¼¼°èÀÇ ¹ÙÀÌ¿À ±â¹Ý ÇÃ¶ó½ºÆ½ À¯±â ÀçȰ¿ë ½ÃÀå
Organic Recycling of Bio-based Plastics
»óǰÄÚµå : 1782978
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 296 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,180,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,541,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¹ÙÀÌ¿À ±â¹Ý ÇÃ¶ó½ºÆ½ À¯±â ÀçȰ¿ë ¼¼°è ½ÃÀåÀº 2030³â±îÁö ¹Ì±¹¿¡¼­ 42¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 25¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¹ÙÀÌ¿À ±â¹Ý ÇÃ¶ó½ºÆ½ À¯±â ÀçȰ¿ë ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 9.3%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 42¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ÇÃ¶ó½ºÆ½º´Àº CAGR 10.3%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 17¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Æú¸®¸Ó Æû ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 9.8%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 6¾ï 6,870¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 14.5%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ¹ÙÀÌ¿À ±â¹Ý ÇÃ¶ó½ºÆ½ À¯±â ÀçȰ¿ë ½ÃÀåÀº 2024³â¿¡ 6¾ï 6,870¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 14.5%·Î 2030³â±îÁö 9¾ï 3,150¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 4.7%¿Í 8.9%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 6.3%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ¹ÙÀÌ¿À ±â¹Ý ÇÃ¶ó½ºÆ½ À¯±â ÀçȰ¿ë ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

¹ÙÀÌ¿À ±â¹Ý ÇÃ¶ó½ºÆ½ÀÇ À¯±âÀû ÀçȰ¿ëÀÌ Æó±â¹° °ü¸®ÀÇ ÆÇµµ¸¦ ¹Ù²Ü ¼ö ÀÖ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?

¹ÙÀÌ¿À ±â¹Ý ÇÃ¶ó½ºÆ½ÀÇ µîÀåÀº È­¼®¿¬·á¿¡¼­ ÃßÃâÇÑ ÇÃ¶ó½ºÆ½À» ´ëüÇÒ ¼ö ÀÖ´Â Áö¼Ó°¡´ÉÇÑ ´ë¾ÈÀ» Á¦½ÃÇϰí ÀÖÁö¸¸, »ç¿ë ÈÄ Á¦Ç° °ü¸®´Â ¿©ÀüÈ÷ Áß¿äÇÑ °úÁ¦·Î ³²¾ÆÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ ÀçȰ¿ë ¹æ¹ýÀ¸·Î´Â µ¶Æ¯ÇÑ ±¸¼ºÀ¸·Î ÀÎÇØ ÀÌ·¯ÇÑ Àç·á¿¡ ´ëÀÀÇÒ ¼ö ¾ø´Â °æ¿ì°¡ ¸¹±â ¶§¹®¿¡ À¯±âÀû ÀçȰ¿ë Á¢±ÙÀÌ ÇÊ¿äÇÕ´Ï´Ù. ÁÖ·Î »ê¾÷Àû ÅðºñÈ­¿Í Çø±â¼º ¼ÒÈ­¸¦ ÅëÇÑ À¯±âÀû ÀçȰ¿ëÀº ¹ÙÀÌ¿À ±â¹Ý ÇÃ¶ó½ºÆ½À» ÀÚ¿¬ÀûÀ¸·Î ºÐÇØÇÏ¿© ¹Ì¼¼ ÇÃ¶ó½ºÆ½ ¿À¿°À» ÀÏÀ¸Å°Áö ¾Ê°í ±ÍÁßÇÑ ¿µ¾çºÐÀ» ȯ°æÀ¸·Î µÇµ¹¸± ¼ö ÀÖ½À´Ï´Ù. ÀÌ °øÁ¤Àº Æú¸®¶ôÆ®»ê(PLA), Æú¸®ÇÏÀ̵å·Ï½Ã¾ËÄ«³ë¿¡ÀÌÆ®(PHA), ÀüºÐ È¥ÇÕ¹° µî Á¦¾îµÈ Á¶°Ç¿¡¼­ È¿À²ÀûÀ¸·Î ºÐÇØµÇ´Â ¹ÙÀÌ¿À ±â¹Ý Æú¸®¸Ó¿¡ ƯÈ÷ È¿°úÀûÀÔ´Ï´Ù. ±×·¯³ª ¸¹Àº Áö¿ª¿¡¼­ ´ë±Ô¸ð À¯±â¹° ÀçȰ¿ë ÀÎÇÁ¶ó°¡ ¹ÌºñÇÑ »óÅÂÀ̸ç, ÀÌ´Â ¾÷°è °ü°èÀڵ鿡°Ô µµÀü°ú ±âȸ¸¦ µ¿½Ã¿¡ °¡Á®´ÙÁÖ°í ÀÖ½À´Ï´Ù. ÀÏȸ¿ë ÇÃ¶ó½ºÆ½¿¡ ´ëÇÑ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©°¡ °­È­µÊ¿¡ µû¶ó Á¤ºÎ¿Í ±â¾÷Àº ÅðºñÈ­ °¡´ÉÇÑ ´ë¾È°ú À̸¦ °ü¸®ÇÏ´Â µ¥ ÇÊ¿äÇÑ ½Ã½ºÅÛ¿¡ ´ëÇÑ ÅõÀÚ¸¦ ´Ã¸®°í ÀÖ½À´Ï´Ù. ¼øÈ¯ °æÁ¦ÀÇ ÃßÁøÀº À¯±â Æó±â¹° ó¸®ÀÇ ±â¼ú Çõ½ÅÀ» ÃËÁøÇϰí, ¹ÙÀÌ¿À ±â¹Ý ÇÃ¶ó½ºÆ½À» ±âÁ¸ ÅðºñÈ­ ½Ã¼³¿¡ ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀü¿¡µµ ºÒ±¸Çϰí, ÀûÀýÇÑ Æó±â ¹æ¹ý¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ È¥¶õÀº ¿©ÀüÈ÷ Áß¿äÇÑ Àå¾Ö¹°ÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¹ÙÀÌ¿À ±â¹Ý ÇÃ¶ó½ºÆ½ÀÇ ¶óº§ÀÌ ºÎÂøµÇ¾î ÀÖÁö ¾Ê°Å³ª À߸ø °ü¸®µÇ´Â °æ¿ì, ±âÁ¸ÀÇ ÀçȰ¿ë È帧À¸·Î Èê·¯µé¾î°¡ ·ÎÆ®¸¦ ¿À¿°½Ã۰í Àüü ÀçȰ¿ë È¿À²À» ¶³¾î¶ß¸± ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦¸¦ ÇØ°áÇϱâ À§Çؼ­´Â Á¾ÇÕÀûÀÎ ±³À° Ä·ÆäÀÎ, ¶óº§ Ç¥½Ã °³¼±, Áö¼Ó°¡´ÉÇÑ ´ëü ÇÃ¶ó½ºÆ½¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇÑ ÅðºñÈ­ ÀÎÇÁ¶ó È®´ë°¡ ÇÊ¿äÇÕ´Ï´Ù.

Àç·á °úÇÐÀÇ Çõ½ÅÀº À¯±â ÀçȰ¿ëÀÇ »óȲÀ» ¾î¶»°Ô º¯È­½Ã۰í Àִ°¡?

Àç·á °úÇÐÀÇ ¹ßÀüÀº ´õ ºü¸¥ ºÐÇØ, ±â°èÀû Ư¼º °³¼±, ±âÁ¸ Æó±â¹° ó¸® ±â¼ú°úÀÇ È£È¯¼º Çâ»óÀ» ÅëÇØ ¹ÙÀÌ¿À ±â¹Ý ÇÃ¶ó½ºÆ½ÀÇ À¯±âÀû ÀçȰ¿ë¿¡ Çõ½ÅÀûÀÎ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ¿¬±¸°³¹ßÀº È¿¼Ò¿¡ ÀÇÇÑ ºÐÇØ¸¦ ÃËÁøÇϰí, Á¦Ç° ¼º´ÉÀ» À¯ÁöÇϸ鼭 ÅðºñÈ­ ½Ã°£À» ´ÜÃàÇÏ´Â ÃÖÀûÈ­µÈ ºÐÀÚ±¸Á¶¸¦ °¡Áø Â÷¼¼´ë ¹ÙÀÌ¿ÀÆú¸®¸Ó¸¦ °³¹ßÇϰí ÀÖ½À´Ï´Ù. È¿¼Ò°¡ ÇÔÀ¯µÈ ÇÃ¶ó½ºÆ½°ú °°Àº »õ·Î¿î ¹èÇÕÀº ºÐÇØ °úÁ¤À» ÃËÁøÇÏ¿© ÅðºñÈ­ ½Ã¼³ÀÌ ´ë·®ÀÇ Åðºñ¸¦ º¸´Ù È¿À²ÀûÀ¸·Î ó¸®ÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ±âÁ¸ÀÇ ¼®À¯ ±â¹Ý ¶ó¹Ì³×ÀÌÆ®¸¦ ´ëüÇÒ ¼ö ÀÖ´Â »ýºÐÇØ¼º ¹è¸®¾î ÃþÀÌ Æ÷ÇÔµÈ ´ÙÃþ Æ÷ÀåÀÇ Çõ½Åµµ ¸ð»öµÇ°í ÀÖ½À´Ï´Ù. ÇÑÆí, ½º¸¶Æ® ÷°¡Á¦ ¹× ¹ÙÀÌ¿À ±â¹Ý °¡¼ÒÁ¦ÀÇ °³¹ß·Î ÅðºñÈ­ ÇÃ¶ó½ºÆ½ÀÇ ±â°èÀû °­µµ¿Í À¯¿¬¼ºÀÌ Çâ»óµÇ¾î ±âÁ¸ Æú¸®¸Ó¿ÍÀÇ °æÀï·ÂÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. À¯±â ÀûÇÕ¼º À×Å©¿Í Á¢ÂøÁ¦¸¦ µµÀÔÇÔÀ¸·Î½á ÅðºñÈ­ °¡´ÉÇÑ Æ÷ÀåÀº ÁøÁ¤ÇÑ »ýºÐÇØ¼ºÀ» À¯ÁöÇϰí À¯±â Æó±â¹° È帧ÀÇ ¿À¿° À§ÇèÀ» Á¦°ÅÇÒ ¼ö ÀÖ½À´Ï´Ù. ±×·¯³ª °í±â´É¼º ¹ÙÀÌ¿À ±â¹Ý ÇÃ¶ó½ºÆ½ÀÇ ºñ¿ëÀº ±âÁ¸ ´ëüǰº¸´Ù ³ôÀº °æ¿ì°¡ ¸¹¾Æ È®À强¿¡ ´ëÇÑ °úÁ¦°¡ ³²¾ÆÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °ÝÂ÷¸¦ ÇØ¼ÒÇϱâ À§ÇØ ¾÷°è ¸®´õµéÀº ³ó¾÷ ÀÜ·ù¹°À̳ª Á¶·ù ±â¹Ý Æú¸®¸Ó¿Í °°Àº Àç»ý °¡´ÉÇÑ ¿ø·á¸¦ Ȱ¿ëÇÏ¿© ½Ä¿ë ÀÛ¹°¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãß°í »ý»ê °øÁ¤À» ÃÖÀûÈ­Çϱâ À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. Çаè, Á¦Á¶¾÷ü, Æó±â¹° 󸮾÷ü °£ÀÇ Çù·ÂÀÌ °­È­µÇ¸é¼­ ¿ÏÀüÈ÷ ÅðºñÈ­ °¡´ÉÇÏ°í °æÁ¦ÀûÀ¸·Î ½ÇÇà °¡´ÉÇÑ ¹ÙÀÌ¿À ±â¹Ý ÇÃ¶ó½ºÆ½À¸·ÎÀÇ ÀüȯÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. Áö¼Ó°¡´ÉÇÑ Æ÷Àå ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇÏ´Â °¡¿îµ¥, ÅðºñÈ­ °¡´ÉÇÑ ÇÃ¶ó½ºÆ½ÀÇ È¿À²¼º°ú °æÁ¦¼ºÀ» Çâ»ó½ÃŰ´Â µ¥ ÀÖ¾î ÷´Ü Àç·á °úÇÐÀÇ ¿ªÇÒÀÌ ±× ¾î´À ¶§º¸´Ù Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù.

´ë±Ô¸ð ¹ÙÀÌ¿À ±â¹Ý ÇÃ¶ó½ºÆ½ÀÇ À¯±âÀû ÀçȰ¿ë¿¡ ´ëÀÀÇÒ ¼ö ÀÖ´Â ÀÎÇÁ¶ó°¡ °®Ãß¾îÁ® Àִ°¡?

ÅðºñÈ­ ÇÃ¶ó½ºÆ½Àº ±âÁ¸ Æú¸®¸Ó¸¦ ´ëüÇÒ ¼ö Àִ ģȯ°æ ¼ÒÀçÀÌÁö¸¸, ±× ¼º°ø ¿©ºÎ´Â »ê¾÷¿ë ÅðºñÈ­ ¹× Çø±â¼º ¼ÒÈ­ ½Ã¼³ÀÇ ÀÌ¿ë °¡´É ¿©ºÎ¿¡ µû¶ó Å©°Ô Á¿ìµË´Ï´Ù. ÇöÀç Àü ¼¼°è ÀÎÇÁ¶ó °ÝÂ÷°¡ Å« º´¸ñÇö»óÀ¸·Î ÀÛ¿ëÇϰí ÀÖÀ¸¸ç, ¹ÙÀÌ¿À ±â¹Ý ÇÃ¶ó½ºÆ½À» È¿À²ÀûÀ¸·Î ó¸®ÇÒ ¼ö ÀÖ´Â ½Ã¼³À» °®Ãá ÅðºñÈ­ ½Ã¼³Àº ±ØÈ÷ ÀϺο¡ ±¹ÇѵǾî ÀÖ½À´Ï´Ù. ±âÁ¸ ÅðºñÈ­ ½Ã¼³ÀÇ ´ëºÎºÐÀº »ý¾²·¹±â³ª Á¤¿ø ¾²·¹±â¸¦ ¿ì¼±ÀûÀ¸·Î ó¸®Çϰí ÀÖ¾î ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½À» ÃÖÀûÀÇ ¼Óµµ·Î ºÐÇØÇÏ´Â µ¥ ÇÊ¿äÇÑ Æ¯¼öÇÑ Á¶°ÇÀÌ °®Ãß¾îÁ® ÀÖÁö ¾Ê½À´Ï´Ù. ÀÌ ¹®Á¦¸¦ ÇØ°áÇϱâ À§ÇØ Á¤ºÎ¿Í ¹Î°£ ÀÌÇØ°ü°èÀÚµéÀº °í¿Â ÅðºñÈ­ Àåºñ¿Í È¿¼Ò ó¸® ±â¼úÀ» µµÀÔÇÑ ½Ã¼³ÀÇ ¾÷±×·¹À̵忡 ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ƯÈ÷ µµ½Ã Áö¿ª¿¡¼­´Â Æó±â¹°ÀÇ ºÐ¸®¹èÃâ°ú ±¹¼ÒÀû 󸮸¦ ÅëÇØ ¼ö¼Û ¹èÃâ·®À» ÁÙÀÏ ¼ö Àֱ⠶§¹®¿¡ ºÐ»êÇü ÅðºñÈ­ ÇãºêÀÇ °³¹ßµµ Ȱ¹ßÈ÷ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, EN 13432 ¹× ASTM D6400°ú °°Àº Ç¥ÁØÈ­µÈ ÀÎÁõ ½Ã½ºÅÛÀº ¹ÙÀÌ¿À ±â¹Ý ÇÃ¶ó½ºÆ½ÀÌ ¾ö°ÝÇÑ ºÐÇØ ±âÁØÀ» ÃæÁ·Çϵµ·Ï º¸ÀåÇÏ°í ºñÅðºñ ¿ø·á°¡ À¯±â ÀçȰ¿ë È帧¿¡ À¯ÀԵǴ °ÍÀ» ¹æÁöÇϱâ À§ÇØ °³¼±µÇ°í ÀÖ½À´Ï´Ù. ¶Ç ´Ù¸¥ Áß¿äÇÑ °úÁ¦´Â ÁöÀÚü Æó±â¹° ¼ö°Å ½Ã½ºÅÛ¿¡ ¹ÙÀÌ¿À ±â¹Ý ÇÃ¶ó½ºÆ½À» ÅëÇÕÇÏ´Â °ÍÀÔ´Ï´Ù. ¸¹Àº Áö¿ª¿¡¼­´Â ÅðºñÈ­ °¡´ÉÇÑ ÇÃ¶ó½ºÆ½ Àü¿ë ¿ë±â°¡ ¾ø±â ¶§¹®¿¡ ÅðºñÈ­¿Í ÀçȰ¿ëÀÇ È帧ÀÌ ¸ðµÎ ¿À¿°µÇ°í ÀÖ½À´Ï´Ù. ÀÌ ¹®Á¦¸¦ ¿ÏÈ­Çϱâ À§ÇØ Á¤Ã¥ ÀÔ¾ÈÀÚµéÀº »ý»êÀÚÃ¥ÀÓÀçȰ¿ë(EPR) ÇÁ·Î±×·¥À» È®´ëÇÏ¿© Á¦Á¶¾÷üµéÀÌ ÀÚ»ç Á¦Ç°ÀÇ »ç¿ë ÈÄ Ã³¸® ¼Ö·ç¼Ç °³¹ß¿¡ ±â¿©Çϵµ·Ï ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. °ø°ø-¹Î°£ ÆÄÆ®³Ê½Êµµ ÅðºñÈ­ ³×Æ®¿öÅ©¸¦ È®´ëÇϱâ À§ÇÑ ½ÇÇà °¡´ÉÇÑ Á¢±Ù¹ýÀ¸·Î ºÎ»óÇϰí ÀÖÀ¸¸ç, ÁÖ¿ä ºê·£µåµéÀº Æó±â¹° °ü¸® ÀÌ´Ï¼ÅÆ¼ºê¿¡ ÅõÀÚÇÏ¿© ¹ÙÀÌ¿À ±â¹Ý Æ÷ÀåÀçÀÇ Æø³ÐÀº äÅÃÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù. ÀÎÇÁ¶ó È®ÃæÀÌ °¡¼ÓÈ­µÊ¿¡ µû¶ó ÅðºñÈ­ ÇÃ¶ó½ºÆ½À» Æó±â¹° °ü¸® ½Ã½ºÅÛ¿¡ ¿øÈ°ÇÏ°Ô ÅëÇÕÇÏ´Â °ÍÀº ÅðºñÈ­ ÇÃ¶ó½ºÆ½ÀÇ È¯°æÀû ÀÌÁ¡À» ÃÖ´ëÇÑ È°¿ëÇϱâ À§ÇØ ÇʼöÀûÀÔ´Ï´Ù.

¹ÙÀÌ¿À ±â¹Ý ÇÃ¶ó½ºÆ½ À¯±â ÀçȰ¿ë ½ÃÀåÀÇ ±Þ¼ºÀå ¿øµ¿·ÂÀº ¹«¾ùÀΰ¡?

¹ÙÀÌ¿À ±â¹Ý ÇÃ¶ó½ºÆ½ À¯±â ÀçȰ¿ë ½ÃÀåÀÇ ¼ºÀåÀº ±â¼ú ¹ßÀü, ¼ÒºñÀÚ ¼±È£µµ º¯È­, ±ÔÁ¦ Àǹ«È­, Áö¼Ó°¡´ÉÇÑ Æó±â¹° °ü¸® ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡ µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. °¡Àå Å« ¿øµ¿·Â Áß Çϳª´Â ÀÏȸ¿ë ÇÃ¶ó½ºÆ½À» ±ÝÁöÇϰí ÅðºñÈ­ °¡´ÉÇÑ ´ë¾ÈÀ» Àå·ÁÇÏ´Â Á¤ºÎ ±ÔÁ¦ °­È­ÀÔ´Ï´Ù. ¼¼°è °¢±¹Àº ½Äǰ Æ÷Àå, ¼îÇιé, ³ó¾÷¿ë Çʸ§¿¡ ÀÎÁõµÈ ÅðºñÈ­ °¡´ÉÇÑ Àç·á »ç¿ëÀ» Àǹ«È­ÇÏ´Â ¾ö°ÝÇÑ Á¤Ã¥À» ½ÃÇàÇϰí ÀÖ½À´Ï´Ù. µ¿½Ã¿¡, ȯ°æ¿¡ ´ëÇÑ ÀνÄÀÌ ³ôÀº ¼ÒºñÀÚ ÇൿÀº ÅðºñÈ­ Á¦Ç°¿¡ ´ëÇÑ ¼ö¿ä¸¦ °¡¼ÓÈ­ÇÏ¿© ºê·£µå°¡ Áö¼Ó°¡´ÉÇÑ Æ÷Àå ¼Ö·ç¼ÇÀ¸·Î ÀüȯÇϵµ·Ï À¯µµÇϰí ÀÖ½À´Ï´Ù. ƯÈ÷ ¿Ü½Ä »ê¾÷Àº ±ÔÁ¦ ¾Ð·Â°ú »ýºÐÇØ¼º Æ÷Àå¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ¼±È£µµ Áõ°¡¿¡ ÈûÀÔ¾î ÅðºñÈ­ ÇÃ¶ó½ºÆ½À» äÅÃÇÏ´Â ÁÖ¿ä »ê¾÷ÀÌ µÇ¾ú½À´Ï´Ù. ¶Ç ´Ù¸¥ Áß¿äÇÑ ¿øµ¿·ÂÀº »ê¾÷ ÅðºñÈ­ ±â¼úÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀ¸·Î À¯±â¹° ÀçȰ¿ë °øÁ¤ÀÇ È¿À²¼ºÀÌ Çâ»óµÇ°í ¿î¿µ ºñ¿ëÀÌ Àý°¨µÇ°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. Çø±â¼º ¼ÒÈ­ ½Ã¼³¿¡ ´ëÇÑ ÅõÀÚµµ È®´ëµÇ°í ÀÖÀ¸¸ç, ¹ÙÀÌ¿À ±â¹Ý ÇÃ¶ó½ºÆ½ Æó±â¹°À» ¹ÙÀÌ¿À °¡½º ¹× ¹ÙÀÌ¿À ºñ·á·Î ÀüȯÇÒ ¼ö ÀÖ´Â »õ·Î¿î ±æÀ» Á¦°øÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½ ÀÎÁõ ÇÁ·Î±×·¥ÀÇ µµÀÔÀÌ ÁøÇàµÊ¿¡ µû¶ó ½ÃÀåÀÇ Åõ¸í¼ºÀÌ ³ô¾ÆÁ® ÁøÁ¤À¸·Î ÅðºñÈ­ °¡´ÉÇÑ ¹°Áú¸¸ À¯±â¼º Æó±â¹°ÀÇ È帧¿¡ À¯À﵃ ¼ö ÀÖµµ·Ï º¸ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù. ³ó»ê¹°º° ¹ÙÀÌ¿À ±â¹Ý ¿ø·á °³¹ßÀ» Æ÷ÇÔÇÑ °ø±Þ¸Á Çõ½ÅÀº ½Ä¿ë ÀÛ¹°¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãß°í »ý»êºñ¿ëÀ» ³·Ãç ½ÃÀå °æÀï·ÂÀ» ´õ¿í ³ôÀ̰í ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î, ´ë±â¾÷°ú ¼Ò¸Å¾÷üµéÀÇ ¾ß½ÉÂù Áö¼Ó°¡´É¼º ¸ñÇ¥ ¼³Á¤Àº ¹ÙÀÌ¿À ±â¹Ý ÇÃ¶ó½ºÆ½ÀÇ ´ë±Ô¸ð µµÀÔÀ» ÃËÁøÇϰí À¯±â³ó ÀçȰ¿ë ÀÎÇÁ¶óÀÇ ¼ºÀåÀ» µ½°í ÀÖ½À´Ï´Ù. Á¤Ã¥, ±â¼ú, ¼ÒºñÀÚ ¼ö¿äÀÇ ±³ÁýÇÕÀÌ °è¼Ó ÁøÈ­ÇÏ´Â °¡¿îµ¥, ¹ÙÀÌ¿À ±â¹Ý ÇÃ¶ó½ºÆ½ À¯±â ÀçȰ¿ë ½ÃÀåÀº ÇâÈÄ ¸î ³â µ¿¾È ºñ¾àÀûÀ¸·Î È®´ëµÉ ż¼¸¦ °®Ãß°í ÀÖ½À´Ï´Ù.

ºÎ¹®

°ø±Þ¿ø(ÇÃ¶ó½ºÆ½º´, Æú¸®¸Ó Æû, ÇÃ¶ó½ºÆ½ Çʸ§, ±âŸ °ø±Þ¿ø), ¿ëµµ(Æ÷Àå ¿ëµµ, °ÇÃà ¹× °Ç¼³ ¿ëµµ, Àü±â¡¤ÀüÀÚ ¿ëµµ, ÀÚµ¿Â÷ ¿ëµµ, ¼¶À¯ ¿ëµµ, ±âŸ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°èº° SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Organic Recycling of Bio-based Plastics Market to Reach US$4.2 Billion by 2030

The global market for Organic Recycling of Bio-based Plastics estimated at US$2.5 Billion in the year 2024, is expected to reach US$4.2 Billion by 2030, growing at a CAGR of 9.3% over the analysis period 2024-2030. Plastic Bottles, one of the segments analyzed in the report, is expected to record a 10.3% CAGR and reach US$1.7 Billion by the end of the analysis period. Growth in the Polymer Foams segment is estimated at 9.8% CAGR over the analysis period.

The U.S. Market is Estimated at US$668.7 Million While China is Forecast to Grow at 14.5% CAGR

The Organic Recycling of Bio-based Plastics market in the U.S. is estimated at US$668.7 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$931.5 Million by the year 2030 trailing a CAGR of 14.5% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 4.7% and 8.9% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 6.3% CAGR.

Global Organic Recycling of Bio-Based Plastics Market - Key Trends & Drivers Summarized

What Makes Organic Recycling of Bio-Based Plastics a Game-Changer in Waste Management?

The rise of bio-based plastics presents a sustainable alternative to fossil-fuel-derived plastics, but their end-of-life management remains a critical challenge. Traditional recycling methods often struggle to accommodate these materials due to their unique composition, necessitating an organic recycling approach. Organic recycling, primarily through industrial composting and anaerobic digestion, allows bio-based plastics to break down naturally, returning valuable nutrients to the environment without contributing to microplastic pollution. This process is particularly effective for bio-based polymers such as polylactic acid (PLA), polyhydroxyalkanoates (PHA), and starch blends, which decompose efficiently under controlled conditions. However, infrastructure for large-scale organic recycling remains underdeveloped in many regions, posing both challenges and opportunities for industry players. As regulatory frameworks tighten around single-use plastics, governments and businesses are increasingly investing in compostable alternatives and the systems required to manage them. The push for a circular economy is driving innovations in organic waste processing, integrating bio-based plastics into existing composting facilities. Despite these advancements, consumer confusion regarding proper disposal methods remains a key hurdle. Mislabeled or mismanaged bio-based plastics can end up in conventional recycling streams, contaminating batches and reducing overall recycling efficiency. Addressing these issues requires comprehensive education campaigns, better labeling, and an expansion of composting infrastructure to accommodate the growing demand for sustainable plastic alternatives.

How Are Innovations in Material Science Reshaping the Organic Recycling Landscape?

Material science advancements are playing a transformative role in the organic recycling of bio-based plastics, enabling faster degradation, improved mechanical properties, and enhanced compatibility with existing waste processing technologies. Researchers are developing next-generation biopolymers with optimized molecular structures that facilitate enzymatic breakdown, reducing composting time while maintaining product performance. Emerging formulations, such as enzyme-embedded plastics, accelerate the degradation process, allowing composting facilities to handle larger volumes more efficiently. Innovations in multilayer packaging are also being explored, integrating biodegradable barrier layers that replace conventional petroleum-based laminates. Meanwhile, developments in smart additives and bio-based plasticizers are enhancing the mechanical strength and flexibility of compostable plastics, making them more competitive with traditional polymers. The introduction of organic-compatible inks and adhesives ensures that compostable packaging remains truly biodegradable, eliminating contamination risks in organic waste streams. However, scalability remains a challenge, as the cost of high-performance bio-based plastics is often higher than conventional alternatives. To bridge this gap, industry leaders are working to optimize production processes, leveraging renewable feedstocks such as agricultural residues and algae-based polymers to reduce dependency on food crops. The growing collaboration between academia, manufacturers, and waste management providers is accelerating the transition toward fully compostable and economically viable bio-based plastics. With the demand for sustainable packaging solutions surging, the role of advanced material science in improving compostable plastics' efficiency and affordability is becoming more crucial than ever.

Is the Infrastructure Ready to Handle Large-Scale Organic Recycling of Bio-Based Plastics?

While compostable plastics offer an eco-friendly alternative to traditional polymers, their success depends heavily on the availability of industrial composting and anaerobic digestion facilities. Currently, the disparity in global infrastructure presents a significant bottleneck, with only a fraction of composting sites equipped to process bio-based plastics efficiently. Many existing composting plants prioritize food and yard waste, lacking the specialized conditions required to break down bioplastics at optimal rates. To address this issue, governments and private sector stakeholders are investing in facility upgrades, incorporating high-temperature composting units and enzymatic treatment technologies. The development of decentralized composting hubs is also gaining traction, particularly in urban areas where waste separation and localized processing can reduce transportation emissions. Additionally, standardized certification schemes, such as EN 13432 and ASTM D6400, are being refined to ensure that bio-based plastics meet stringent degradation criteria, preventing the influx of non-compostable materials into organic recycling streams. Another critical challenge is the integration of bio-based plastics into municipal waste collection systems. Many regions lack dedicated bins for compostable plastics, leading to contamination in both composting and recycling streams. To mitigate this issue, policymakers are rolling out extended producer responsibility (EPR) programs, requiring manufacturers to contribute to the development of end-of-life solutions for their products. Public-private partnerships are also emerging as a viable approach to expanding composting networks, with major brands investing in waste management initiatives to support the broader adoption of bio-based packaging. As infrastructure expansion gains momentum, the seamless integration of compostable plastics into waste management systems will be essential to maximizing their environmental benefits.

What’s Fueling the Rapid Growth of the Organic Recycling of Bio-Based Plastics Market?

The growth in the organic recycling of bio-based plastics market is driven by several factors, including technological advancements, shifting consumer preferences, regulatory mandates, and increased investment in sustainable waste management infrastructure. One of the most significant drivers is the tightening of government regulations banning single-use plastics and promoting compostable alternatives. Countries worldwide are implementing stringent policies that mandate the use of certified compostable materials in food packaging, shopping bags, and agricultural films. Simultaneously, the rise of eco-conscious consumer behavior is accelerating demand for compostable products, prompting brands to transition toward sustainable packaging solutions. The food service industry, in particular, is a major adopter of compostable plastics, driven by regulatory pressures and growing consumer preference for biodegradable packaging. Another critical driver is the rapid advancement of industrial composting technologies, which are improving the efficiency of organic recycling processes and reducing operational costs. Investments in anaerobic digestion facilities are also expanding, providing additional avenues for bio-based plastic waste to be converted into biogas and biofertilizers. Additionally, the increasing adoption of bioplastic certification programs is fostering greater market transparency, ensuring that only truly compostable materials enter organic waste streams. Supply chain innovations, including the development of bio-based feedstocks from agricultural byproducts, are further enhancing the market's competitiveness by reducing dependency on food crops and lowering production costs. Lastly, major corporations and retailers are setting ambitious sustainability targets, driving large-scale adoption of bio-based plastics and supporting the growth of organic recycling infrastructure. As the intersection of policy, technology, and consumer demand continues to evolve, the market for organic recycling of bio-based plastics is poised for exponential expansion in the coming years.

SCOPE OF STUDY:

The report analyzes the Organic Recycling of Bio-based Plastics market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Source (Plastic Bottles, Polymer Foams, Plastic Films, Other Sources); Application (Packaging Application, Building & Construction Application, Electrical & Electronics Application, Automotive Application, Textiles Application, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 47 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â