¼¼°èÀÇ TPU(Tensor Processing Unit) ½ÃÀå
Tensor Processing Unit
»óǰÄÚµå : 1777616
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 384 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,180,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,541,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ TPU(Tensor Processing Unit) ½ÃÀåÀº 2030³â±îÁö 168¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 36¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ TPU(Tensor Processing Unit) ½ÃÀåÀº 2024-2030³â¿¡ CAGR 29.0%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 168¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀΠŬ¶ó¿ìµå ±â¹ÝÀº CAGR 26.4%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á±îÁö 96¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¿ÂÇÁ·¹¹Ì½ºÇü ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ Áß CAGR 33.0%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº ÃßÁ¤ 9¾ï 9,320¸¸ ´Þ·¯, Áß±¹Àº CAGR 37.5%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ TPU(Tensor Processing Unit) ½ÃÀåÀº 2024³â¿¡ 9¾ï 9,320¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 41¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀº 37.5%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 23.7%¿Í 25.9%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 24.4%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ TPU(Tensor Processing Unit) ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

AIÀÇ ºÎ»óÀ¸·Î ÅÙ¼­ ÇÁ·Î¼¼½Ì À¯´ÖÀÌ ÄÄÇ»ÆÃÀÇ ÃÖÀü¼±¿¡ ¼­°Ô µÇ´Â°¡?

ÀΰøÁö´É(AI) ¿ëµµÀÌ °¢ »ê¾÷ ºÐ¾ß¿¡¼­ Æø¹ßÀûÀ¸·Î È®»êµÇ¸é¼­ º¹ÀâÇÑ ¸Ó½Å·¯´×(ML) ¿öÅ©·Îµå¸¦ ó¸®ÇÒ ¼ö Àִ Ư¼ö Çϵå¿þ¾î¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖÀ¸¸ç, ÅÙ¼­Ç÷οì ÇÁ·Î¼¼½Ì À¯´Ö(TPU)ÀÌ ÀÌ·¯ÇÑ º¯È­ÀÇ Á߽ɿ¡ ÀÖ½À´Ï´Ù. TPU´Â ¸ÂÃãÇüÀ¸·Î °³¹ßµÈ ÁÖ¹®Çü ÁÖ¹®Çü ÁýÀûȸ·Î(ASIC)·Î, ½Å°æ¸Á ÈÆ·Ã ¹× Ã߷аú °°Àº AI °ü·Ã ÀÛ¾÷ÀÇ ¼Óµµ¸¦ ³ôÀ̱â À§ÇØ Æ¯º°È÷ ¼³°èµÇ¾ú½À´Ï´Ù. ¿ø·¡ ±¸±ÛÀÌ °³¹ßÇÑ TPU´Â ¹ü¿ë CPU¿Í ¸¹Àº GPU¿¡ ºñÇØ ³ôÀº È¿À²¼º, ³·Àº Áö¿¬½Ã°£, ¶Ù¾î³­ ¼º´ÉÀ» Á¦°øÇÏ¿© Ŭ¶ó¿ìµå ±â¹Ý AI ó¸® ´É·ÂÀ» Å©°Ô Çâ»ó½ÃÄ×½À´Ï´Ù. TPUÀÇ ¾ÆÅ°ÅØÃ³´Â µö·¯´× °è»êÀÇ ±â¹ÝÀÌ µÇ´Â ÅÙ¼­ ¿¬»ê¿¡ ÃÖÀûÈ­µÇ¾î ÀÖ½À´Ï´Ù. ÇコÄɾîºÎÅÍ ÀÚÀ²ÁÖÇàÂ÷, ÀÚ¿¬ ¾ð¾î 󸮱îÁö ´Ù¾çÇÑ »ê¾÷¿¡¼­ AI°¡ ÇÙ½É ¾÷¹«¿¡ °è¼Ó Á¢¸ñµÇ¸é¼­ Àü¿ë °í¼º´É ÇÁ·Î¼¼¼­ÀÇ Çʿ伺ÀÌ ¸Å¿ì Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. TPU, ƯÈ÷ µ¥ÀÌÅͼ¾ÅÍ ¹× AI ¿¬±¸ ȯ°æ¿¡¼­ »ç¿ëµÇ´Â TPU´Â ´õ ºü¸¥ ¸ðµ¨ ¹Ýº¹, ½Ç½Ã°£ Ãß·Ð, È®Àå °¡´ÉÇÑ ML ¼Ö·ç¼ÇÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. Áö´ÉÇü ÀÚµ¿È­·ÎÀÇ ÆÐ·¯´ÙÀÓ ÀüȯÀº Ŭ¶ó¿ìµå Ç÷§Æû, ±â¾÷ ¿ëµµ, ¿§Áö ÄÄÇ»ÆÃ ȯ°æ¿¡ TPUÀÇ µµÀÔÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÁÖ¸ñÇÒ ¸¸ÇÑ Á¡Àº ÇÏÀÌÅ×Å© ´ë±â¾÷ÀÌ AI-as-a-Service ¸ðµ¨À» ÅëÇØ TPUÀÇ °¡¿ë¼ºÀ» È®ÀåÇϰí, ¸ðµç ±Ô¸ðÀÇ ±â¾÷¿¡¼­ °í¼º´É ÄÄÇ»ÆÃÀ» º¸´Ù ½±°Ô »ç¿ëÇÒ ¼ö ÀÖµµ·Ï Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù.

±âÁ¸ AI ¿öÅ©·Îµå»Ó¸¸ ¾Æ´Ï¶ó TPUÀÇ È°¿ëÀ» ¾î¶»°Ô ´Ù°¢È­Çϰí Àִ°¡?

»ê¾÷°è°¡ AI¸¦ ¾÷¹« ½Ã½ºÅÛ¿¡ ´õ ±í¼÷ÀÌ ÅëÇÕÇϰíÀÚ ÇÏ´Â °¡¿îµ¥, TPUÀÇ Àû¿ë ¹üÀ§´Â ÀüÅëÀûÀÎ ¸Ó½Å·¯´× ÀÛ¾÷ ¿Ü¿¡µµ ºü¸£°Ô È®´ëµÇ°í ÀÖ½À´Ï´Ù. ÇコÄÉ¾î ºÐ¾ß¿¡¼­´Â ÀÇ·á ¿µ»ó, À¯Àüü µ¥ÀÌÅÍ, ÀÓ»ó ±â·ÏÀ» ½Ç½Ã°£À¸·Î ºÐ¼®ÇÏ´Â µö·¯´× ¸ðµ¨À» °­È­ÇÏ¿© Áø´Ü ¼Óµµ¸¦ ³ôÀÌ´Â µ¥ TPU°¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ±ÝÀ¶¾÷°è¿¡¼­´Â ºÎÁ¤ÇàÀ§ °¨Áö, ¾Ë°í¸®Áò Æ®·¹À̵ù, °í°´ Çൿ ¿¹Ãø¿¡ TPU°¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ ¾÷°è´Â ƯÈ÷ ÀÚÀ²ÁÖÇàÂ÷ °³¹ß¿¡¼­ LiDAR, ·¹ÀÌ´õ, Ä«¸Þ¶óÀÇ º¹ÀâÇÑ ¼¾¼­ µ¥ÀÌÅ͸¦ ó¸®ÇÏ°í ½Ç½Ã°£ ¹°Ã¼ °¨Áö ¹× Ž»öÀ» °¡´ÉÇÏ°Ô ÇÏ´Â TPU¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ÇÑÆí, ¹Ìµð¾î ¹× ¿£ÅÍÅ×ÀÎ¸ÕÆ® ºÐ¾ß¿¡¼­´Â TPU°¡ ÄÁÅÙÃ÷ »ý¼º, Ãßõ ¿£Áø, ÀÚµ¿ ºñµð¿À ºÐ¼®¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. TPU´Â À§¼º¿µ»ó ºÐ¼®, »çÀ̹ö º¸¾È, °¨½Ã ½Ã½ºÅÛ¿¡ µµÀԵǰí ÀÖ½À´Ï´Ù. ±³À° ¹× ¿¬±¸ ºÐ¾ß¿¡¼­µµ ´ëÇаú ¿¬±¸¼Ò°¡ TPU¸¦ Ȱ¿ëÇÏ¿© ´ë±Ô¸ð µ¥ÀÌÅͼ¼Æ®¸¦ Æ÷ÇÔÇÑ °úÇÐ ½Ã¹Ä·¹ÀÌ¼Ç ¹× Çмú¿¬±¸¸¦ °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ÀÌó·³ ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ TPU¸¦ äÅÃÇÏ´Â ÀÌÀ¯´Â ¼º´É°ú Áö¼Ó°¡´É¼ºÀ» ¸ðµÎ Ãß±¸ÇÏ´Â Á¶Á÷¿¡ Áß¿äÇÑ ¿¡³ÊÁö È¿À²¼ºÀ» À¯ÁöÇϸ鼭 Ãʰí¼ÓÀ¸·Î ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅ͸¦ ó¸®ÇÒ ¼ö ÀÖ´Â TPUÀÇ ´É·Â¿¡ ±âÀÎÇÕ´Ï´Ù. ÃÖÁ¾ »ç¿ë ½Ã³ª¸®¿ÀÀÇ ´Ù¾çÈ­·Î ÀÎÇØ TPUÀÇ ´ëÀÀ °¡´ÉÇÑ ½ÃÀåÀÌ Å©°Ô È®´ëµÇ¾î Â÷¼¼´ë µðÁöÅÐ ÀÎÇÁ¶ó¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

±â¼úÀÇ ¹ßÀüÀ¸·Î TPU°¡ ¿§Áö ÄÄÇ»ÆÃ°ú Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ¿¡¼­ À¯ºñÄõÅͽºÈ­ µÉ °¡´É¼ºÀº?

TPU ½ÃÀåÀº Ĩ ¾ÆÅ°ÅØÃ³, Á¦Á¶ ±â¼ú, ÅëÇÕ ¸ðµ¨ÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀ¸·Î ÀÎÇØ ´õ¿í ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. ±¸±ÛÀÇ TPU v4¿Í °°Àº Â÷¼¼´ë TPU´Â ó¸® ´É·Â, ¸Þ¸ð¸® ´ë¿ªÆø, ¿¡³ÊÁö È¿À²À» ºñ¾àÀûÀ¸·Î Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀ» ÅëÇØ °Å´ë ¾ð¾î ¸ðµ¨(LLM), ÄÄÇ»ÅÍ ºñÀü ½Ã½ºÅÛ, ½Ç½Ã°£ À½¼º Àνİú °°Àº ¸Å¿ì º¹ÀâÇÑ AI ¸ðµ¨À» Àü·Ê ¾ø´Â ¼Óµµ¿Í Á¤È®µµ·Î ½ÇÇàÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. TPU¸¦ ¾çÀÚ ÄÄÇ»ÆÃ ¿¬±¸ ¹× ´º·Î¸ðÇÈ ¿£Áö´Ï¾î¸µ°ú À¶ÇÕÇÏ¿© ÀΰøÁö´É(AGI)ÀÇ »õ·Î¿î ¿µ¿ªÀ» °³¹ßÇÏ´Â °Íµµ °ËÅäµÇ°í ÀÖ½À´Ï´Ù. ÇÑÆí, TensorFlow, JAX, PyTorch¸¦ ºñ·ÔÇÑ ¼ÒÇÁÆ®¿þ¾î ½ºÅðú °³¹ß ÇÁ·¹ÀÓ¿öÅ©ÀÇ ÁøÈ­´Â TPU¿ÍÀÇ È£È¯¼º¿¡ ÃÖÀûÈ­µÇ¾î °³¹ßÀÚ¿Í ½ºÅ¸Æ®¾÷ÀÇ ÁøÀÔÀ庮À» ³·Ãß°í ÀÖ½À´Ï´Ù. Çϵå¿þ¾î Ãø¸é¿¡¼­´Â ¼ÒÇüÈ­ ¹× ¿­ ÃÖÀûÈ­ ±â¼úÀ» ÅëÇØ TPU¸¦ µå·Ð, ½º¸¶Æ® Ä«¸Þ¶ó, IoT Çãºê µî ¿§Áö µð¹ÙÀ̽º¿¡ žÀçÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ´Â ÀúÁö¿¬ Ãß·ÐÀ̳ª ¿ÀÇÁ¶óÀÎ ÀÇ»ç°áÁ¤ÀÌ ÇÊ¿äÇÑ ½Ã³ª¸®¿À¿¡¼­ ƯÈ÷ Áß¿äÇÕ´Ï´Ù. ¶ÇÇÑ Å¬¶ó¿ìµå ¼­ºñ½º ÇÁ·Î¹ÙÀÌ´õµéÀº ÀÎÇÁ¶ó ³»¿¡¼­ TPU ±â¹Ý ÀνºÅϽº¸¦ È®ÀåÇÏ¿© ³ôÀº È®À强°ú ºñ¿ë È¿À²¼ºÀ¸·Î ±â¾÷±Þ AI 󸮸¦ °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. ÇÏÀ̺긮µå Ŭ¶ó¿ìµå¿Í ¿§Áö AI ¸ðµ¨µµ Àα⸦ ²ø°í ÀÖÀ¸¸ç, TPU´Â ½Ç½Ã°£ ºÐ¼®°ú ³×Æ®¿öÅ© Àü¹ÝÀÇ ºÐ»ê ÇнÀÀ» ÃËÁøÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀ¸·Î TPU´Â Áß¾Ó ÁýÁᫎ µ¥ÀÌÅͼ¾ÅͻӸ¸ ¾Æ´Ï¶ó ½Ç½Ã°£ ÀÎÅÚ¸®Àü½º¸¦ ÇÊ¿ä·Î ÇÏ´Â ºÐ»êÇü ȯ°æ¿¡¼­µµ ´ë±Ô¸ð AI¸¦ ½ÇÇöÇÏ´Â Áß¿äÇÑ ¼ö´ÜÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

TPU ½ÃÀåÀÇ ¼¼°è È®ÀåÀ» ÃËÁøÇÏ´Â ÁÖ¿ä ¿äÀÎÀº?

ÅÙ¼­ ÇÁ·Î¼¼½Ì À¯´Ö ½ÃÀåÀÇ ¼ºÀåÀº ±â¼ú ¹ßÀü, ±â¾÷ ´ÏÁî º¯È­, °í¼º´É AI ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÃÖÁ¾»ç¿ëÀÚ ¼ö¿ä¿¡ ±â¹ÝÇÑ ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀÎ Áß °¡Àå Å« ¿äÀÎÀº »ê¾÷ Àü¹Ý¿¡ °ÉÃÄ AI ¹× ML ¿öÅ©·ÎµåÀÇ ±Þ°ÝÇÑ Áõ°¡·Î, ³ôÀº 󸮷®ÀÇ ÅÙ¼­ °è»êÀ» ó¸®ÇÒ ¼ö ÀÖ´Â Çϵå¿þ¾î °¡¼Ó±â°¡ ÇÊ¿äÇÏ°Ô µÇ¾ú½À´Ï´Ù. °Å´ë ¾ð¾î ¸ðµ¨, À̹ÌÁö ÀÎ½Ä ½Ã½ºÅÛ, ½Ç½Ã°£ Ãßõ ¿£ÁøÀÇ º¸±ÞÀ¸·Î ÀÎÇØ ±âÁ¸ ÇÁ·Î¼¼¼­¿¡´Â Àü·Ê ¾ø´Â ¿¬»ê ´É·ÂÀÌ ¿ä±¸µÇ°í ÀÖÀ¸¸ç, TPU°¡ ¹Ù¶÷Á÷ÇÑ ¼±ÅÃÀÌ µÇ°í ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ¼­ºñ½º ÇÁ·Î¹ÙÀÌ´õµéÀº Á¦°øÇÏ´Â AI¸¦ Â÷º°È­Çϰí, È®Àå °¡´ÉÇÏ°í ºñ¿ë È¿À²ÀûÀÎ ML 󸮸¦ ÇÊ¿ä·Î ÇÏ´Â ±â¾÷ °í°´¿¡ ´ëÀÀÇϱâ À§ÇØ TPU ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ¸¦ °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ÀÌ¿Í ÇÔ²² ½º¸¶Æ® Á¦Á¶, ÀÚµ¿Â÷ ½Ã½ºÅÛ, ¸ð¹ÙÀÏ ·Îº¿¿¡ ¿§Áö AI°¡ Àû¿ëµÇ¸é¼­ ¿§Áö Ãß·Ð ±â´ÉÀ» Á¦°øÇÏ´Â ¼ÒÇü ÀúÀü·Â TPU¿¡ ´ëÇÑ »õ·Î¿î ¼ö¿ä°¡ »ý°Ü³ª°í ÀÖ½À´Ï´Ù. ¹ÝµµÃ¼ Á¦Á¶ÀÇ ¹ßÀü, ƯÈ÷ 5nm ÀÌÇÏ ³ëµå¿¡¼­ TPUÀÇ È¿À²°ú °¡°ÝÀÌ Çâ»óµÇ¾î ´ë·® »ý»êÀÌ ÃËÁøµÇ°í ÁøÀÔ À庮ÀÌ ³·¾ÆÁö°í ÀÖ½À´Ï´Ù. AI ³×ÀÌÆ¼ºê ½ºÅ¸Æ®¾÷°ú ¿¬±¸±â°üÀÇ ºÎ»óµµ ƯÈ÷ Ŭ¶ó¿ìµå ±â¹Ý Ç÷§ÆûÀ» ÅëÇØ ¿Âµð¸Çµå TPU ¸®¼Ò½º¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Ĩ Á¦Á¶¾÷ü, AI Ç÷§Æû °³¹ßÀÚ, ÇÏÀÌÆÛ½ºÄÉÀÏ µ¥ÀÌÅͼ¾ÅÍ °£ÀÇ Àü·«Àû ÆÄÆ®³Ê½ÊÀº TPUÀÇ ¼¼°è È®»êÀ» ´õ¿í °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç µîÀÇ Áö¿ª¿¡¼­´Â AI Çõ½Å°ú µðÁöÅÐ ÀÎÇÁ¶ó¿¡ ´ëÇÑ Á¤Ã¥Àû Áö¿øÀÌ TPU ±â¹Ý ½Ã½ºÅÛ¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ »óÈ£ ¿¬°üµÈ Ãß¼¼·Î ÀÎÇØ TPU ½ÃÀåÀº °­·ÂÇÑ ¼ºÀå ±Ëµµ¸¦ ±×¸®°í ÀÖÀ¸¸ç, °í¼º´É AI ÄÄÇ»ÆÃÀº Çö´ë µðÁöÅÐ »ýŰèÀÇ ±âº» °èÃþÀÌ µÉ Áغñ°¡ µÇ¾î ÀÖ½À´Ï´Ù.

ºÎ¹®

µµÀÔ(Ŭ¶ó¿ìµå ±â¹Ý, ¿ÂÇÁ·¹¹Ì½º), ¿ëµµ(ÀΰøÁö´É¡¤±â°èÇнÀ, °í¼º´É ÄÄÇ»ÆÃ, µ¥ÀÌÅÍ ºÐ¼®, ÀÚÀ² ½Ã½ºÅÛ), ÃÖÁ¾ ¿ëµµ(IT¡¤Åë½Å, ÇコÄɾî, ÀÚµ¿Â÷, ±ÝÀ¶¡¤ÀºÇà, ¼Ò¸Å¡¤E-Commerce, ±âŸ)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Tensor Processing Unit Market to Reach US$16.8 Billion by 2030

The global market for Tensor Processing Unit estimated at US$3.6 Billion in the year 2024, is expected to reach US$16.8 Billion by 2030, growing at a CAGR of 29.0% over the analysis period 2024-2030. Cloud-based, one of the segments analyzed in the report, is expected to record a 26.4% CAGR and reach US$9.6 Billion by the end of the analysis period. Growth in the On-Premise segment is estimated at 33.0% CAGR over the analysis period.

The U.S. Market is Estimated at US$993.2 Million While China is Forecast to Grow at 37.5% CAGR

The Tensor Processing Unit market in the U.S. is estimated at US$993.2 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$4.1 Billion by the year 2030 trailing a CAGR of 37.5% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 23.7% and 25.9% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 24.4% CAGR.

Global Tensor Processing Unit Market - Key Trends & Drivers Summarized

Is the Rise of AI Pushing Tensor Processing Units to the Forefront of Computing?

As artificial intelligence (AI) applications continue to explode across industries, the demand for specialized hardware capable of handling complex machine learning (ML) workloads has skyrocketed-placing Tensor Processing Units (TPUs) at the epicenter of this transformation. TPUs are custom-developed application-specific integrated circuits (ASICs) designed specifically to accelerate AI-related tasks such as neural network training and inference. Originally developed by Google, TPUs have significantly advanced the capabilities of cloud-based AI processing by offering greater efficiency, lower latency, and superior performance compared to general-purpose CPUs and even many GPUs. Their architecture is optimized for tensor operations, which are the foundation of deep learning computations. As industries ranging from healthcare to autonomous vehicles and natural language processing continue to incorporate AI into core operations, the need for dedicated, high-performance processors has become critical. TPUs, particularly those used within data centers and AI research environments, enable faster model iteration, real-time inference, and scalable ML solutions. This paradigm shift toward intelligent automation is fueling the deployment of TPUs across cloud platforms, enterprise applications, and edge computing environments. Notably, tech giants are expanding TPU availability through AI-as-a-Service models, making high-performance computing more accessible to businesses of all sizes.

How Are Industries Diversifying the Use of TPUs Beyond Traditional AI Workloads?

The applicability of TPUs is rapidly expanding beyond traditional machine learning tasks as industries look to embed AI deeper into operational systems. In healthcare, TPUs are being used to accelerate diagnostics by powering deep learning models that analyze medical imaging, genomics data, and clinical records in real time. In finance, institutions leverage TPUs for fraud detection, algorithmic trading, and customer behavior prediction-all of which require rapid data processing at massive scales. The automotive industry, particularly in the development of autonomous vehicles, relies heavily on TPUs to handle complex sensor data from LiDAR, radar, and cameras, enabling real-time object detection and navigation. Meanwhile, in the media and entertainment sector, TPUs are revolutionizing content generation, recommendation engines, and automated video analysis. Government and defense applications are also emerging, where TPUs are deployed for satellite imagery analysis, cybersecurity, and surveillance systems. Even in education and research, universities and laboratories are utilizing TPUs to accelerate scientific simulations and academic studies involving large datasets. This cross-sector adoption is largely due to TPUs’ ability to process enormous volumes of data at ultra-high speeds while maintaining energy efficiency-key for organizations seeking both performance and sustainability. The diversification of end-use scenarios is significantly widening the addressable market for TPUs, making them integral to next-generation digital infrastructure.

Could Technological Advancements Make TPUs Ubiquitous in Edge and Cloud Computing?

The TPU market is being further propelled by rapid advancements in chip architecture, fabrication techniques, and integration models. Newer generations of TPUs, such as Google’s TPU v4, are delivering exponential improvements in processing power, memory bandwidth, and energy efficiency. These innovations are enabling highly complex AI models like large language models (LLMs), computer vision systems, and real-time speech recognition to run at unprecedented speed and accuracy. The convergence of TPUs with quantum computing research and neuromorphic engineering is also being explored to unlock new frontiers in artificial general intelligence (AGI). Meanwhile, the evolution of software stacks and development frameworks-including TensorFlow, JAX, and PyTorch-are increasingly optimized for TPU compatibility, reducing the barrier to entry for developers and startups. On the hardware side, miniaturization and thermal optimization techniques are allowing TPUs to be embedded in edge devices such as drones, smart cameras, and IoT hubs. This is especially critical in scenarios requiring low-latency inference and offline decision-making. Furthermore, cloud service providers are scaling up TPU-based instances within their infrastructures, enabling enterprise-grade AI processing with high scalability and cost efficiency. Hybrid cloud and edge AI models are also gaining traction, with TPUs facilitating real-time analytics and distributed learning across networks. These advances are positioning TPUs as a critical enabler of AI at scale-not only in centralized data centers, but also across distributed environments that demand real-time intelligence.

What Are the Key Factors Powering the Global Expansion of the TPU Market?

The growth in the tensor processing unit market is driven by several factors rooted in technology evolution, shifting enterprise needs, and end-user demand for high-performance AI solutions. Chief among these drivers is the exponential growth of AI and ML workloads across industries, necessitating hardware accelerators capable of handling high-throughput tensor computations. The proliferation of large-scale language models, image recognition systems, and real-time recommendation engines is placing unprecedented computational demands on traditional processors, making TPUs a preferred alternative. Cloud service providers are accelerating investments in TPU infrastructure to differentiate their AI offerings and cater to enterprise clients requiring scalable, cost-effective ML processing. In parallel, the adoption of edge AI across smart manufacturing, automotive systems, and mobile robotics is generating new demand for compact, low-power TPU variants that deliver inference capabilities at the edge. Advancements in semiconductor manufacturing-particularly in 5nm and below nodes-are enhancing TPU efficiency and affordability, driving volume production and lowering barriers to entry. The rise of AI-native startups and research institutions is also fueling demand for on-demand TPU resources, particularly through cloud-based platforms. Strategic partnerships between chip manufacturers, AI platform developers, and hyperscale data centers are further accelerating TPU deployment globally. Additionally, policy support for AI innovation and digital infrastructure in regions such as North America, Europe, and Asia-Pacific is catalyzing investments in TPU-based systems. Together, these interrelated trends are creating a robust growth trajectory for the TPU market, with high-performance AI computing poised to become a foundational layer of modern digital ecosystems.

SCOPE OF STUDY:

The report analyzes the Tensor Processing Unit market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Deployment (Cloud-based, On-Premise); Application (Artificial Intelligence & Machine Learning, High-Performance Computing, Data Analytics, Autonomous Systems); End-Use (IT & Telecom, Healthcare, Automotive, Finance & Banking, Retail & E-Commerce, Others)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 42 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â