¼¼°èÀÇ ¹«¼öÇÁÅ»»ê ½ÃÀå
Phthalic Anhydride
»óǰÄÚµå : 1777429
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 379 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,150,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,452,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ¹«¼öÇÁÅ»»ê ½ÃÀåÀº 2030³â±îÁö 52¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 46¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¹«¼öÇÁÅ»»ê ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 2.4%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 52¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ O-Xylene Ã˸Š»êÈ­´Â CAGR 1.7%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 30¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ³ªÇÁŸ·» Ã˸Š»êÈ­ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR 3.4%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 12¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR4.5%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ¹«¼öÇÁÅ»»ê ½ÃÀåÀº 2024³â¿¡ 12¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 9¾ï 9,630¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 4.5%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 0.9%¿Í 1.8%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 1.3%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ ¹«¼öÇÁÅ»»ê ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

¹«¼öÇÁÅ»»ê(PA)Àº °¡¼ÒÁ¦, ºÒÆ÷È­ Æú¸®¿¡½ºÅ׸£ ¼öÁö(UPR), ¾ËŰµå ¼öÁö, ¿°·á »ý»ê¿¡ ³Î¸® »ç¿ëµÇ´Â ÁÖ¿ä »ê¾÷ È­ÇÐ ¹°ÁúÀÔ´Ï´Ù. Æú¸®¿°È­ºñ´Ò(PVC) ¿ëµµ¿¡ ÇʼöÀûÀÎ ¿ø·á·Î¼­ ¹«¼öÇÁÅ»»êÀº °ÇÃà, ÀÚµ¿Â÷, Æ÷Àå, ¼ÒºñÀç µîÀÇ »ê¾÷¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. °¡º±°í ³»±¸¼ºÀÌ ¶Ù¾î³ª¸ç ºñ¿ë È¿À²ÀûÀÎ ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¹«¼ö ÇÁÅ»·¹ÀÌÆ® ½ÃÀåÀº ƯÈ÷ ÀÎÇÁ¶ó ±¸Ãà°ú »ê¾÷ °³¹ßÀÌ °¡¼ÓÈ­µÇ°í ÀÖ´Â ½ÅÈï °æÁ¦±¹¿¡¼­ ²ÙÁØÈ÷ ¼ºÀåÇϰí ÀÖ½À´Ï´Ù.

°¡Àå Áß¿äÇÑ ½ÃÀå µ¿Çâ Áß Çϳª´Â °¡¼ÒÁ¦, ƯÈ÷ µð¿ÁÆ¿ ÇÁÅ»·¹ÀÌÆ®(DOP) ¹× ±âŸ ÇÁÅ»·¹ÀÌÆ® °¡¼ÒÁ¦¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀÌ´Â PVC Á¦Ç°ÀÇ À¯¿¬¼º°ú ³»±¸¼ºÀ» ³ôÀ̱â À§ÇØ ³Î¸® »ç¿ëµË´Ï´Ù. ÀÌ °¡¼ÒÁ¦´Â Àü¼± ¹× ÄÉÀ̺í Àý¿¬, ¹Ù´ÚÀç, ÇÕ¼ºÇÇÇõ, ÀÚµ¿Â÷ ³»ÀåÀç µîÀÇ ¿ëµµ¿¡ ÇʼöÀûÀÎ °¡¼ÒÁ¦ÀÔ´Ï´Ù. ±×·¯³ª ÇÁÅ»·¹ÀÌÆ®ÀÇ µ¶¼º¿¡ ´ëÇÑ È¯°æ ¹®Á¦ ¹× ±ÔÁ¦ ¹®Á¦·Î ÀÎÇØ ÇÁÅ»·¹ÀÌÆ®°¡ ÇÔÀ¯µÇÁö ¾ÊÀº ´ëüǰ¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖÀ¸¸ç, °¢ Á¦Á¶¾÷üµéÀº ¹ÙÀÌ¿À °¡¼ÒÁ¦ ¹× ºñ ÇÁÅ»·¹ÀÌÆ® °¡¼ÒÁ¦ ¹èÇÕÀ» ¸ð»öÇϰí ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ ÁÖ¿ä ÃËÁø¿äÀÎÀº À¯¸® ¼¶À¯ °­È­ ÇÃ¶ó½ºÆ½, ÀÚµ¿Â÷ ºÎǰ, ³»½Ä¼º ÄÚÆÃÀÇ ¹«¼öÇÁÅ»»ê(PA)¿¡ ÀÇÁ¸ÇÏ´Â ºÒÆ÷È­ Æú¸® ¿¡½ºÅ׸£ ¼öÁö(UPR) ½ÃÀåÀÇ È®´ëÀÔ´Ï´Ù. ¿î¼Û ¹× Ç×°ø¿ìÁÖ »ê¾÷¿¡¼­ °æ·® º¹ÇÕÀç·áÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó °í¼º´É ¼öÁö¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, ¹«¼öÇÁÅ»»ê(PA)Àº ÷´Ü Àç·á ¹èÇÕÀÇ Áß¿äÇÑ ¼ººÐÀ¸·Î ÀÚ¸® ¸Å±èÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÆäÀÎÆ®, ÄÚÆÃÁ¦, Á¢ÂøÁ¦¿¡ »ç¿ëµÇ´Â ¾ËŰµå ¼öÁö´Â ÀÎÇÁ¶ó °³¹ß°ú ¼¼°è ÀÚµ¿Â÷ »ý»ê·® Áõ°¡¿¡ ÈûÀÔ¾î ½ÃÀå °³Ã´ÀÇ ÇÑ ÃàÀ» ´ã´çÇϰí ÀÖ½À´Ï´Ù.

ÃÖÁ¾ ¿ëµµ´Â ¹«¼öÇÁÅ»»ê(PA)¿¡ ´ëÇÑ ¼ö¿ä¸¦ ¾î¶»°Ô Çü¼ºÇϰí Àִ°¡?

¹«¼öÇÁÅ»»ê(PA)Àº ÁÖ·Î PVC ±â¹Ý ¼ÒÀç, ÆÄÀÌÇÁ, ÄÚÆÃ¿¡ »ç¿ëµÇ¸ç, °Ç¼³ ¹× ÀÎÇÁ¶ó ºÎ¹®ÀÌ ¾ÐµµÀûÀÎ ¼ÒºñóÀÔ´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾ç, ¶óƾ¾Æ¸Þ¸®Ä«, Áßµ¿ÀÇ µµ½ÃÈ­¿Í »ê¾÷È­°¡ È®´ëµÊ¿¡ µû¶ó ¹«¼öÇÁÅ»»ê(PA) À¯·¡ Àç·á¿¡ ´ëÇÑ ¼ö¿ä´Â ÁÖÅà ¹× »ó¾÷¿ë °Ç¹° °Ç¼³, Àü±â ¹è¼±, º¸È£ ÄÚÆÃ ºÐ¾ß¿¡¼­ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±³·®, °í¼Óµµ·Î, ÇØ¾ç ±¸Á¶¹°ÀÇ ¹æ¼ö ¹× ºÎ½Ä ¹æÁö ÄÚÆÃµµ ¼Òºñ È®´ë¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

ÀÚµ¿Â÷ »ê¾÷¿¡¼­´Â ¹«¼ö ÇÁÅ»·¹ÀÌÆ®°è °¡¼ÒÁ¦¿Í Æú¸®¿¡½ºÅ׸£ ¼öÁö°¡ ÀÚµ¿Â÷ °æ·®È­ ºÎǰ, Àú¿¬ºñ ¼³°è, °í¼º´É ÄÚÆÃ¿¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ¼¼°è °¢±¹ Á¤ºÎ°¡ ¾ö°ÝÇÑ ¿¬ºñ ¹× ¹è±â°¡½º ±ÔÁ¦¸¦ ½ÃÇàÇÏ´Â °¡¿îµ¥, Á¦Á¶¾÷üµéÀº ±¸Á¶Àû ¹«°á¼ºÀ» À¯ÁöÇϸ鼭 Â÷·® Áß·®À» ÁÙÀ̱â À§ÇØ À¯¸®¼¶À¯°­È­ÇÃ¶ó½ºÆ½(FRP)À̳ª ³»±¸¼ºÀÌ ¶Ù¾î³­ Æú¸®¿¡½ºÅ׸£ º¹ÇÕÀç·á¸¦ äÅÃÇÏ´Â °æ¿ì°¡ ´Ã°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀÎÀ¸·Î ÀÎÇØ ÀÚµ¿Â÷ ³»ÀåÀç, ¿ÍÀ̾î Çϳ׽º Àý¿¬, ¿£Áø ºÎǰÀÇ UPR ¹× ¿¬Áú PVC ÀÀ¿ë ºÐ¾ß¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

¶ÇÇÑ, ¹«¼öÇÁÅ»»êÀº ¿°·á ¹× ¾È·á »ê¾÷¿¡¼­ ³Î¸® »ç¿ëµÇ°í ÀÖÀ¸¸ç, ÇÁÅ»·Î½Ã¾Æ´Ñ ºí·ç ¹× ±âŸ °í¼º´É Âø»öÁ¦ »ý»êÀÇ ÁÖ¿ä ¿ø·á·Î »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌµé ¾È·á´Â ÆäÀÎÆ®, Àμâ À×Å©, ¼¶À¯, ÇÃ¶ó½ºÆ½¿¡ ±¤¹üÀ§ÇÏ°Ô »ç¿ëµÇ°í ÀÖÀ¸¸ç, Æ÷Àå »ê¾÷ÀÇ È®´ë, µðÁöÅÐ Àμ⠱â¼ú, ¹ÌÀû °¨°¢À» Áß½ÃÇÏ´Â ¼ÒºñÀÚÀÇ ÃëÇâÀÌ ¼ö¿ä¸¦ ÁÖµµÇϰí ÀÖ½À´Ï´Ù. Àü ¼¼°è ¼¶À¯ »ý»ê ¹× ÀüÀÚ»ó°Å·¡ Æ÷Àå ¼Ö·ç¼ÇÀÌ °è¼Ó ¼ºÀåÇÔ¿¡ µû¶ó ¼±¸íÇÏ°í ¿À·¡ Áö¼ÓµÇ´Â ¾È·á¿¡ ´ëÇÑ ¼ö¿ä°¡ ¹«¼öÇÁÅ»»ê(PA) ±â¹Ý ¿°·á¿¡ ´ëÇÑ ¾ÈÁ¤ÀûÀÎ ¼ö¿ä¸¦ µÞ¹ÞħÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¹«¼ö ÇÁÅ»·¹ÀÌÆ® »ý»êÀÇ °úÁ¦¿Í Çõ½ÅÀ̶õ?

¹«¼öÇÁÅ»»ê ½ÃÀåÀº °ßÁ¶ÇÑ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖÁö¸¸, ÇÁÅ»»ê°è °¡¼ÒÁ¦¿¡ ´ëÇÑ ±ÔÁ¦, À¯Çع°Áú ¹èÃâ¿¡ ´ëÇÑ È¯°æ ¹®Á¦, ºÒ¾ÈÁ¤ÇÑ ¿ø·á °¡°Ý µîÀÌ Á¦Á¶¾÷ü°¡ Á÷¸éÇÑ ÁÖ¿ä °úÁ¦ÀÔ´Ï´Ù. ¹Ì±¹ ȯ°æº¸È£Ã»(EPA), À¯·´È­Çй°Áúû(ECHA) µî Á¤ºÎ ¹× ±ÔÁ¦±â°üÀº ƯÁ¤ ÇÁÅ»·¹ÀÌÆ®¿¡ ´ëÇÑ ±ÔÁ¦¸¦ ½ÃÇàÇÏ¿© Àúµ¶¼º, Áö¼Ó °¡´ÉÇÑ ´ëüǰ °³¹ß·Î À̾îÁ³½À´Ï´Ù.

ÀÌ ºÐ¾ß¿¡¼­ °¡Àå ÁÖ¸ñÇÒ ¸¸ÇÑ Çõ½Å Áß Çϳª´Â ¹ÙÀÌ¿ÀÀÇ Ä£È¯°æ °¡¼ÒÁ¦·ÎÀÇ ÀüȯÀÔ´Ï´Ù. ¿¬±¸°³¹ßÀº ±¸¿¬»ê¿°, ¾ÆµðÆäÀÌÆ®, ¿¡Æø½ÃÈ­ ½Ä¹°¼º ¿ÀÀÏ µî Àç»ý °¡´ÉÇÑ ¿ø·á¸¦ Àû±ØÀûÀ¸·Î °³¹ßÇÏ¿© ¼º´ÉÀ» À¯ÁöÇϸ鼭 ȯ°æ ±âÁØÀ» ÃæÁ·ÇÏ´Â ºñÇÁÅ»·¹ÀÌÆ®°è °¡¼ÒÁ¦¸¦ »ý»êÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Ã˸Š»êÈ­ ±â¼úÀÇ ¹ßÀüÀº »ý»êÀÇ ¿¡³ÊÁö È¿À²°ú ȯ°æ ¹ßÀÚ±¹À» °³¼±Çϰí, ¹èÃâ·®À» ÁÙÀ̰í, Á¦Ç°º° Æó±â¹°À» ÃÖ¼ÒÈ­ÇÏ´Â µ¥ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

¹ÝÀÀ±â ¼³°è¿Í ¿ø·á ÀÌ¿ëÀÇ ±â¼ú °³¼±µµ »ý»ê È¿À²À» ³ôÀ̰í ÀÖ½À´Ï´Ù. ´ëºÎºÐÀÇ ¹«¼öÇÁÅ»»êÀº o-ÀÚÀÏ·» ¶Ç´Â ³ªÇÁÅ»·»ÀÇ »êÈ­¿¡ ÀÇÇØ Á¦Á¶µÇÁö¸¸, ÃֽŠÇ÷£Æ®¿¡¼­´Â ¼öÀ²À» ³ôÀÌ°í ¿¡³ÊÁö ¼Òºñ¸¦ ÁÙÀ̱â À§ÇØ ¼±ÅÃÀû Ã˸аøÁ¤À» äÅÃÇÏ´Â °æ¿ì°¡ ´Ã°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Áö¼ÓÀûÀÎ °øÁ¤ ¸ð´ÏÅ͸µ°ú AI ±â¹Ý ÃÖÀûÈ­ ±â¼úÀ» ÅëÇØ Á¦Á¶¾÷ü´Â ¿î¿µÀ» °£¼ÒÈ­Çϰí, ÀÚÀç ¼Õ½ÇÀ» ÃÖ¼ÒÈ­Çϸç, Àü¹ÝÀûÀÎ ºñ¿ë È¿À²¼ºÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ »õ·Î¿î Æ®·»µå´Â Æú¸®¸Ó ÄÚÆÃ »ê¾÷ÀÇ ¼øÈ¯ °æÁ¦ Á¢±Ù ¹æ½ÄÀ¸·Î, Á¦Á¶¾÷üµéÀÌ ÇÃ¶ó½ºÆ½ Æó±â¹°ÀÇ ÀçȰ¿ë°ú Àç»ç¿ë¿¡ ÃÊÁ¡À» ¸ÂÃß¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È­´Â ƯÈ÷ ÀçȰ¿ë °¡´ÉÇÑ Æú¸®¿¡½ºÅ׸£ ¼öÁö, »ýºÐÇØ¼º ÆäÀÎÆ®, ÀúVOC ÆäÀÎÆ® °³¹ß¿¡¼­ Áö¼Ó °¡´ÉÇÑ ¹«¼öÇÁÅ»»ê(PA) Àû¿ëÀÇ ±âȸ¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. Áö¼Ó°¡´É¼ºÀÌ »ê¾÷ Àü¹ÝÀ¸·Î È®»êµÊ¿¡ µû¶ó ģȯ°æ È­ÇÐ ¹× ģȯ°æ ¹èÇÕ¿¡ ´ëÇÑ ÅõÀÚ´Â ¹«¼öÇÁÅ»»ê(PA) ±â¹Ý Á¦Ç°ÀÇ ¹Ì·¡¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¹«¼ö ÇÁÅ»·¹ÀÌÆ® ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ÁÖ¿ä ¿äÀÎÀº?

¹«¼ö ÇÁÅ»·¹ÀÌÆ® ½ÃÀåÀÇ ¼ºÀåÀº °¡¼ÒÁ¦ ¼ö¿ä Áõ°¡, °Ç¼³ Ȱµ¿ Áõ°¡, ÀÚµ¿Â÷ »ý»ê Áõ°¡, °íºÐÀÚ ±â¼ú ¹ßÀü µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ƯÈ÷ Áß±¹, Àεµ, ºê¶óÁú µî ½ÅÈï °æÁ¦±¹¿¡¼­´Â ÀÎÇÁ¶ó ÇÁ·ÎÁ§Æ®¿Í »ê¾÷ °³¹ßÀÌ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ ¿øµ¿·ÂÀº º¹ÇÕÀç, ÇØ¾ç ÆäÀÎÆ®, ³»½Ä¼º ±¸Á¶¹°¿ë ºÒÆ÷È­ Æú¸®¿¡½ºÅ׸£ ¼öÁö(UPR)¿¡ ¹«¼öÇÁÅ»»ê(PA) »ç¿ëÀÌ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. »ê¾÷°è°¡ ±âÁ¸ ¼ÒÀ縦 ´ëüÇÒ ¼ö ÀÖ´Â °¡º±°í °í°­µµÀÇ ´ëü ¼ÒÀ縦 Áö¼ÓÀûÀ¸·Î ¿ä±¸ÇÔ¿¡ µû¶ó dz·Â¿¡³ÊÁö, Ç×°ø¿ìÁÖ, °Ç¼³ ºÐ¾ß¿¡¼­ Æú¸®¿¡½ºÅ׸£ ¼öÁöÀÇ Ã¤ÅÃÀÌ ½ÃÀå ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±Þ¼ÓÇÑ µµ½ÃÈ­¿Í ½º¸¶Æ® ½ÃƼ¿¡ ´ëÇÑ ³ë·ÂÀº °ÇÃà¿ë µµ·á, ¹æ¼ö ½Ã½ºÅÛ, º¸È£ µµ·á¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇϰí ÀÖÀ¸¸ç, ÀÌ ¸ðµç °ÍµéÀº ¹«¼öÇÁÅ»»ê(PA) ±â¹Ý ¹èÇÕÀ» ÇÊ¿ä·Î Çϰí ÀÖ½À´Ï´Ù.

ÀÚµ¿Â÷ ºÎ¹®ÀÇ ¿¬ºñ È¿À²¼º°ú Áö¼Ó°¡´É¼ºÀ¸·ÎÀÇ Àüȯµµ ½ÃÀå È®´ë¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¿¡¼­ °í¼º´É °æ·® ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¹«¼ö ÇÁÅ»·¹ÀÌÆ® À¯µµÃ¼°¡ ÇÔÀ¯µÈ Æú¸®¿¡½ºÅ׸£ º¹ÇÕÀç·á¿Í ¿¬Áú PVC ºÎǰÀÇ »ç¿ëÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Àü±âÀÚµ¿Â÷(EV)¿Í ÷´Ü ¹èÅ͸® ±â¼úÀÇ ¹ßÀüÀº ³»¿­ ÄÚÆÃ ¹× Àý¿¬ ÄÚÆÃÀÇ ¿¬±¸¸¦ ÃËÁøÇÏ¿© ½ÃÀå ¼ºÀå¿¡ ´õ¿í ±â¿©Çϰí ÀÖ½À´Ï´Ù.

¶ÇÇÑ, ¹ÙÀÌ¿À °¡¼ÒÁ¦ ¹× VOC ÇÁ¸® ÄÚÆÃÀÇ ±â¼ú ¹ßÀüÀº »õ·Î¿î ½ÃÀå ±âȸ¸¦ âÃâÇÏ´Â µ¿½Ã¿¡ ±ÔÁ¦ ¹®Á¦¸¦ ÇØ°áÇϰí ÀÖ½À´Ï´Ù. ÆäÀÎÆ®, Á¢ÂøÁ¦, ¼öÁö¿¡ ´ëÇÑ Áö¼Ó °¡´ÉÇÑ ´ë¾ÈÀ» ã´Â ¿òÁ÷ÀÓÀº Àúµ¶¼º, °í¼º´ÉÀÇ ¹«¼ö ÇÁÅ»·¹ÀÌÆ® À¯µµÃ¼ °³¹ß·Î À̾îÁ® ȯ°æ ±ÔÁ¦¿¡µµ ºÒ±¸ÇÏ°í ½ÃÀåÀÇ Áö¼ÓÀûÀÎ °ü·Ã¼ºÀ» º¸ÀåÇϰí ÀÖ½À´Ï´Ù.

¿¬±¸°³¹ß¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ³ë·Â, °í¼ºÀå »ê¾÷ÀÇ È®´ë, ģȯ°æ Á¦Á¶ ¹æ¹ýÀÇ Ã¤Åà Áõ°¡·Î ÀÎÇØ ¹«¼ö ÇÁÅ»·¹ÀÌÆ® ½ÃÀåÀº ÇâÈÄ ¸î ³â µ¿¾È ²ÙÁØÇÑ ¼ºÀå°ú Çõ½ÅÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áö¼Ó°¡´É¼º Áß½ÉÀÇ ³ë·Â, ÁøÈ­ÇÏ´Â »ê¾÷ ¿ä±¸ »çÇ×, ÷´Ü Àç·á ±â¼úÀÇ Á¶ÇÕÀº ÇÃ¶ó½ºÆ½, ÄÚÆÃ, Ư¼ö È­ÇÐ ¹°Áú¿¡ °ÉÃÄ ¹«¼öÇÁÅ»»ê(PA) ±â¹Ý ¿ëµµÀÇ ¹Ì·¡¸¦ °è¼Ó Çü¼ºÇÒ °ÍÀÔ´Ï´Ù.

ºÎ¹®

À¯Çü(O-Xylene Á¢ÃË »êÈ­, ³ªÇÁŸ·» Á¢ÃË »êÈ­), ¿ëµµ(ÇÁÅ»·¹ÀÌÆ®°è °¡¼ÒÁ¦, ºÒÆ÷È­ Æú¸®¿¡½ºÅ׸£ ¼öÁö, ¾ËŰµå ¼öÁö, ±âŸ ¿ëµµ), ÃÖÁ¾ ¿ëµµ(ÀÚµ¿Â÷, Àü±â ¹× ÀüÀÚ, ÆäÀÎÆ® ¹× ÄÚÆÃ, ±âŸ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

´ç»ç´Â À¯È¿ÇÑ Àü¹®°¡¿ë ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Phthalic Anhydride Market to Reach US$5.2 Billion by 2030

The global market for Phthalic Anhydride estimated at US$4.6 Billion in the year 2024, is expected to reach US$5.2 Billion by 2030, growing at a CAGR of 2.4% over the analysis period 2024-2030. O-Xylene Catalytic Oxidation, one of the segments analyzed in the report, is expected to record a 1.7% CAGR and reach US$3.0 Billion by the end of the analysis period. Growth in the Naphthalene Catalytic Oxidation segment is estimated at 3.4% CAGR over the analysis period.

The U.S. Market is Estimated at US$1.2 Billion While China is Forecast to Grow at 4.5% CAGR

The Phthalic Anhydride market in the U.S. is estimated at US$1.2 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$996.3 Million by the year 2030 trailing a CAGR of 4.5% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 0.9% and 1.8% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 1.3% CAGR.

Global Phthalic Anhydride Market - Key Trends & Drivers Summarized

Phthalic anhydride (PA) is a key industrial chemical widely used in the production of plasticizers, unsaturated polyester resins (UPRs), alkyd resins, and dyes. As an essential raw material for polyvinyl chloride (PVC) applications, phthalic anhydride plays a crucial role in industries such as construction, automotive, packaging, and consumer goods. With growing demand for lightweight, durable, and cost-effective materials, the market for phthalic anhydride is witnessing steady expansion, particularly in emerging economies where infrastructure and industrial development are accelerating.

One of the most significant market trends is the increasing demand for plasticizers, particularly dioctyl phthalate (DOP) and other phthalate-based plasticizers, which are extensively used to enhance the flexibility and durability of PVC products. These plasticizers are vital in applications such as wire and cable insulation, flooring, synthetic leather, and automotive interiors. However, environmental and regulatory concerns regarding phthalate toxicity have led to a growing interest in phthalate-free alternatives, prompting manufacturers to explore bio-based plasticizers and non-phthalate formulations.

Another major driver is the expansion of the unsaturated polyester resins (UPR) market, which relies on phthalic anhydride for fiberglass-reinforced plastics, automotive components, and corrosion-resistant coatings. The increasing adoption of lightweight composites in transportation and aerospace industries is fueling demand for high-performance resins, positioning phthalic anhydride as a critical ingredient in advanced material formulations. Additionally, alkyd resins, which are used in paints, coatings, and adhesives, represent a growing market segment, driven by infrastructure development and rising automotive production worldwide.

How Are End-Use Applications Shaping the Demand for Phthalic Anhydride?

The construction and infrastructure sector is a dominant consumer of phthalic anhydride, primarily through its application in PVC-based materials, pipes, and coatings. With urbanization and industrialization expanding across Asia-Pacific, Latin America, and the Middle East, demand for phthalic anhydride-derived materials is growing in residential and commercial construction, electrical wiring, and protective coatings. Moreover, waterproofing and anti-corrosion coatings in bridges, highways, and marine structures further contribute to increasing consumption.

In the automotive industry, phthalic anhydride-based plasticizers and polyester resins are being utilized in lightweight vehicle parts, fuel-efficient designs, and high-performance coatings. As governments worldwide impose strict fuel efficiency and emission regulations, manufacturers are increasingly incorporating fiberglass-reinforced plastics (FRP) and durable polyester composites to reduce vehicle weight while maintaining structural integrity. These factors are boosting the demand for UPRs and flexible PVC applications in automotive interiors, wire harness insulation, and engine components.

Additionally, phthalic anhydride is widely used in the dyes and pigments industry, where it serves as a key raw material in the production of phthalocyanine blue and other high-performance colorants. These pigments are extensively used in paints, printing inks, textiles, and plastics, with demand being driven by the expansion of the packaging industry, digital printing technology, and aesthetic-driven consumer preferences. As global textile production and e-commerce packaging solutions continue to grow, the need for vibrant, long-lasting pigments is expected to support the steady demand for phthalic anhydride-based dyes.

What Are the Challenges and Innovations in Phthalic Anhydride Production?

While the market for phthalic anhydride remains robust, regulatory restrictions on phthalate-based plasticizers, environmental concerns regarding hazardous emissions, and volatile raw material prices are key challenges facing manufacturers. Governments and regulatory agencies such as the Environmental Protection Agency (EPA) and the European Chemicals Agency (ECHA) have imposed restrictions on specific phthalates, leading to the development of low-toxicity and sustainable alternatives.

One of the most notable innovations in this sector is the shift toward bio-based and eco-friendly plasticizers. Researchers are actively developing renewable feedstocks such as citrates, adipates, and epoxidized vegetable oils to create non-phthalate plasticizers that meet environmental standards while maintaining performance characteristics. Additionally, advancements in catalytic oxidation technologies are improving the energy efficiency and environmental footprint of phthalic anhydride production, reducing emissions and minimizing byproduct waste.

Technological improvements in reactor design and raw material utilization are also enhancing production efficiency. Most phthalic anhydride is produced via the oxidation of o-xylene or naphthalene, with modern plants increasingly adopting selective catalytic processes to improve yields and reduce energy consumption. Furthermore, continuous process monitoring and AI-driven optimization techniques are enabling manufacturers to streamline operations, minimize material loss, and enhance overall cost efficiency.

Another emerging trend is the circular economy approach in the polymer and coatings industry, where manufacturers are focusing on recycling and repurposing plastic waste. This shift is creating opportunities for sustainable phthalic anhydride applications, particularly in the development of recyclable polyester resins, biodegradable coatings, and low-VOC paints. As sustainability gains traction across industries, investments in green chemistry and eco-friendly formulations are expected to play a crucial role in the future of phthalic anhydride-based products.

What Are the Key Factors Driving the Growth of the Phthalic Anhydride Market?

The growth in the phthalic anhydride market is driven by several factors, including expanding demand for plasticizers, rising construction activities, increasing automotive production, and advancements in polymer technology. The growing PVC industry, which heavily relies on phthalate-based plasticizers, remains a major driver, particularly in developing economies such as China, India, and Brazil, where infrastructure projects and industrial development are surging.

Another significant driver is the increasing use of phthalic anhydride in unsaturated polyester resins (UPRs) for composite materials, marine coatings, and corrosion-resistant structures. As industries continue to seek lightweight, high-strength alternatives to traditional materials, the adoption of polyester resins in wind energy, aerospace, and construction is boosting market demand. Additionally, rapid urbanization and smart city initiatives are fueling investments in architectural coatings, waterproofing systems, and protective paints, all of which require phthalic anhydride-based formulations.

The automotive sector’s shift toward fuel efficiency and sustainability is also playing a crucial role in market expansion. The demand for high-performance, lightweight materials in vehicle manufacturing is increasing the use of polyester composites and flexible PVC components, both of which rely on phthalic anhydride derivatives. Moreover, the development of electric vehicles (EVs) and advanced battery technologies is driving research into heat-resistant and insulating coatings, further contributing to market growth.

Furthermore, technological advancements in bio-based plasticizers and VOC-free coatings are addressing regulatory concerns while creating new market opportunities. The push for sustainable alternatives in paints, adhesives, and resins is leading to the development of low-toxicity, high-performance phthalic anhydride derivatives, ensuring continued market relevance despite environmental restrictions.

With ongoing R&D efforts, the expansion of high-growth industries, and increasing adoption of eco-friendly manufacturing practices, the phthalic anhydride market is expected to witness steady growth and innovation in the coming years. The combination of sustainability-driven initiatives, evolving industrial requirements, and advanced material technologies will continue to shape the future of phthalic anhydride-based applications across plastics, coatings, and specialty chemicals.

SCOPE OF STUDY:

The report analyzes the Phthalic Anhydride market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (O-Xylene Catalytic Oxidation, Naphthalene Catalytic Oxidation); Application (Phthalate Plasticizers, Unsaturated Polyester Resins, Alkyd Resins, Other Applications); End-Use (Automotive, Electrical & Electronics, Paints & Coatings, Others)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 43 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â