¼¼°èÀÇ ¹Ì¼¼ÇÃ¶ó½ºÆ½ °ËÃâ ½ÃÀå
Microplastic Detection
»óǰÄÚµå : 1782908
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 350 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,204,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,612,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¹Ì¼¼ÇÃ¶ó½ºÆ½ °ËÃâ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 61¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 46¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¹Ì¼¼ÇÃ¶ó½ºÆ½ °ËÃâ ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 4.7%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 61¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ Æú¸®¿¡Æ¿·»Àº CAGR 4.0%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 26¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Æú¸®Åׯ®¶óÇ÷ç¿À·Î¿¡Æ¿·» ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 5.9%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 13¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 7.3%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ¹Ì¼¼ÇÃ¶ó½ºÆ½ °ËÃâ ½ÃÀåÀº 2024³â¿¡´Â 13¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 12¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 7.3%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 2.3%¿Í 4.7%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 3.0%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ¹Ì¼¼ÇÃ¶ó½ºÆ½ °ËÃâ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

¹Ì¼¼ÇÃ¶ó½ºÆ½ °ËÃâÀ̶õ ¹«¾ùÀ̸ç, ¿Ö ȯ°æ ¸ð´ÏÅ͸µ¿¡ ÇʼöÀûÀΰ¡?

¹Ì¼¼ ÇÃ¶ó½ºÆ½ °ËÃâÀº ¹°, °ø±â, Åä¾ç, »ý¹° µî ȯ°æ ½Ã·á¿¡¼­ ¹Ì¼¼ ÇÃ¶ó½ºÆ½ ÀÔÀÚ¸¦ ½Äº°Çϰí Á¤·®È­ÇÏ´Â µ¥ »ç¿ëµÇ´Â ¹æ¹ý°ú ±â¼úÀ» ¸»ÇÕ´Ï´Ù. ÀϹÝÀûÀ¸·Î 5mm ÀÌÇÏÀÇ ÇÃ¶ó½ºÆ½ ÀÔÀÚ·Î Á¤ÀǵǴ ¹Ì¼¼ ÇÃ¶ó½ºÆ½Àº »ýŰ迡 ±¤¹üÀ§ÇÏ°Ô Á¸ÀçÇÏ°í ¾ß»ý µ¿¹°°ú Àΰ£ÀÇ °Ç°­¿¡ ÇØ·Î¿î ¿µÇâÀ» ¹ÌÄ¥ ¼ö Àֱ⠶§¹®¿¡ Á¡Á¡ ´õ ½É°¢ÇÑ È¯°æ ¹®Á¦°¡ µÇ°í ÀÖ½À´Ï´Ù. ¿À¿° Á¤µµ¸¦ ÀÌÇØÇϰí ÇÃ¶ó½ºÆ½ ¿À¿°À» ÁÙÀ̱â À§ÇÑ È¿°úÀûÀÎ Àü·«À» °³¹ßÇϱâ À§Çؼ­´Â ÀÌ·¯ÇÑ ÀÔÀÚ¸¦ °¨ÁöÇÏ´Â °ÍÀÌ ÇʼöÀûÀÔ´Ï´Ù. ¹Ì¼¼ÇÃ¶ó½ºÆ½À» °ËÃâÇÏ´Â ¹æ¹ý¿¡´Â ºÐ±¤¹ý(FTIR, ¶ó¸¸ µî), Çö¹Ì°æ ±â¼ú, ¿­ºÐÇØ °¡½º Å©·Î¸¶Åä±×·¡ÇÇ¿Í °°ÀÌ ¹Ì¼¼ÇÃ¶ó½ºÆ½ ÀÔÀÚ¸¦ ½Äº°ÇÏ´Â µ¥ ´õ ³ôÀº °¨µµ¿Í Á¤È®µµ¸¦ Á¦°øÇÏ´Â »õ·Î¿î ¹æ¹ýÀÌ ÀÖ½À´Ï´Ù.

Àü ¼¼°èÀûÀ¸·Î ÇÃ¶ó½ºÆ½ Æó±â¹°ÀÌ °è¼Ó ÃàÀûµÊ¿¡ µû¶ó ºÐÇØ·Î ÀÎÇØ ¹Ì¼¼ ÇÃ¶ó½ºÆ½ÀÌ Çü¼ºµÇ¾î Á¦°ÅÇÏ±â ¾î·Æ°í À°¾ÈÀ¸·Î º¼ ¼ö ¾ø´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ÀÌ ÀÔÀÚµéÀº ¼ö»ý ȯ°æ, ƯÈ÷ ¹Ù´Ù¿Í °­¿¡¼­ ÈçÈ÷ ¹ß°ßµÇÁö¸¸, Åä¾ç°ú ½Äǰ, ½ÉÁö¾î °ø±â Áß¿¡µµ °ËÃâµÇ°í ÀÖ½À´Ï´Ù. ´Ù¾çÇÑ È¯°æ ¸ÅÆ®¸¯½º¿¡¼­ ¹Ì¼¼ ÇÃ¶ó½ºÆ½ÀÇ Á¸Àç´Â »ýŰè¿Í ÀÎü °Ç°­¿¡ ½É°¢ÇÑ À§ÇèÀ» ÃÊ·¡Çϱ⠶§¹®¿¡ ±ÔÁ¦ ±â°ü°ú ȯ°æ ¸ð´ÏÅ͸µ ±â°üÀº ¹Ì¼¼ ÇÃ¶ó½ºÆ½ÀÇ °ËÃâÀ» ÃÖ¿ì¼± °úÁ¦·Î »ï°í ÀÖ½À´Ï´Ù. È¿°úÀûÀÎ °ËÃâ ¹æ¹ýÀÇ Çʿ伺À¸·Î ÀÎÇØ ´Ù¾çÇÑ È¯°æÀÇ ¹Ì¼¼ÇÃ¶ó½ºÆ½ ·¹º§À» Á¤È®ÇÏ°Ô ÃøÁ¤ÇÒ ¼ö Àִ ÷´Ü ±â¼úÀÇ °³¹ßÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù.

ÃÖ±Ù ¿¬±¸¿¡ µû¸£¸é, ¹Ì¼¼ ÇÃ¶ó½ºÆ½ÀÌ ÇØ¾ç ¸ÔÀ̻罽¿¡ ÃàÀûµÇ¾î »ý¹° ´Ù¾ç¼º°ú ¼ö»ý »ý¹°ÀÇ °Ç°­¿¡ ¿µÇâÀ» ¹ÌÄ£´Ù´Â »ç½ÇÀÌ ¹àÇôÁ³½À´Ï´Ù. ¹Ì¼¼ ÇÃ¶ó½ºÆ½ ÀÔÀÚ´Â ÇØ¾ç µ¿¹°ÀÌ ¼·ÃëÇÏ¸é ½ÅüÀû ÇÇÇØ¸¦ ÀÔÈ÷°í ¼·½Ä ¸ÞÄ¿´ÏÁòÀ» ¹æÇØÇÏ¸ç µ¶¼º È­ÇÐÁ¦Ç°À» ü³»·Î Èí¼öÇÒ ¼ö ÀÖ½À´Ï´Ù. ¹°, ÅðÀû¹°, ÇØ¾ç »ý¹°¿¡¼­ ÀÌ·¯ÇÑ ÀÔÀÚ¸¦ °ËÃâÇÏ´Â °ÍÀº ȯ°æ ¿À¿° ¼öÁØÀ» ¸ð´ÏÅ͸µÇϰí ÇØ¾ç »ý¹°¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÀÌÇØÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ¸¶Âù°¡Áö·Î, ½Ä¼ö ¹× Åä¾ç¿¡ Æ÷ÇÔµÈ ¹Ì¼¼ ÇÃ¶ó½ºÆ½Àº ÀÎü °Ç°­¿¡ ¹ÌÄ¥ ¼ö ÀÖ´Â ÀáÀçÀû ¿µÇâ¿¡ ´ëÇÑ ¿ì·Á¸¦ ºÒ·¯ÀÏÀ¸Å°¸ç °øÁß º¸°Ç ¹× ȯ°æ º¸È£¸¦ À§ÇÑ °ËÃâ ±â¼úÀÇ Á߿伺À» °­Á¶Çϰí ÀÖ½À´Ï´Ù.

¹Ì¼¼ÇÃ¶ó½ºÆ½ °ËÃâ ±â¼úÀÇ Ãֽе¿ÇâÀº?

¹Ì¼¼ ÇÃ¶ó½ºÆ½ °ËÃâ ±â¼úÀÇ ¹ßÀüÀº ȯ°æ °úÇÐÀÇ ÃÖÀü¼±¿¡ ÀÖÀ¸¸ç, ¹Ì¼¼ ÇÃ¶ó½ºÆ½ ¿À¿° Æò°¡ ¹× ¸ð´ÏÅ͸µÀÇ Çʿ伺ÀÌ °è¼Ó Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÃÖ±Ù °¡Àå ÁÖ¸ñÇÒ ¸¸ÇÑ µ¿Çâ Áß Çϳª´Â °íÇØ»óµµ ºÐ±¤¹ý ¹× À̹Ì¡ ±â¼úÀÇ °³¹ß·Î, À̸¦ ÅëÇØ ¹Ì¼¼ÇÃ¶ó½ºÆ½ ÀÔÀÚ¸¦ º¸´Ù Á¤¹ÐÇÏ°í ¹Î°¨ÇÏ°Ô °ËÃâÇÒ ¼ö ÀÖ°Ô µÇ¾ú´Ù´Â Á¡ÀÔ´Ï´Ù. ¿¹¸¦ µé¾î, Ǫ¸®¿¡ º¯È¯ Àû¿Ü¼± ºÐ±¤¹ý(FTIR)°ú ¶ó¸¸ ºÐ±¤¹ýÀº ¹Ì¼¼ÇÃ¶ó½ºÆ½ÀÇ È­ÇÐ ¼ººÐÀ» ½Äº°ÇÏ°í ´Ù¸¥ ȯ°æ ÀÔÀÚ¿Í ±¸º°Çϱâ À§ÇØ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº ½Ã·á ºÐ¼®¿¡ ´ëÇÑ ºñÆÄ±«ÀûÀÎ Á¢±Ù ¹æ½ÄÀ» Á¦°øÇϸç, ½ÇÇè½Ç°ú ÇöÀå ¸ðµÎ¿¡¼­ Á¡Á¡ ´õ ¸¹ÀÌ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ Æ®·»µå´Â ÀÚµ¿È­ ½Ã½ºÅÛ°ú ÀΰøÁö´É(AI)ÀÇ ÅëÇÕÀÔ´Ï´Ù. AI¿Í ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀº Çö¹Ì°æÀ̳ª ºÐ±¤¹ý µî ´Ù¾çÇÑ °ËÃâ ¹æ¹ý¿¡¼­ ¾òÀº ´ë·®ÀÇ µ¥ÀÌÅ͸¦ ó¸®Çϱâ À§ÇØ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ºÐ¼® ÇÁ·Î¼¼½º¸¦ ÀÚµ¿È­ÇÔÀ¸·Î½á ÀÌ ½Ã½ºÅÛÀº ȯ°æ ½Ã·á¿¡¼­ ¹Ì¼¼ ÇÃ¶ó½ºÆ½ ÀÔÀÚ¸¦ ½Å¼ÓÇÏ°Ô ½Äº°Çϰí È¿À²¼ºÀ» Çâ»ó½Ã۸ç ÀÎÀ§ÀûÀÎ ½Ç¼ö °¡´É¼ºÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ½Ç½Ã°£ µ¥ÀÌÅÍ ¼öÁý ¹× ºÐ¼®ÀÌ ¿À¿° Ãß¼¼¸¦ ÃßÀûÇϰí Á¤Ã¥ °áÁ¤¿¡ Á¤º¸¸¦ Á¦°øÇÏ´Â µ¥ ÇʼöÀûÀÎ ´ë±Ô¸ð ȯ°æ ¸ð´ÏÅ͸µ ÇÁ·Î±×·¥¿¡ ƯÈ÷ À¯¿ëÇÕ´Ï´Ù.

¶ÇÇÑ, ÈÞ´ë¿ëÀ¸·Î ÇöÀå¿¡ ¹Ù·Î ÈÞ´ëÇÒ ¼ö ÀÖ´Â ¹Ì¼¼ÇÃ¶ó½ºÆ½ °ËÃâ ÀåÄ¡ÀÇ °³¹ß·Î ¿ø°ÝÁö³ª ¼ÕÀÌ ´êÁö ¾Ê´Â °÷¿¡¼­µµ ÇöÀå ºÐ¼®ÀÌ °¡´ÉÇØÁ³½À´Ï´Ù. ÀÌ ÈÞ´ë¿ë ½Ã½ºÅÛÀº °¡º±°í »ç¿ëÇϱ⠽¬¿ì¸ç, ´ë±Ô¸ð ½ÇÇè½Ç ÀÚ¿ø ¾øÀ̵µ Á¤È®ÇÑ °á°ú¸¦ Á¦°øÇϵµ·Ï ¼³°èµÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº ȯ°æ ±â°ü, ¿¬±¸ÀÚ ¹× NGO°¡ ÇöÀå Á¶»ç¸¦ º¸´Ù ½±°Ô ¼öÇàÇÒ ¼ö ÀÖ°Ô ÇÏ¿© ¹Ì¼¼ ÇÃ¶ó½ºÆ½ ¸ð´ÏÅ͸µÀÇ ¹üÀ§¸¦ ³ÐÈ÷´Â µ¥ µµ¿òÀÌ µÇ°í ÀÖ½À´Ï´Ù. ½Å¼ÓÇϰí È¿À²ÀûÀÎ ¹Ì¼¼ ÇÃ¶ó½ºÆ½ °ËÃâ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÀÌ·¯ÇÑ ÈÞ´ë¿ë ±â±â´Â ¿À¿°À» ½Ç½Ã°£À¸·Î ÃßÀûÇÏ´Â µ¥ Á¡Á¡ ´õ ±ÍÁßÇÑ µµ±¸°¡ µÇ°í ÀÖ½À´Ï´Ù.

¹Ì¼¼ÇÃ¶ó½ºÆ½ °ËÃâÀÇ °úÁ¦´Â ¹«¾ùÀΰ¡?

°ËÃâ ±â¼úÀÇ ±Þ¼ÓÇÑ ¹ßÀü¿¡µµ ºÒ±¸Çϰí, ¹Ì¼¼ ÇÃ¶ó½ºÆ½ ¿À¿°ÀÇ Á¤È®ÇÑ ÃøÁ¤¿¡´Â ¿©ÀüÈ÷ ¸î °¡Áö °úÁ¦°¡ ³²¾Æ ÀÖ½À´Ï´Ù. Å« ¾î·Á¿ò Áß Çϳª´Â ȯ°æ ½Ã·áÀÇ º¹ÀâÇÑ Æ¯¼ºÀÔ´Ï´Ù. ¹Ì¼¼ÇÃ¶ó½ºÆ½Àº ÀÚ¿¬È¯°æ¿¡¼­ À¯±â¹°À̳ª ÅðÀû¹°, ±âŸ ¹Ì¸³ÀÚ ¹°Áú°ú È¥ÇյǾî ÀÖ´Â °æ¿ì°¡ ¸¹¾Æ ºÐ¸®°¡ ¾î·Á¿î °æ¿ì°¡ ¸¹½À´Ï´Ù. ¿¹¸¦ µé¾î, ¼öÁß¿¡¼­ ¹Ì¼¼ÇÃ¶ó½ºÆ½Àº Çöûũſ, Á¶·ù, ±âŸ ÀÛÀº »ý¹°°ú ÇÔ²² ¹ß°ßµÇ´Â °æ¿ì°¡ ¸¹¾Æ °ËÃâ ¹× Á¤·®È­¸¦ ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ¸¶Âù°¡Áö·Î, Åä¾çÀ̳ª ´ë±â Áß¿¡¼­´Â ¹Ì¼¼ ÇÃ¶ó½ºÆ½ ÀÔÀÚ°¡ ´Ù¸¥ ȯ°æ ¿À¿° ¹°Áú¿¡ ÀÇÇØ °¡·ÁÁú ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÑ ¸ÅÆ®¸¯½º·Î ÀÎÇØ ´Ù¾çÇÑ È¯°æ¿¡ Àû¿ëÇÒ ¼ö ÀÖ´Â º¸ÆíÀûÀΠŽÁö ¹æ¹ýÀ» °³¹ßÇÏ±â ¾î·Æ½À´Ï´Ù.

¶Ç ´Ù¸¥ ¹®Á¦´Â ŽÁö ¹æ¹ýÀÌ Ç¥ÁØÈ­µÇ¾î ÀÖÁö ¾Ê´Ù´Â Á¡ÀÔ´Ï´Ù. FTIR, ¶ó¸¸ ºÐ±¤¹ý, Çö¹Ì°æÀ¸·Î À°¾È ½Äº° µî ¿©·¯ °¡Áö ¹æ¹ýÀÌ ³Î¸® »ç¿ëµÇ°í ÀÖÁö¸¸, ¹Ì¼¼ÇÃ¶ó½ºÆ½ÀÇ °ËÃâ ¹× ºÐ¼®À» À§ÇÑ º¸ÆíÀûÀ¸·Î ÀÎÁ¤µÈ ÇÁ·ÎÅäÄÝÀº Á¸ÀçÇÏÁö ¾Ê½À´Ï´Ù. ÀÌ·¯ÇÑ Ç¥ÁØÈ­ÀÇ ºÎÁ·Àº ¿¬±¸¸¶´Ù Àϰü¼º ¾ø´Â °á°ú¸¦ ÃÊ·¡Çϰí, µ¥ÀÌÅ͸¦ ºñ±³Çϰųª ¹Ì¼¼ÇÃ¶ó½ºÆ½ ¿À¿°¿¡ ´ëÇÑ ¼¼°è ±âÁØÄ¡¸¦ ¼³Á¤ÇÏ´Â °ÍÀ» ¾î·Æ°Ô ¸¸µì´Ï´Ù. ¿¬±¸ °³¹ß ¹× ±ÔÁ¦ ±â°üÀº Ç¥ÁØÈ­ µÈ ¹æ¹ýÀ» °³¹ßÇÏ¿© ÀÌ ¹®Á¦¸¦ ÇØ°áÇÏ·Á°í ³ë·ÂÇϰí ÀÖÁö¸¸, ȯ°æ Á¶°ÇÀÇ ´Ù¾ç¼º°ú ¹Ì¼¼ÇÃ¶ó½ºÆ½ À¯ÇüÀÇ ´Ù¾ç¼ºÀ¸·Î ÀÎÇØ ÁøÀüÀÌ ´Ê¾îÁö°í ÀÖ½À´Ï´Ù.

¶ÇÇÑ, ÇØ¾ç»ý¹°, ½Äǰ, ½Ä¼ö¿Í °°Àº º¹ÀâÇÑ ¸ÅÆ®¸¯½º¿¡¼­ ¹Ì¼¼ÇÃ¶ó½ºÆ½À» °ËÃâÇϱâ À§Çؼ­´Â ¸Å¿ì ³·Àº ³óµµÀÇ ¹Ì¼¼ÇÃ¶ó½ºÆ½ ÀÔÀÚ¸¦ °ËÃâÇÒ ¼ö ÀÖ´Â °í°¨µµ ¹æ¹ýÀÌ ÇÊ¿äÇÕ´Ï´Ù. °ËÃâ ±â¼úÀº Çâ»óµÇ°í ÀÖÁö¸¸, ½Ã·á Å©±â, ¹Ì¼¼ÇÃ¶ó½ºÆ½ÀÇ Á¾·ù, ºÐ¼® ÀåºñÀÇ °¨µµ µîÀÇ ¿äÀο¡ ÀÇÇØ ¿©ÀüÈ÷ Á¦Çѵǰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ¹Ì¼¼ÇÃ¶ó½ºÆ½ÀÇ Á¾·ù¿¡ µû¶ó Å©±â, »ö»ó, È­ÇÐÀû Á¶¼ºÀ¸·Î ÀÎÇØ °ËÃâÀÌ ¾î·Á¿î °æ¿ì°¡ ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¹Ì¼¼ÇÃ¶ó½ºÆ½ÀÇ Á¤·®È­¿¡´Â ¸¹Àº ½Ã°£ÀÌ ¼Ò¿äµÇ´Â °æ¿ì°¡ ¸¹À¸¸ç, ´ë±Ô¸ð ¸ð´ÏÅ͸µ°ú Á¤±âÀûÀÎ ¸ð´ÏÅ͸µ¿¡ ¸¹Àº ºñ¿ë°ú ½Ã°£ÀÌ ¼Ò¿äµÉ ¼ö ÀÖ½À´Ï´Ù.

¹Ì¼¼ÇÃ¶ó½ºÆ½ °ËÃâ ½ÃÀåÀÇ ¼ºÀå ÃËÁø¿äÀÎÀº ¹«¾ùÀΰ¡?

¹Ì¼¼ ÇÃ¶ó½ºÆ½ °ËÃâ ½ÃÀåÀÇ ¼ºÀåÀº ȯ°æ ¿À¿°¿¡ ´ëÇÑ ´ëÁßÀÇ ÀÎ½Ä Áõ°¡, ¾ö°ÝÇÑ È¯°æ ¸ð´ÏÅ͸µ¿¡ ´ëÇÑ ±ÔÁ¦ ´ç±¹ÀÇ ¾Ð·Â, °ËÃâ ±â¼úÀÇ ¹ßÀü µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁý´Ï´Ù. ÃÖ±Ù ÇÃ¶ó½ºÆ½ Æó±â¹°ÀÌ »ýŰè, ÇØ¾ç»ý¹°, ÀÎü °Ç°­¿¡ ¹ÌÄ¡´Â À¯ÇØÇÑ ¿µÇâ¿¡ ´ëÇÑ »çȸÀû °ü½ÉÀÌ ±ÞÁõÇϸ鼭 ¹Ì¼¼ÇÃ¶ó½ºÆ½ ¿À¿°¿¡ ´ëÇÑ º¸´Ù Á¤È®ÇÏ°í ±¤¹üÀ§ÇÑ ¸ð´ÏÅ͸µ¿¡ ´ëÇÑ ¿ä±¸°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ¹Ìµð¾î¿Í ȯ°æ´Üü´Â ÇÃ¶ó½ºÆ½ Æó±â¹°À» ÁÙÀÌ°í ´Ù¾çÇÑ È¯°æÀÇ ¹Ì¼¼ ÇÃ¶ó½ºÆ½ ¿À¿° ¼öÁØÀ» ÃßÀûÇϱâ À§ÇØ Á¤ºÎ¿Í »ê¾÷°è¿¡ ÇൿÀ» Ã˱¸Çϰí ÀνÄÀ» Á¦°íÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇØ¿Ô½À´Ï´Ù.

Àü ¼¼°è ±ÔÁ¦ ±â°üµµ ¹Ì¼¼ÇÃ¶ó½ºÆ½ °ËÃâ ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¹Ì¼¼ÇÃ¶ó½ºÆ½ÀÌ È¯°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀÌ ¹àÇôÁü¿¡ µû¶ó °¢±¹ Á¤ºÎ´Â ÇÃ¶ó½ºÆ½ ¿À¿°À» °¨½ÃÇϱâ À§ÇØ ´õ ¾ö°ÝÇÑ ±ÔÁ¦¿Í °¡À̵å¶óÀÎÀ» ½ÃÇàÇϰí ÀÖ½À´Ï´Ù. EU, ºÏ¹Ì µîÀÇ Áö¿ª¿¡¼­´Â ÇÃ¶ó½ºÆ½ Æó±â¹°À» ÁÙÀÌ°í ¹Ì¼¼ ÇÃ¶ó½ºÆ½ ¿À¿°À» ÃßÀûÇϱâ À§ÇÑ Á¤Ã¥À¸·Î ÀÎÇØ ½Å·ÚÇÒ ¼ö ÀÖ´Â °ËÃâ ¹æ¹ý¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀϺΠÁö¿ª¿¡¼­´Â ¹Ì¼¼ ÇÃ¶ó½ºÆ½ ¿À¿°ÀÌ ±¹°¡ ȯ°æ ¸ð´ÏÅ͸µ ÇÁ·Î±×·¥¿¡ Æ÷ÇԵǾî ÀÌ·¯ÇÑ ÀÌ´Ï¼ÅÆ¼ºê¸¦ Áö¿øÇÏ´Â °í±Þ ŽÁö ±â¼úÀÇ Çʿ伺ÀÌ ´õ¿í °­Á¶µÇ°í ÀÖ½À´Ï´Ù.

¹Ì¼¼ÇÃ¶ó½ºÆ½ °ËÃâÀ» À§ÇÑ ÀÚµ¿È­ µÈ AI ±â¹Ý ½Ã½ºÅÛÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ´Â °Íµµ ½ÃÀå ¼ºÀåÀÇ ÁÖ¿ä ¿äÀÎÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ƯÈ÷ ´ë±Ô¸ð Á¶»ç ¹× ¿ø°ÝÁö ȯ°æ¿¡¼­ º¸´Ù È¿À²ÀûÀÌ°í ºñ¿ë È¿À²ÀûÀÎ ¹Ì¼¼ ÇÃ¶ó½ºÆ½ ¸ð´ÏÅ͸µÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. AI¿Í ±â°è ÇнÀ ¾Ë°í¸®ÁòÀÌ °³¼±µÊ¿¡ µû¶ó ¹Ì¼¼ ÇÃ¶ó½ºÆ½ °ËÃâÀÇ Á¤È®µµ¿Í ¼Óµµ°¡ Áö¼ÓÀûÀ¸·Î Çâ»óµÇ¾î ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼®°ú ¿À¿° ÇÖ½ºÆÌ¿¡ ´ëÇÑ ½Å¼ÓÇÑ ´ëÀÀÀÌ °¡´ÉÇØÁ³½À´Ï´Ù. ¶ÇÇÑ, ÈÞ´ë¿ë ŽÁö ÀåºñÀÇ °³¹ßÀº ÇöÀå ºÐ¼®¿¡ »õ·Î¿î ±âȸ¸¦ °¡Á®¿ÔÀ¸¸ç, Áö±Ý±îÁö Á¢±ÙÇϱ⠾î·Á¿ü°Å³ª ºñ¿ëÀÌ ¸¹ÀÌ µé¾ú´ø Áö¿ª±îÁö ¹Ì¼¼ÇÃ¶ó½ºÆ½ ¸ð´ÏÅ͸µÀÇ ¹üÀ§¸¦ ³ÐÈ÷°í ÀÖ½À´Ï´Ù.

¸¶Áö¸·À¸·Î, Á¶»ç ¹× ±ÔÁ¦ Ãø¸é¿¡¼­ Ű¿öµå°¡ È®»êµÊ¿¡ µû¶ó »ùÇà ¼öÁý µµ±¸, µ¥ÀÌÅÍ ºÐ¼® ¼ÒÇÁÆ®¿þ¾î, ÄÁ¼³ÆÃ ¼­ºñ½º µî °ü·Ã Á¦Ç° ¹× ¼­ºñ½º ½ÃÀåµµ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ȯ°æ ÄÁ¼³ÆÃ, ½Äǰ ¾ÈÀü, ¼öÁú °Ë»ç µî ´Ù¾çÇÑ »ê¾÷¿¡¼­ ¹Ì¼¼ ÇÃ¶ó½ºÆ½ ¸ð´ÏÅ͸µ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ±â¾÷µéÀº ÀÌ·¯ÇÑ ¼ö¿ä¸¦ ÃæÁ·½Ã۱â À§ÇØ Å½Áö ´É·Â Çâ»ó¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ¾ÕÀ¸·Îµµ °è¼ÓµÉ °ÍÀ¸·Î ¿¹»óµÇ¸ç, °ËÃâ ±â¼úÀÇ Çõ½ÅÀÌ ÃËÁøµÇ°í, ¹Ì¼¼ÇÃ¶ó½ºÆ½ °ËÃâ ¼Ö·ç¼Ç ½ÃÀåµµ È®´ëµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

°á·ÐÀûÀ¸·Î, ¹Ì¼¼ÇÃ¶ó½ºÆ½ °ËÃâ ½ÃÀåÀº »çȸÀû ÀνÄ, ±ÔÁ¦ ´ç±¹ÀÇ ¾Ð·Â, °ËÃâ ±â¼úÀÇ ¹ßÀü¿¡ µû¶ó ºü¸£°Ô ÁøÈ­Çϰí ÀÖ½À´Ï´Ù. ȯ°æ ¸ð´ÏÅ͸µÀÌ ÇÃ¶ó½ºÆ½ ¿À¿° À§±â¿¡ ´ëÀÀÇÏ´Â µ¥ ÀÖ¾î Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ´Â °¡¿îµ¥, È¿À²ÀûÀ̰í Á¤È®Çϸç È®Àå °¡´ÉÇÑ Å½Áö ¹æ¹ý¿¡ ´ëÇÑ ¼ö¿ä´Â °è¼Ó Áõ°¡ÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ÈÞ´ë¿ë ±â±â, AI ±â¹Ý ½Ã½ºÅÛ, Ç¥ÁØÈ­µÈ ÇÁ·ÎÅäÄÝÀÇ °³¹ßÀº ¹Ì¼¼ÇÃ¶ó½ºÆ½ °ËÃâÀÇ È¿À²¼ºÀ» ´õ¿í Çâ»ó½Ã۰í, ÀÌ ¼¼°è ȯ°æ ¹®Á¦¸¦ ÇØ°áÇϱâ À§ÇØ º¸´Ù Áö¼Ó°¡´ÉÇϰí Á¤º¸¿¡ ÀÔ°¢ÇÑ Á¢±Ù ¹æ½ÄÀ» °¡´ÉÇÏ°Ô ÇÒ °ÍÀÔ´Ï´Ù.

ºÎ¹®

À¯Çü(Æú¸®¿¡Æ¿·», Æú¸®Åׯ®¶óÇ÷ç¿À·Î¿¡Æ¿·», Æú¸®½ºÆ¼·», Æú¸®ÇÁ·ÎÇÊ·», ±âŸ À¯Çü), ±â¼ú(¸¶ÀÌÅ©·Î ¶ó¸¸ ºÐ±¤ ±â¼ú, FTIR ºÐ±¤ ±â¼ú, ¿­ºÐÇØ °¡½º Å©·Î¸¶Åä±×·¡ÇÇ Áú·® ºÐ¼® ±â¼ú, ¾×ü Å©·Î¸¶Åä±×·¡ÇÇ Áú·® ºÐ¼® ±â¼ú, À¯¼¼Æ÷ ºÐ¼® ±â¼ú, ÁÖ»çÇü ÀüÀÚÇö¹Ì°æ ±â¼ú, ±âŸ ±â¼ú), »çÀÌÁî(1mm ÀÌÇÏ, 1mm-3mm, 3 mm-5 mm), ÃÖÁ¾»ç¿ëÀÚ(¼öó¸® ÃÖÁ¾»ç¿ëÀÚ, ½Äǰ ¹× À½·á ÃÖÁ¾»ç¿ëÀÚ, ¼¶À¯ ÃÖÁ¾»ç¿ëÀÚ, È­Àåǰ¡¤ÆÛ½º³ÎÄɾî ÃÖÁ¾»ç¿ëÀÚ, ÆÐŰ¡ ÃÖÁ¾»ç¿ëÀÚ, ±âŸ ÃÖÁ¾»ç¿ëÀÚ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°è °íÀ¯ÀÇ SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Microplastic Detection Market to Reach US$6.1 Billion by 2030

The global market for Microplastic Detection estimated at US$4.6 Billion in the year 2024, is expected to reach US$6.1 Billion by 2030, growing at a CAGR of 4.7% over the analysis period 2024-2030. Polyethylene, one of the segments analyzed in the report, is expected to record a 4.0% CAGR and reach US$2.6 Billion by the end of the analysis period. Growth in the Polytetrafluoroethylene segment is estimated at 5.9% CAGR over the analysis period.

The U.S. Market is Estimated at US$1.3 Billion While China is Forecast to Grow at 7.3% CAGR

The Microplastic Detection market in the U.S. is estimated at US$1.3 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$1.2 Billion by the year 2030 trailing a CAGR of 7.3% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 2.3% and 4.7% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 3.0% CAGR.

Global Microplastic Detection Market - Key Trends & Drivers Summarized

What Is Microplastic Detection and Why Is It Critical for Environmental Monitoring?

Microplastic detection refers to the methods and technologies used to identify and quantify microplastic particles in environmental samples, including water, air, soil, and organisms. Microplastics, typically defined as plastic particles smaller than 5mm, have become an increasingly significant environmental issue due to their widespread presence in ecosystems and their potential harmful effects on wildlife and human health. Detecting these particles is essential for understanding the extent of contamination and for developing effective strategies to reduce plastic pollution. Methods for detecting microplastics include spectroscopy (such as FTIR and Raman), microscopy techniques, and newer methods like pyrolysis-gas chromatography, which offer higher sensitivity and accuracy in identifying microplastic particles.

As plastic waste continues to accumulate globally, its degradation leads to the formation of microplastics, which are difficult to remove and often invisible to the naked eye. These particles are commonly found in aquatic environments, especially in oceans and rivers, but have also been detected in soil, food products, and even air. The presence of microplastics in various environmental matrices poses significant risks to ecosystems and human health, making detection a priority for regulatory bodies and environmental monitoring organizations. The need for effective detection methods has driven the development of advanced technologies that can provide accurate measurements of microplastic levels in different environments.

Recent studies have shown that microplastics can accumulate in marine food chains, affecting biodiversity and the health of aquatic organisms. Microplastic particles, when ingested by marine animals, can cause physical harm, interfere with their feeding mechanisms, and introduce toxic chemicals into their bodies. The detection of these particles in water, sediment, and marine organisms is crucial for monitoring environmental pollution levels and understanding the impact on marine life. Similarly, microplastics in drinking water and soil raise concerns about their potential effects on human health, underscoring the importance of detection technologies to safeguard public health and the environment.

What Are the Latest Trends in Microplastic Detection Technology?

Advancements in microplastic detection technology are at the forefront of environmental science, as the need to assess and monitor microplastic pollution continues to rise. One of the most notable trends in recent years is the development of high-resolution spectroscopy and imaging techniques, which allow for the detection of microplastic particles with greater precision and sensitivity. Fourier Transform Infrared (FTIR) spectroscopy and Raman spectroscopy, for instance, are widely used to identify the chemical composition of microplastics and differentiate them from other environmental particles. These techniques offer a non-destructive approach to sample analysis and have been increasingly adopted in both laboratory and field settings.

Another key trend is the integration of automated systems and artificial intelligence (AI) for microplastic detection. AI and machine learning algorithms are being used to process large volumes of data from various detection methods, such as microscopy or spectroscopy. By automating the analysis process, these systems can rapidly identify microplastic particles within environmental samples, improving efficiency and reducing the potential for human error. This trend is particularly beneficial for large-scale environmental monitoring programs, where real-time data collection and analysis are essential for tracking pollution trends and informing policy decisions.

Additionally, the development of portable and field-ready microplastic detection devices is enabling on-site analysis in remote or difficult-to-reach locations. These portable systems are designed to be lightweight, easy to use, and capable of providing accurate results without the need for extensive laboratory resources. Such advancements are helping to broaden the scope of microplastic monitoring, as environmental agencies, researchers, and NGOs can now conduct field studies with greater ease. As the demand for rapid and efficient microplastic detection grows, these portable devices are becoming increasingly valuable tools for tracking pollution in real-time.

What Are the Challenges in Microplastic Detection?

Despite the rapid advancements in detection technology, several challenges remain in accurately measuring microplastic pollution. One of the major difficulties is the complex nature of environmental samples. Microplastics are often mixed with organic matter, sediment, and other particulate matter in natural environments, making it difficult to isolate them. In water, for example, microplastics are often found alongside plankton, algae, and other tiny organisms, which can interfere with detection and quantification. Similarly, in soil and air, microplastic particles can be masked by other environmental contaminants. This complex matrix makes it challenging to develop universal detection methods that are applicable across different environments.

Another challenge is the lack of standardization in detection methods. While several techniques, including FTIR, Raman spectroscopy, and visual identification under microscopy, are widely used, there is no universally accepted protocol for the detection and analysis of microplastics. This lack of standardization can result in inconsistent findings across studies, making it difficult to compare data or establish a global baseline for microplastic pollution. Researchers and regulatory bodies are working to address this issue by developing standardized methods, but progress is slow due to the variability of environmental conditions and the diversity of microplastic types.

Additionally, detecting microplastics in complex matrices such as marine organisms, food products, or drinking water requires highly sensitive methods that can detect very low concentrations of microplastic particles. Although detection technologies have improved, they are still limited by factors such as sample size, the type of microplastic, and the sensitivity of the analytical instruments. For instance, certain types of microplastics may be more difficult to detect because of their size, color, or chemical composition. Furthermore, the quantification of microplastics often involves labor-intensive processes, which can make large-scale monitoring and regular surveillance costly and time-consuming.

What Are the Growth Drivers for the Microplastic Detection Market?

The growth in the microplastic detection market is driven by several factors, including increasing public awareness of environmental pollution, regulatory pressure for more rigorous environmental monitoring, and advancements in detection technology. Public concern about the harmful effects of plastic waste on ecosystems, marine life, and human health has surged in recent years, creating a demand for more accurate and widespread monitoring of microplastic pollution. The media and environmental organizations have played a significant role in raising awareness, which has prompted governments and industries to take action to reduce plastic waste and track microplastic contamination levels in various environments.

Regulatory bodies around the world are also driving the growth of the microplastic detection market. As the environmental impact of microplastics becomes more evident, governments are implementing stricter regulations and guidelines for the monitoring of plastic pollution. In regions such as the European Union and North America, policies aimed at reducing plastic waste and tracking microplastic contamination have increased demand for reliable detection methods. In some areas, microplastic pollution is being incorporated into national environmental monitoring programs, which further emphasizes the need for advanced detection technologies to support these initiatives.

The increasing adoption of automated and AI-based systems for microplastic detection is another key driver of market growth. These systems allow for more efficient and cost-effective monitoring of microplastics, particularly in large-scale studies or remote environments. As AI and machine learning algorithms improve, the accuracy and speed of microplastic detection will continue to increase, allowing for real-time data analysis and faster response times to pollution hotspots. Furthermore, the development of portable detection devices has opened up new opportunities for on-site analysis, expanding the reach of microplastic monitoring to areas that were previously difficult or expensive to access.

Finally, as microplastic detection becomes more prevalent in both research and regulatory contexts, there is a growing market for related products and services, including sample collection tools, data analysis software, and consultation services. As demand for microplastic monitoring grows across various industries-such as environmental consulting, food safety, and water quality testing-companies are investing in improving their detection capabilities to meet these needs. This trend is expected to continue, driving innovation in detection technologies and expanding the market for microplastic detection solutions.

In conclusion, the microplastic detection market is evolving rapidly, driven by public awareness, regulatory pressure, and advancements in detection technology. As environmental monitoring continues to play a critical role in addressing the plastic pollution crisis, the demand for efficient, accurate, and scalable detection methods will continue to rise. The development of portable devices, AI-based systems, and standardized protocols will further enhance the effectiveness of microplastic detection, enabling a more sustainable and informed approach to tackling this global environmental issue.

SCOPE OF STUDY:

The report analyzes the Microplastic Detection market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (Polyethylene, Polytetrafluoroethylene, Polystyrene, Polypropylene, Other Types); Technology (Micro Raman Spectroscopy Technology, FTIR Spectroscopy Technology, Pyrolysis Gas Chromatography Mass Spectrometry Technology, Liquid Chromatography Mass Spectrometry Technology, Flow Cytometry Technology, Scanning Electron Microscopy Technology, Other Technologies); Size (Below 1 mm Size, 1 mm - 3 mm Size, 3 mm - 5 mm Size); End-Use (Water Treatment End-Use, Food & Beverage End-Use, Textiles End-Use, Cosmetics & Personal Care End-Use, Packaging End-Use, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 36 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â