¼ÒÇÁÆ®¿þ¾îÀÇ ¹«´Ü Àç¹èÆ÷ ¹× º¯Á¶´Â ±¸¸ÅÀÚ¸¦ ¹ýÀû Ã¥ÀÓÀ̳ª ¿î¿µ Ãë¾àÁ¡¿¡ ³ëÃâ½Ãų ¼ö ÀÖ½À´Ï´Ù. ±ÔÁ¦±â°üÀº ƯÈ÷ ±¹¹æ, °¨½Ã ¹× Áß¿ä ÀÎÇÁ¶ó ¿ëµµ¿¡¼ AI Çϵå¿þ¾î ±¹°æÀ» ³Ñ¾î ÀçÆÇ¸Å¿¡ ´ëÇÑ ±ÔÁ¦¸¦ °ÈÇϰí ÀÖ½À´Ï´Ù. ¼öÃâ¹ý, µ¥ÀÌÅÍ º¸È£ ±ÔÁ¤, À±¸®Àû Á¶´Þ ±âÁØÀÇ Áؼö´Â ½ÃÀå ÁøÀÔÀÇ Çʼö Á¶°ÇÀÌ µÇ°í ÀÖ½À´Ï´Ù.
ÆÒµ¥¹ÍÀº ¼¼°è °ø±Þ¸ÁÀ» È¥¶õ½ÃÄÑ ºÎǰ ºÎÁ·°ú ÃâÇÏ Áö¿¬À» ÃÊ·¡Çß½À´Ï´Ù. ±×·¯³ª µ¿½Ã¿¡ µðÁöÅÐ ÀüȯÀ» °¡¼ÓÈÇÏ°í ±â¾÷¿¡ AI¸¦ Ȱ¿ëÇÑ ¼Ö·ç¼ÇÀÇ ´ë±Ô¸ð µµÀÔÀ» Ã˱¸Çß½À´Ï´Ù. ¿¹»êÀÌ ¹Ú¹ÚÇÑ °¡¿îµ¥ ¸¹Àº ±â¾÷µéÀÌ ºñ¿ë´ëºñ È¿°ú°¡ ³ôÀº Á¶´ÞÀ» ¿ä±¸ÇØ ÀçÆÇ¸Å ½ÃÀå¿¡ ´«±æÀ» µ¹·È½À´Ï´Ù. AI ±¸¼º ¿ä¼Ò ÀçÆÇ¸Å¿¡ Æ¯ÈµÈ ¿Â¶óÀÎ Ç÷§Æû¿¡¼´Â Æ®·¡ÇÈÀÌ Áõ°¡ÇÏ°í ¿ø°Ý Áø´Ü ¹× °¡»ó Å×½ºÆ®°¡ Ç¥ÁØÀ¸·Î ÀÌ·ç¾îÁö°Ô µÊÀ¸·Î½á Àç»ýǰÀÇ ¿§Áö AI µð¹ÙÀ̽º ¹× ¸ðµâ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ ´õ¿í ³ô¾ÆÁ³½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È CPU(Áß¾Ó Ã³¸® ÀåÄ¡) ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á
CPU(Central Processing Unit) ºÎ¹®Àº AI ¿öÅ©·Îµå ¹× ½Ã½ºÅÛ ¿ÀÄɽºÆ®·¹À̼ǿ¡¼ ±âº»ÀûÀÎ ¿ªÇÒÀ» ÅëÇØ ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Ãß·Ð, Æ®·¹ÀÌ´×, ¹ü¿ë ÄÄÇ»ÆÃ¿¡ À̸£´Â ¹ü¿ë¼ºÀ¸·Î ÀÎÇØ ÀçÆÇ¸Å ä³Î¿¡¼ ³ôÀº ÀαⰡ ÀÖ½À´Ï´Ù. »õ·Î¿î ¾ÆÅ°ÅØÃ³·Î ¾÷±×·¹À̵åÇÏ´Â °³¹ß ±â¾÷Àº Á¾Á¾ ·¹°Å½Ã CPU¸¦ ´ë·®À¸·Î ¹æÃâÇϸç, ±³À° ±â°ü, ½ÅÈï ±â¾÷ ¹× ÀÓº£µðµå ½Ã½ºÅÛ °³¹ßÀÚ¿¡°Ô Àç¹èÆ÷µË´Ï´Ù.
À׿© Àç°í ÀçÆÇ¸Å ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È À׿© Àç°í ÀçÆÇ¸Å ºÐ¾ß´Â ¿¹»ê¿¡ ÁßÁ¡À» µÐ ±¸¸ÅÀÚ¿¡°Ô ¸Å·ÂÀûÀÎ °íǰÁú ºÎǰÀ» ÇÒÀÎ °¡°ÝÀ¸·Î ÀÌ¿ëÇÒ ¼ö Àֱ⠶§¹®¿¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. °ø±Þ¾÷ü´Â ¿¹Ãø ºÐ¼®À» Ȱ¿ëÇÏ¿© Á¦Ç° ¼ö¸í ÁÖ±â Ãʱ⿡ ÀçÆÇ¸Å °¡´É¼ºÀ» ÆÄ¾ÇÇϰí ȸ¼ö °¡Ä¡¸¦ ÃÖÀûÈÇÕ´Ï´Ù. ÀÌ ¸ðµ¨Àº ºÎǰ ¼ö¸íÀ» ¿¬ÀåÇϰí ÀüÀÚ Æó±â¹°À» ÁÙÀÓÀ¸·Î½á ¼øÈ¯ °æÁ¦ÀÇ ¿øÄ¢À» Áö¿øÇÕ´Ï´Ù. ¹Ì»ç¿ë, °úÀ× Àç°í ¶Ç´Â »ý»ê Áß´Ü ±¸¼º ¿ä¼Ò·Î ±¸¼ºµÈ À׿© AI Àç°í ÀçÆÇ¸Å´Â °¡Àå ºü¸¥ ¼Óµµ·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â ¼º¼÷ÇÑ AI »ýŰè¿Í ±â¼ú ¼±µµÀûÀÎ °·ÂÇÑ Á¸Àç·Î ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ Áö¿ªÀº °ß°íÇÑ ÀÎÇÁ¶ó, ³ôÀº R&D ÅõÀÚ, ¸®¼¿·¯ ¹× ¸®³ëº£ÀÌÅÍÀÇ È®¸³µÈ ³×Æ®¿öÅ©·ÎºÎÅÍ ÀÌÀÍÀ» ¾ò°í ÀÖ½À´Ï´Ù. ±ÔÁ¦ÀÇ ¸íÈ®¼º°ú À¯¸®ÇÑ ¼¼Á¦µµ À¯Åë ½ÃÀå ¿î¿µÀ» Áö¿øÇÕ´Ï´Ù. °Ô´Ù°¡ AIÀÇ ½ÅÈï±â¾÷°ú Çмú±â°üÀÇ ±ÞÁõÀº ÇÕ¸®ÀûÀÎ °¡°ÝÀÇ °í¼º´É ±¸¼º ¿ä¼Ò¿¡ ´ëÇÑ ÀϰüµÈ ¼ö¿ä¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº ±Þ¼ÓÇÑ »ê¾÷È, µðÁöÅÐÈ, ½ÅÈï±¹¿¡¼ÀÇ AI µµÀÔ È®´ë·Î °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß±¹, Àεµ, Çѱ¹ µîÀÇ ±¹°¡µéÀº AI ÀÎÇÁ¶ó¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖÀ¸¸ç, ±¸¼º ¿ä¼ÒÀÇ È°±âÂù ÀçÆÇ¸Å ½ÃÀåÀ» Çü¼ºÇϰí ÀÖ½À´Ï´Ù. ÇöÁö Á¦Á¶¾÷ü¿Í À¯Åë¾÷ü´Â ¼¼°è ±â¾÷ÀÇ À׿© Àç°í¸¦ Ȱ¿ëÇϱâ À§ÇØ Àü·«Àû Á¦ÈÞ¸¦ ¸Î°í ÀÖ½À´Ï´Ù. ±â¼ú¿¡ ´ëÇÑ Á¢±Ù¼º°ú ¼øÈ¯ °æÁ¦ÀÇ ½ÇõÀ» ÃËÁøÇÏ´Â Á¤ºÎÀÇ ÀÌ´Ï¼ÅÆ¼ºê´Â ÀÌ Áö¿ªÀÇ ¼ºÀåÀ» ´õ¿í °ÈÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global AI Component Resale Market is accounted for $2.36 billion in 2025 and is expected to reach $5.34 billion by 2032 growing at a CAGR of 12.4% during the forecast period. AI component resale is the commercial practice of acquiring artificial intelligence hardware, software modules, or system elements such as chips, sensors, algorithms, or pre-trained models from original developers or manufacturers and distributing them to end-users or integrators. This model enables third-party vendors to offer advanced AI capabilities without internal R&D investment. Resellers may rebrand, bundle, or customize components to suit specific market needs, facilitating broader adoption across industries while maintaining compliance with licensing and performance standards.
Growing adoption of AI across industries with rapid obsolescence of technology
As innovation cycles shorten, many organizations are upgrading systems frequently, leading to surplus and obsolete inventories. This rapid obsolescence creates a robust secondary market for resale, where components like GPUs, TPUs, and neural processors are redistributed to cost-sensitive buyers. The trend is further amplified by startups and SMEs seeking affordable access to AI capabilities without investing in proprietary hardware propelling the market growth.
Limited supply of high-demand components
Despite growing demand, the availability of top-tier AI components such as advanced ASICs, quantum processors, and high-bandwidth memory modules remains constrained. Supply chain bottlenecks, geopolitical tensions, and export restrictions on sensitive technologies have exacerbated shortages. Additionally, manufacturers often prioritize direct sales to OEMs, limiting the volume available for resale. This imbalance between demand and supply can inflate prices and hinder market scalability, especially for smaller resellers and integrators.
Advancements in specialized resale and refurbishment services
Emerging players are capitalizing on the need for certified, pre-owned AI components by offering value-added services such as testing, reconfiguration, and warranty-backed resale. These platforms are building trust through transparent sourcing, performance validation, and compliance with international standards. Innovations in component grading, lifecycle tracking, and predictive failure analytics are enhancing buyer confidence. Moreover, the integration of blockchain for traceability and smart contracts for resale transactions is reshaping the resale landscape.
IP and data security risks & regulatory scrutiny
The resale of AI components often involves proprietary firmware, embedded algorithms, or data-sensitive modules, raising concerns around IP infringement and cybersecurity. Unauthorized redistribution or tampering with embedded software can expose buyers to legal liabilities and operational vulnerabilities. Regulatory bodies are tightening controls on cross-border resale of AI hardware, especially in defense, surveillance, and critical infrastructure applications. Compliance with export laws, data protection regulations, and ethical sourcing standards is becoming a prerequisite for market participation.
The pandemic disrupted global supply chains, leading to component shortages and delayed shipments. However, it also accelerated digital transformation, prompting enterprises to adopt AI-driven solutions at scale. As budgets tightened, many turned to resale markets for cost-effective procurement. Online platforms specializing in AI component resale saw increased traffic, with remote diagnostics and virtual testing becoming standard practice further boosted demand for refurbished edge AI devices and modular systems.
The CPUs (central processing units) segment is expected to be the largest during the forecast period
The CPUs (central processing units) segment is expected to account for the largest market share during the forecast period due to their foundational role in AI workloads and system orchestration. Their versatility across inference, training, and general-purpose computing makes them highly sought after in resale channels. Enterprises upgrading to newer architectures often release large volumes of legacy CPUs, which are then redistributed to educational institutions, startups, and embedded system developers.
The surplus inventory resale segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the surplus inventory resale segment is predicted to witness the highest growth rate thriving on the availability of high-quality parts at discounted prices, appealing to budget-conscious buyers. Vendors are leveraging predictive analytics to identify resale potential early in the product lifecycle, optimizing recovery value. The model supports circular economy principles by extending component lifespans and reducing electronic waste. The resale of surplus AI inventory comprising unused, overstocked, or discontinued components is projected to grow at the fastest rate.
During the forecast period, the North America region is expected to hold the largest market share driven by its mature AI ecosystem and strong presence of technology giants. The region benefits from robust infrastructure, high R&D investments, and a well-established network of resellers and refurbishers. Regulatory clarity and favorable tax policies also support secondary market operations. Additionally, the proliferation of AI startups and academic institutions creates consistent demand for affordable, high-performance components.
Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR fueled by rapid industrialization, digitalization, and expanding AI adoption across emerging economies. Countries like China, India, and South Korea are investing heavily in AI infrastructure, creating a vibrant resale market for components. Local manufacturers and distributors are forming strategic alliances to tap into surplus inventories from global players. Government initiatives promoting tech accessibility and circular economy practices are further propelling regional growth.
Key players in the market
Some of the key players in AI Component Resale Market include Arrow Electronics, Avnet Inc., Newegg Business, Insight Enterprises, Tech Data, Microsemi, Mouser Electronics, Digi-Key Electronics, Future Electronics, Allied Electronics & Automation, WPG Holdings, RS Group plc, Premier Farnell, ASUS AI Resale Division, NVIDIA Certified Resellers, Intel Authorized Distributors, AI Components Direct, Refurb.io, and CDW Corporation.
In June 2025, ASUS unveiled an enterprise AI ecosystem and AI POD/AI Hub solutions at Computex 2025, showcasing AI infrastructure and partner resale programs. ASUS's 2025 press emphasizes enabling AI-ready infrastructure across partners and resellers.
In March 2025, TD SYNNEX (Tech Data brand) announced the launch of Tech Data Capital in India to provide partner financing and enable partner growth. The item is part of TD SYNNEX's 2025 regional product/service rollouts supporting channel finance and partner enablement.
In January 2025, Mouser Electronics expanded its global distribution agreement with Eaton's electrical business (new manufacturer partnership).