¼¼°èÀÇ Çϵå¿þ¾î Áö¿ø °ËÁõ ½ÃÀå
Hardware-Assisted Verification
»óǰÄÚµå : 1781230
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 278 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,180,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,541,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Çϵå¿þ¾î Áö¿ø °ËÁõ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 15¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 6¾ï 4,150¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â Çϵå¿þ¾î Áö¿ø °ËÁõ ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 15.2%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 15¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®Çϰí ÀÖ´Â ºÎ¹® Áß ÇϳªÀÎ Çϵå¿þ¾î ¿¡¹Ä·¹ÀÌ¼Ç Ç÷§ÆûÀº CAGR 16.7%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á±îÁö 11¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. FPGA ÇÁ·ÎÅäŸÀÌÇÎ Ç÷§Æû ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 11.4%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 1¾ï 7,480¸¸ ´Þ·¯, Áß±¹Àº CAGR 20.4%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Çϵå¿þ¾î Áö¿ø °ËÁõ ½ÃÀåÀº 2024³â¿¡ 1¾ï 7,480¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 20.4%·Î 2030³â±îÁö 3¾ï 2,820¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 11.0%¿Í 13.7%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 12.1%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

Àü ¼¼°è Çϵå¿þ¾î Áö¿ø °ËÁõ ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ Á¤¸®

Çϵå¿þ¾î Áö¿ø °ËÁõÀÌ ¹ÝµµÃ¼ ¹× ÀÓº£µðµå ½Ã½ºÅÛÀÇ º¹À⼺À» ÇØ°áÇÒ ¼ö ÀÖÀ»±î?

¹ÝµµÃ¼ ¼³°è, ½Ã½ºÅÛ¿ÂĨ(SoC) ¾ÆÅ°ÅØÃ³, ÀÓº£µðµå ½Ã½ºÅÛÀÇ º¹À⼺ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó °í±Þ °ËÁõ ±â¼úÀÇ Çʿ伺ÀÌ ³ô¾ÆÁö°í ÀÖÀ¸¸ç, Çϵå¿þ¾î Áö¿ø °ËÁõ ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Ĩ ¾ÆÅ°ÅØÃ³°¡ º¹ÀâÇØÁü¿¡ µû¶ó ±âÁ¸ÀÇ ¼ÒÇÁÆ®¿þ¾î ±â¹Ý °ËÁõ ¹æ¹ýÀ¸·Î´Â ÃֽŠÀüÀÚ ¼³°èÀÇ ¿ä±¸ »çÇ×À» ÃæÁ·Çϱ⠾î·Á¿öÁö°í ÀÖ½À´Ï´Ù. Çϵå¿þ¾î Áö¿ø °ËÁõÀº FPGA(Field Programmable Gate Array) ¹× ¿¡¹Ä·¹ÀÌÅÍ¿Í °°Àº Àü¿ë Çϵå¿þ¾î Ç÷§ÆûÀ» »ç¿ëÇÏ¿© ½Ã½ºÅÛ ·¹º§ °ËÁõÀ» À§ÇÑ ½Ç½Ã°£ Å×½ºÆ® ȯ°æÀ» Á¦°øÇÔÀ¸·Î½á °ËÁõ ÇÁ·Î¼¼½º¸¦ °¡¼ÓÈ­ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀº ¹ÝµµÃ¼ÀÇ ½Å·Ú¼ºÀÌ Áß¿äÇÑ ÀÚµ¿Â÷, Åë½Å, Ç×°ø¿ìÁÖ, °¡Àü µîÀÇ »ê¾÷¿¡¼­ ƯÈ÷ À¯¿ëÇÏ°Ô È°¿ëµÉ ¼ö ÀÖ½À´Ï´Ù. ±×·¯³ª ÀÌ·¯ÇÑ ÀåÁ¡¿¡µµ ºÒ±¸Çϰí, ³ôÀº ±¸Çö ºñ¿ë°ú Àü¹® Áö½ÄÀÇ Çʿ伺ÀÌ ¿©ÀüÈ÷ Å« ¹®Á¦Á¡À¸·Î ÁöÀûµÇ°í ÀÖ½À´Ï´Ù. ¹ÝµµÃ¼ ±â¾÷µéÀÌ º¸´Ù ³ôÀº È¿À²¼º°ú ½ÃÀå Ãâ½Ã ½Ã°£ ´ÜÃàÀ» Ãß±¸ÇÏ´Â °¡¿îµ¥, Çϵå¿þ¾î Áö¿ø °ËÁõÀº ¼³°è °ËÁõ ÃÖÀûÈ­¸¦ À§ÇÑ ÇʼöÀûÀÎ µµ±¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.

AI¿Í ¸Ó½Å·¯´×Àº Çϵå¿þ¾î Áö¿ø °ËÁõÀ» ¾î¶»°Ô °­È­Çϴ°¡?

ÀΰøÁö´É°ú ¸Ó½Å·¯´×À» Çϵå¿þ¾î Áö¿ø °ËÁõ¿¡ ÅëÇÕÇÏ´Â °ÍÀº Ĩ ¼³°èÀÚ¿Í ½Ã½ºÅÛ ¿£Áö´Ï¾î°¡ º¹ÀâÇÑ ¾ÆÅ°ÅØÃ³¸¦ °ËÁõÇÏ´Â ¹æ½Ä¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. AI¸¦ Ȱ¿ëÇÑ °ËÁõ ÅøÀº ¹æ´ëÇÑ Å×½ºÆ® µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© ÆÐÅÏÀ» °ËÃâÇϰí, °íÀå ÁöÁ¡À» ¿¹ÃøÇϰí, Å×½ºÆ® ½Ã³ª¸®¿À¸¦ ÃÖÀûÈ­ÇÏ¿© °ËÁõ¿¡ ÇÊ¿äÇÑ ½Ã°£°ú °è»ê ¸®¼Ò½º¸¦ ÁÙ¿©ÁÝ´Ï´Ù. ¸Ó½Å·¯´×À» ÅëÇÑ ÀÚµ¿ µð¹ö±ë ±â´ÉÀº ½Ç½Ã°£À¸·Î ¿À·ù¸¦ ½Äº°Çϰí ÇØ°áÇÔÀ¸·Î½á È¿À²¼ºÀ» ´õ¿í ³ôÀ̰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µðÁöÅÐ Æ®À© ±â¼úÀ» ÅëÇØ º¸´Ù Á¤È®ÇÑ °¡»ó ÇÁ·ÎÅäŸÀÌÇÎÀÌ °¡´ÉÇØÁ® ¹°¸®Àû ±¸Çö Àü Ãʱ⠴ܰèÀÇ °ËÁõÀÌ °¡´ÉÇØÁ³½À´Ï´Ù. ±×·¯³ª AI¸¦ Çϵå¿þ¾î Áö¿ø °ËÁõ¿¡ ÅëÇÕÇϱâ À§Çؼ­´Â ¸¹Àº ÀÎÇÁ¶ó¿Í Àü¹® Áö½Ä¿¡ ´ëÇÑ ÅõÀÚ°¡ ÇÊ¿äÇϱ⠶§¹®¿¡ ¼Ò±Ô¸ð ¹ÝµµÃ¼ ±â¾÷¿¡¼­ AI¸¦ µµÀÔÇÏ´Â °ÍÀº Á¦ÇÑÀûÀÏ ¼ö¹Û¿¡ ¾ø½À´Ï´Ù. ÀÌ·¯ÇÑ ¾î·Á¿ò¿¡µµ ºÒ±¸Çϰí, AI¸¦ Ȱ¿ëÇÑ °ËÁõÀº ¼³°è °áÇÔÀ» ÁÙÀ̰í, ¼öÀ²À» °³¼±Çϸç, Á¦Ç° °³¹ß Áֱ⸦ ´ÜÃàÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀ¸·Î ±â´ëµË´Ï´Ù.

°í¼º´É ÄÄÇ»ÆÃ°ú 5G¿¡ ´ëÇÑ ¼ö¿ä°¡ äÅÃÀ» ÃËÁøÇÒ °ÍÀΰ¡?

°í¼º´É ÄÄÇ»ÆÃ ¾ÖÇø®ÄÉÀ̼Ç, 5G ÀÎÇÁ¶ó, ÀΰøÁö´É ¿öÅ©·ÎµåÀÇ È®´ë·Î ¹ÝµµÃ¼ ¼ÒÀÚÀÇ º¹À⼺ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó Çϵå¿þ¾î Áö¿ø °ËÁõÀÇ Çʿ伺ÀÌ ´õ¿í Ä¿Áö°í ÀÖ½À´Ï´Ù. Â÷¼¼´ë ÇÁ·Î¼¼¼­, ¸Þ¸ð¸® ¾ÆÅ°ÅØÃ³, ¹«¼± Åë½Å ĨÀ» °³¹ßÇϱâ À§Çؼ­´Â ½ÇÁ¦ ȯ°æ¿¡¼­ÀÇ ±¤¹üÀ§ÇÑ °ËÁõÀÌ ÇÊ¿äÇÏÁö¸¸, ¼ÒÇÁÆ®¿þ¾î¸¸À¸·Î´Â È¿À²ÀûÀ¸·Î ±¸ÇöÇÒ ¼ö ¾ø½À´Ï´Ù. 5G ¾ÖÇø®ÄÉÀ̼ǿ¡¼­ Çϵå¿þ¾î Áö¿ø °ËÁõÀº º£À̽º¹êµå ÇÁ·Î¼¼¼­, RF ÇÁ·ÐÆ®¿£µå ¸ðµâ, ³×Æ®¿öÅ© ¿ÂĨ ¼³°èÀÇ ½Å·Ú¼ºÀ» º¸ÀåÇϰí Á¦Á¶¾÷ü°¡ ¾ö°ÝÇÑ ¼º´É ¿ä±¸ »çÇ×À» ÃæÁ·ÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ¶ÇÇÑ, ¿¡³ÊÁö È¿À²ÀûÀÎ ÄÄÇ»ÆÃ¿¡ ´ëÇÑ ¿ä±¸°¡ ³ô¾ÆÁü¿¡ µû¶ó ÀúÀü·Â °ËÁõ ¹æ¹ýÀÇ Çõ½ÅÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. Çϵå¿þ¾î Áö¿ø °ËÁõ Ç÷§ÆûÀÇ È®À强Àº ¿©ÀüÈ÷ ¿ì·ÁµÇ´Â ºÎºÐÀÌÁö¸¸, Ŭ¶ó¿ìµå ±â¹Ý °ËÁõ ¼Ö·ç¼ÇÀÇ ¹ßÀüÀ¸·Î ±â¾÷Àº ÄÄÇ»ÆÃ º´¸ñ Çö»óÀ» ±Øº¹Çϰí Å×½ºÆ® ÇÁ·Î¼¼½º¸¦ °£¼ÒÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù.

Çϵå¿þ¾î Áö¿ø °ËÁõ ½ÃÀåÀÇ ¼ºÀå ¿øµ¿·ÂÀº?

Çϵå¿þ¾î Áö¿ø °ËÁõ ½ÃÀåÀÇ ¼ºÀå ¿øµ¿·ÂÀº ¹ÝµµÃ¼ ¼³°èÀÇ º¹À⼺ Áõ°¡, °ËÁõ ¿öÅ©Ç÷ο쿡 AI¿Í ¸Ó½Å·¯´×ÀÇ ÅëÇÕ, °í¼º´É ÄÄÇ»ÆÃ ¹× 5G ¾ÖÇø®ÄÉÀ̼ǿ¡ ´ëÇÑ ¼ö¿äÀÔ´Ï´Ù. ÀÚµ¿Â÷, Åë½Å, °¡Àü µîÀÇ »ê¾÷¿¡¼­´Â ½ÃÀå Ãâ½Ã ½Ã°£À» ´ÜÃàÇØ¾ß ÇÏ´Â ¿ä±¸°¡ ÀÖ¾î äÅÃÀÌ ´õ¿í °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Ŭ¶ó¿ìµå ±â¹Ý °ËÁõ°ú µðÁöÅÐ Æ®À© ±â¼úÀÇ ¹ßÀüÀ¸·Î ÀÎÇØ Çϵå¿þ¾î Áö¿ø °ËÁõÀº ´õ¿í È®À强ÀÌ ¶Ù¾î³ª°í Ȱ¿ëµµ°¡ ³ô¾ÆÁ³½À´Ï´Ù. ±×·¯³ª ³ôÀº Ãʱ⠺ñ¿ë, Àü¹® Áö½ÄÀÇ Çʿ伺, ÅëÇÕÀÇ º¹À⼺ µîÀÇ ¹®Á¦´Â ½ÃÀå ħÅõ¿¡ °è¼Ó ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¾î·Á¿ò¿¡µµ ºÒ±¸Çϰí, ¿¡¹Ä·¹À̼Ç, FPGA ÇÁ·ÎÅäŸÀÌÇÎ, AI¸¦ Ȱ¿ëÇÑ °ËÁõ ±â¼úÀÇ Áö¼ÓÀûÀÎ Çõ½ÅÀ¸·Î Çϵå¿þ¾î Áö¿ø °ËÁõÀº ÃֽŠĨ ¼³°è ¹× ½Ã½ºÅÛ °ËÁõ¿¡ ÇʼöÀûÀÎ ¼Ö·ç¼ÇÀ¸·Î È®´ëµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ºÎ¹®

Ç÷§Æû(Çϵå¿þ¾î ¿¡¹Ä·¹ÀÌ¼Ç Ç÷§Æû, FPGA ÇÁ·ÎÅäŸÀÌÇÎ Ç÷§Æû), ¿ëµµ(ÀÚµ¿Â÷ ¿ëµµ, °¡Àü ¿ëµµ, »ê¾÷ ¿ëµµ, Ç×°ø¿ìÁÖ ¹× ¹æÀ§ ¿ëµµ, ÀÇ·á ¿ëµµ, Åë½Å ¿ëµµ, ±âŸ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

¿ì¸®´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ÀÇ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹üÀ» µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Hardware-Assisted Verification Market to Reach US$1.5 Billion by 2030

The global market for Hardware-Assisted Verification estimated at US$641.5 Million in the year 2024, is expected to reach US$1.5 Billion by 2030, growing at a CAGR of 15.2% over the analysis period 2024-2030. Hardware Emulation Platform, one of the segments analyzed in the report, is expected to record a 16.7% CAGR and reach US$1.1 Billion by the end of the analysis period. Growth in the FPGA Prototyping Platform segment is estimated at 11.4% CAGR over the analysis period.

The U.S. Market is Estimated at US$174.8 Million While China is Forecast to Grow at 20.4% CAGR

The Hardware-Assisted Verification market in the U.S. is estimated at US$174.8 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$328.2 Million by the year 2030 trailing a CAGR of 20.4% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 11.0% and 13.7% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 12.1% CAGR.

Global Hardware-Assisted Verification Market - Key Trends & Drivers Summarized

Can Hardware-Assisted Verification Solve the Growing Complexity in Semiconductor and Embedded Systems?

The increasing complexity of semiconductor designs, system-on-chip (SoC) architectures, and embedded systems is driving the need for advanced verification techniques, leading to the rising adoption of hardware-assisted verification solutions. As chip architectures become more intricate, traditional software-based verification methods struggle to keep pace with the demands of modern electronic design. Hardware-assisted verification accelerates the validation process by using dedicated hardware platforms such as field-programmable gate arrays (FPGAs) and emulators, providing real-time testing environments for system-level verification. This approach is particularly beneficial for industries such as automotive, telecommunications, aerospace, and consumer electronics, where semiconductor reliability is critical. However, despite its advantages, high implementation costs and the need for specialized expertise remain significant challenges. As semiconductor companies push for higher efficiency and faster time-to-market, hardware-assisted verification is emerging as an essential tool for optimizing design validation.

How Are AI and Machine Learning Enhancing Hardware-Assisted Verification?

The integration of artificial intelligence and machine learning into hardware-assisted verification is revolutionizing the way chip designers and system engineers validate complex architectures. AI-driven verification tools analyze vast amounts of test data to detect patterns, predict failure points, and optimize testing scenarios, reducing the time and computational resources required for verification. Automated debugging capabilities powered by machine learning are further enhancing efficiency by identifying and resolving errors in real-time. Additionally, the use of digital twin technology is enabling more precise virtual prototyping, allowing for early-stage validation before physical implementation. However, integrating AI into hardware-assisted verification requires significant investment in infrastructure and expertise, limiting its adoption among smaller semiconductor firms. Despite these challenges, AI-enhanced verification is expected to play a key role in reducing design flaws, improving yield rates, and accelerating product development cycles.

Is the Demand for High-Performance Computing and 5G Driving Adoption?

The expansion of high-performance computing applications, 5G infrastructure, and artificial intelligence workloads is increasing the complexity of semiconductor devices, further emphasizing the need for hardware-assisted verification. The deployment of next-generation processors, memory architectures, and wireless communication chips requires extensive validation under real-world conditions, which software-only simulation methods cannot achieve efficiently. In 5G applications, hardware-assisted verification ensures the reliability of baseband processors, RF front-end modules, and network-on-chip designs, helping manufacturers meet stringent performance requirements. Additionally, the growing demand for energy-efficient computing is driving innovation in low-power verification methodologies. While the scalability of hardware-assisted verification platforms remains a concern, advancements in cloud-based verification solutions are helping companies overcome computational bottlenecks and streamline testing processes.

What Is Driving the Growth of the Hardware-Assisted Verification Market?

The growth in the hardware-assisted verification market is driven by the increasing complexity of semiconductor designs, the integration of AI and machine learning in verification workflows, and the demand for high-performance computing and 5G applications. The push for faster time-to-market in industries such as automotive, telecommunications, and consumer electronics is further accelerating adoption. Additionally, advancements in cloud-based verification and digital twin technology are making hardware-assisted verification more scalable and accessible. However, challenges such as high initial costs, expertise requirements, and integration complexities continue to impact market penetration. Despite these challenges, ongoing innovation in emulation, FPGA prototyping, and AI-driven verification techniques is expected to fuel the expansion of hardware-assisted verification as an indispensable solution for modern chip design and system validation.

SCOPE OF STUDY:

The report analyzes the Hardware-Assisted Verification market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Platform (Hardware Emulation Platform, FPGA Prototyping Platform); Application (Automotive Application, Consumer Electronics Application, Industrial Application, Aerospace & Defense Application, Medical Application, Telecom Application, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 32 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â