¼¼°èÀÇ Æ÷ÅäÆú¸®¸Ó ½ÃÀå
Photopolymers
»óǰÄÚµå : 1777428
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 294 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,180,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,541,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ Æ÷ÅäÆú¸®¸Ó ½ÃÀåÀº 2030³â±îÁö 57¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 31¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â Æ÷ÅäÆú¸®¸Ó ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 10.8%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 57¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ½ºÅ×·¹¿À ¸®¼Ò±×·¡ÇÇ´Â CAGR 11.7%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 38¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. µðÁöÅÐ ±¤Ã³¸® ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 9.5%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 8¾ï 4,070¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR14.8%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Æ÷ÅäÆú¸®¸Ó ½ÃÀåÀº 2024³â¿¡´Â 8¾ï 4,070¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 12¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 14.8%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 7.7%¿Í 9.6%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 8.6%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ Æ÷ÅäÆú¸®¸Ó ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Æ÷ÅäÆú¸®¸Ó´Â 3D ÇÁ¸°ÆÃ°ú ¸¶ÀÌÅ©·Î ÀÏ·ºÆ®·Î´Ð½º¿¡¼­ ¹ÙÀÌ¿À ¸ÞµðÄà ¿ëµµ°ú Ç÷º¼­ºí ÀÏ·ºÆ®·Î´Ð½º¿¡ À̸£±â±îÁö ¿©·¯ »ê¾÷À» ºü¸£°Ô º¯È­½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °¨±¤¼º ¼ÒÀç´Â ƯÁ¤ ÆÄÀåÀÇ ºûÀ» Á¶»çÇϸé ÁßÇÕ ¹ÝÀÀÀ» ÀÏÀ¸ÄÑ °íÁ¤¹Ð °æÈ­, ÆÐÅÏ Çü¼º, Á¦Á¶ °øÁ¤À» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. Æ÷ÅäÆú¸®¸Ó¸¦ ±â¹ÝÀ¸·Î ÇÑ ±â¼úÀº ÀûÃþ ¼ºÇü, Ä¡°ú ¼öº¹¹°, Àμâ ȸ·Î ±âÆÇ(PCB), Ȧ·Î±×·¡ÇÇ µî¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖÀ¸¸ç, ±â°èÀû Ư¼º, ÇØ»óµµ, ³»±¸¼ºÀ» Çâ»ó½ÃŲ °í±Þ ¹èÇÕ¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÁÖµµÇϰí ÀÖ½À´Ï´Ù.

Æ÷ÅäÆú¸®¸Ó ½ÃÀåÀÇ ÁÖ¿ä µ¿ÇâÀº 3D ÇÁ¸°ÆÃ°ú ·¡Çǵå ÇÁ·ÎÅäŸÀÌÇÎÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. µðÁöÅÐ ±¤Ã³¸®(DLP), ½ºÅ×·¹¿À ¸®¼Ò±×·¡ÇÇ(SLA), À̱¤ÀÚ ÁßÇÕ(TPP) ±â¼úÀÇ ¹ßÀü°ú ÇÔ²², Æ÷ÅäÆú¸®¸Ó´Â Ç×°ø¿ìÁÖ, ÀÚµ¿Â÷, ÇコÄÉ¾î ºÐ¾ßÀÇ °íÇØ»óµµ ¹× º¹ÀâÇÑ Çü»óÀ» Á¦Á¶ÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù. »ýüÀûÇÕ¼º °í¼º´É ¼öÁöÀÇ °³¹ß·Î Æ÷ÅäÆú¸®¸Ó´Â ¸ÂÃãÇü ÀÓÇöõÆ®, º¸Ã¶¹°, ÀÇ·á±â±â¿¡ ´ëÇÑ È°¿ëÀÌ ´õ¿í È®´ëµÇ°í ÀÖ½À´Ï´Ù.

Æ÷ÅäÆú¸®¸ÓÀÇ °íÇØ»óµµ ¹Ì¼¼ °¡°ø¿¡ ´ëÇÑ ÀÀ¿ëµµ Å« ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¹ÝµµÃ¼, ±¤ÀüÀÚ, Ç÷º¼­ºí µð½ºÇ÷¹ÀÌ, ³ª³ëÀÓÇÁ¸°Æ® ¸®¼Ò±×·¡ÇÇ(NIL), ÷´Ü ÆÐŰ¡, OLED ºÀÁö µî¿¡ UV °æÈ­Çü Æ÷ÅäÆú¸®¸Ó¸¦ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ¼ÒÇüÈ­ ¹× Ç÷º¼­ºí ÀÏ·ºÆ®·Î´Ð½º·ÎÀÇ ÀüȯÀº Â÷¼¼´ë ¿þ¾î·¯ºí ¼¾¼­, ÀüÀÚ ÇǺÎ, ±¤ÀüÀÚ È¸·Î¸¦ °¡´ÉÇÏ°Ô ÇÏ´Â Æ÷Åä·¹Áö½ºÆ®, ½ÅÃ༺ ÀÖ´Â Æ÷ÅäÆú¸®¸Ó, ÇÏÀ̺긮µå ³ª³ëº¹ÇÕÀç·áÀÇ Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

Æ÷ÅäÆú¸®¸Ó´Â 3D ÇÁ¸°ÆÃ, ÀüÀÚ, ÀÇ·á ¿ëµµ¸¦ ¾î¶»°Ô º¯È­½Ã۰í Àִ°¡?

3D ÇÁ¸°ÆÃ »ê¾÷Àº Æ÷ÅäÆú¸®¸ÓÀÇ °¡Àå Å« ¼ÒºñÀÚ Áß ÇϳªÀ̸ç, ºü¸¥ °æÈ­, °íÇØ»óµµ, ±â´É¼º ¼öÁöÀÇ ÇýÅÃÀ» ´©¸®°í ÀÖ½À´Ï´Ù. ±âÁ¸ ¿­°¡¼Ò¼º ¼öÁö´Â ¹Ì¼¼ÇÑ µðÅ×Àϰú µî¹æ¼º ±â°èÀû Ư¼ºÀ» ±¸ÇöÇÏ´Â µ¥ ¾î·Á¿òÀ» °Þ´Â ¹Ý¸é, Æ÷ÅäÆú¸®¸Ó ±â¹Ý ¼öÁö´Â ¶Ù¾î³­ Ç¥¸é ¸¶°¨, ³»±¸¼º ¹× Á¤¹Ðµµ¸¦ Á¦°øÇÕ´Ï´Ù. ³»¿­¼º, Ãæ°Ý °­µµ, »ý¹°ÇÐÀû Ȱ¼ºÀ» °®Ãá ÷´Ü ±¤ÁßÇÕü ¹èÇÕÀ¸·Î ÀÚµ¿Â÷ ºÎǰ, Ç×°ø¿ìÁÖ ºÎǰ, ¸ÂÃãÇü ÀÇ·á¿ë ÀÓÇöõÆ® µî »ê¾÷ µî±ÞÀÇ ÀμⰡ °¡´ÉÇÕ´Ï´Ù.

ÀüÀÚ ºÐ¾ß¿¡¼­´Â Àμâ ȸ·Î ±âÆÇ(PCB) Á¦Á¶, ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º ÀåÄ¡, µð½ºÇ÷¹ÀÌ ±â¼ú¿¡¼­ Æ÷ÅäÆú¸®¸Ó°¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. UV °æÈ­Çü Æ÷Åä·¹Áö½ºÆ®´Â ¹ÝµµÃ¼ Á¦Á¶ÀÇ ¿¡Äª ¹× ÆÐÅÍ´× °øÁ¤¿¡ ÇʼöÀûÀ̸ç, Á¤È®ÇÑ ÇÇó º¹Á¦ ¹× °íÇØ»óµµ ȸ·Î Æ®·¹À̽º¸¦ º¸ÀåÇÕ´Ï´Ù. ¶ÇÇÑ, À¯¿¬ÇÏ°í ½ÅÃ༺ÀÌ ÀÖ´Â Æ÷ÅäÆú¸®¸Ó´Â ¿þ¾î·¯ºí ÀÏ·ºÆ®·Î´Ð½º, ÄÁÆ÷¸Ö ¼¾¼­, ¾×Á¤ µð½ºÇ÷¹ÀÌ(LCD), À¯±â ±¤ÀüÁö Çʸ§ µî Â÷¼¼´ë µð½ºÇ÷¹ÀÌ ¼ÒÀ縦 °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù.

¹ÙÀÌ¿À¸ÞµðÄà ºÐ¾ß¿¡¼­´Â Á¶Á÷°øÇÐ, ¾à¹°Àü´Þ½Ã½ºÅÛ, Àç»ýÀÇ·á¿ë »ýüÀûÇÕ¼º ¹× ºÐÇØ¼º ±¤ÁßÇÕü°¡ Å« ÁøÀüÀ» ÀÌ·ç°í ÀÖ½À´Ï´Ù. ¿¬±¸°³¹ßÀº ¼¼Æ÷¿Ü±âÁú(ECM)À» ¸ð¹æÇÑ ±¤°¡±³¼º ÇÏÀ̵å·Î°ÖÀ» °³¹ßÇÏ¿© ¼¼Æ÷ Áõ½Ä Á¶Àý ¹× Á¶Á÷ Àç»ýÀ» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, »óó ºÀÇÕ, ³»Àå ¼öº¹, Ç¥Àû ¾à¹° ¹æÃâÀ» À§ÇÑ ÃÖ¼Òħ½ÀÀû ´ë¾ÈÀ¸·Î ±¤È°¼º Á¢ÂøÁ¦¿Í ¼ö¼ú¿ë Á¢ÂøÁ¦°¡ µîÀåÇϰí ÀÖ½À´Ï´Ù.

Æ÷ÅäÆú¸®¸ÓÀÇ ¹Ì·¡¸¦ ¸¸µé¾î°¥ ±â¼ú ¹ßÀüÀº?

±¤ÁßÇÕü »ê¾÷Àº Àç·á È­ÇÐ, ±¤ÁßÇÕ °³½ÃÁ¦ ¼³°è, ±¤°æÈ­ ¸ÞÄ¿´ÏÁòÀÇ Çõ½ÅÀ» ÅëÇØ ¿ì¼öÇÑ ¼º´É, Áö¼Ó°¡´É¼º, »õ·Î¿î ÀÀ¿ë ºÐ¾ß·Î À̾îÁö´Â º¯È­ÀÇ ½Ã±â¸¦ ¸ÂÀÌÇϰí ÀÖ½À´Ï´Ù.

°¡Àå Áß¿äÇÑ µ¹ÆÄ±¸ Áß Çϳª´Â ȯ°æ ģȭÀûÀÎ ¹«¿ëÁ¦ ±¤ÁßÇÕü Æ÷¹Ä·¯ÀÇ °³¹ßÀÔ´Ï´Ù. ±âÁ¸ÀÇ UV °æÈ­Çü ÄÚÆÃÁ¦³ª À×Å©´Â Èֹ߼º À¯±âÈ­ÇÕ¹°(VOC)À» ÇÔÀ¯ÇÏ´Â °æ¿ì°¡ ¸¹¾Æ ȯ°æ¿¡ ´ëÇÑ ¿ì·Á°¡ Ä¿Áö°í ÀÖ½À´Ï´Ù. ±×·¯³ª ¼ö¼º ±¤ÁßÇÕü, ¹ÙÀÌ¿À À¯·¡ ´Ü·®Ã¼, Àú¿¡³ÊÁö °æÈ­ ¼öÁöÀÇ µµÀÔÀ¸·Î ±¤ÁßÇÕü ±â¼úÀº º¸´Ù Áö¼Ó °¡´ÉÇÏ°í ±ÔÁ¦¿¡ ºÎÇÕÇÏ´Â ±â¼ú·Î ¹ßÀüÇϰí ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Å« ¹ßÀüÀº ´Ù±â´É ÇÏÀ̺긮µå Æ÷ÅäÆú¸®¸ÓÀÇ µîÀåÀÔ´Ï´Ù. ¿¬±¸ÁøÀº ¿­ÁßÇÕ°ú ±¤ÁßÇÕ ¸ÞÄ¿´ÏÁòÀ» °áÇÕÇÑ ÀÌÁß °æÈ­ ¼öÁö¸¦ ¼³°èÇÏ¿© ´õ ³ôÀº ±â°èÀû °­µµ¿Í ÈİøÁ¤ ¾ÈÁ¤¼ºÀ» ½ÇÇöÇß½À´Ï´Ù. ¶ÇÇÑ, ³ª³ëÇÊ·¯, ź¼Ò³ª³ëÆ©ºê, ±×·¡ÇÉÀ» ±¤ÁßÇÕü ¸ÅÆ®¸¯½º¿¡ ÅëÇÕÇÔÀ¸·Î½á Àüµµ¼º, ¿­ ¾ÈÁ¤¼º, ±â°èÀû °­È­°¡ °­È­µÇ¾î ±¤ÁßÇÕü ±â¹Ý Àüµµ¼º À×Å©, EMI Â÷Æó ÄÚÆÃ, Â÷¼¼´ë ¿¡³ÊÁö ÀúÀå ÀåÄ¡·Î °¡´Â ±æÀÌ ¿­¸®°í ÀÖ½À´Ï´Ù.

¶ÇÇÑ, ¿­À̳ª ºû°ú °°Àº ¿ÜºÎ Àڱؿ¡ ³ëÃâµÇ¾î ¹Ì¼¼ÇÑ ±Õ¿­À̳ª ±Õ¿­, º¯ÇüÀ» ÀÚÀ²ÀûÀ¸·Î º¹±¸ÇÏ´Â ´É·ÂÀ» °¡Áø Àڱ⺹¿ø ¹× Çü»ó±â¾ï ¼ÒÀç(±¤ÁßÇÕü)¿¡ ´ëÇÑ °ü½Éµµ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½º¸¶Æ® ¼ÒÀç´Â ÀÚµ¿Â÷ ÄÚÆÃ, Ç×°ø¿ìÁÖ ºÎǰ, »ýü¿¡¼­ ¿µ°¨À» ¾òÀº ·Îº¿ °øÇп¡ Àû¿ëµÉ ¼ö ÀÖ´Â ¹«ÇÑÇÑ ÀáÀç·ÂÀ» °¡Áö°í ÀÖÀ¸¸ç, ÀÚ°¡ Ä¡À¯ ¹× ȯ°æ Á¶°Ç¿¡ ÀûÀÀÇÒ ¼ö ÀÖ´Â ±¸Á¶¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

Æ÷ÅäÆú¸®¸Ó ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ÁÖ¿ä ¿äÀÎÀº?

Æ÷ÅäÆú¸®¸Ó ½ÃÀåÀÇ ¼ºÀåÀº ÀûÃþ °¡°ø ±â¼úÀÇ ¹ßÀü, °íÇØ»óµµ ÀüÀÚÁ¦Ç° ¼ö¿ä Áõ°¡, ÇコÄÉ¾î ºÐ¾ß¿¡¼­ÀÇ Àû¿ë È®´ë, Áö¼Ó °¡´ÉÇÑ Àç·áÀÇ ÃßÁø µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. Ç×°ø¿ìÁÖ, ÀÚµ¿Â÷, ¼ÒºñÀç ºÐ¾ß¿¡¼­ 3D ÇÁ¸°ÆÃÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, ¿ì¼öÇÑ Á¤¹Ðµµ, ±â°èÀû ¾ÈÁ¤¼º, ³»È­ÇмºÀ» °®Ãá °í¼º´É ±¤ÁßÇÕü ¼öÁö¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

ÀüÀÚ »ê¾÷ÀÇ ¼ÒÇüÈ­, À¯¿¬ÇÑ È¸·Î, °í¹Ðµµ »óÈ£¿¬°á(HDI)·ÎÀÇ Àüȯµµ Å« ÃËÁø¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. Æ÷ÅäÆú¸®¸Ó´Â ÷´Ü ÆÐŰ¡, ¸¶ÀÌÅ©·Î ±¤ÇÐ ¹× ±¤¼ÒÀÚ¿¡¼­ Á¡Á¡ ´õ ¸¹ÀÌ »ç¿ëµÇ°í ÀÖÀ¸¸ç, °íÇØ»óµµ ÆÐÅÍ´× ´É·ÂÀ¸·Î Â÷¼¼´ë ÀüÀÚ ¹× ±¤ÀüÀÚ ½Ã½ºÅÛÀ» ½ÇÇöÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¿þ¾î·¯ºí ±â¼ú ¹× »ç¹°ÀÎÅͳÝ(IoT) ±â±âÀÇ ºÎ»óÀ¸·Î ½º¸¶Æ® ¼¶À¯ ¹× ¹ÙÀÌ¿À ¼¾¼­¿Í ¿øÈ°ÇÏ°Ô ÅëÇյǴ ½ÅÃ༺, Åõ¸í¼º, »ýüÀûÇÕ¼ºÀ» °®Ãá Æ÷ÅäÆú¸®¸Ó¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

ÇコÄÉ¾î ºÐ¾ß¿¡¼­´Â °³ÀÎ ¸ÂÃãÇü ÀÇ·á, º¸Ã¶, Ä¡°ú ¼öº¹¹°À» À§ÇØ 3D ÇÁ¸°ÆÃ¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁö°í ÀÖÀ¸¸ç, »ýüÀûÇÕ¼º°ú ¸ê±Õ¼ºÀÌ ÀÖ´Â ±¤°æÈ­¼º ¼öÁö ½ÃÀåÀÌ Å©°Ô È®´ëµÇ°í ÀÖ½À´Ï´Ù. Á¶Á÷ ½ºÄ³Æúµù, ¾à¹° Àü´Þ ½Ã½ºÅÛ, ¼¼Æ÷ ĸ½¶È­¸¦ À§ÇÑ ±¤°¡±³ ÇÏÀ̵å·Î°ÖÀÇ ±â¼ú Çõ½ÅÀº Àç»ýÀÇ·á ¹× ¹ÙÀÌ¿À¸ÞµðÄà ¿£Áö´Ï¾î¸µÀÇ »õ·Î¿î ÀÀ¿ëÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¶ÇÇÑ, Áö¼Ó °¡´ÉÇÑ Àç·á¿Í ±×¸° Äɹ̽ºÆ®¸®°¡ Á¡Á¡ ´õ Áß¿äÇØÁö¸é¼­ Æ÷ÅäÆú¸®¸Ó »ê¾÷ÀÌ ÀçÆíµÇ°í ÀÖ½À´Ï´Ù. Á¤ºÎ ¹× ±ÔÁ¦ ±â°üÀº ´õ ¾ö°ÝÇÑ VOC ¹èÃâ ±âÁØÀ» ºÎ°úÇϰí ÀÖÀ¸¸ç, Á¦Á¶¾÷ü´Â Àúµ¶¼º, ¹ÙÀÌ¿À, ÀçȰ¿ë °¡´ÉÇÑ Æ÷ÅäÆú¸®¸Ó¸¦ °³¹ßÇØ¾ß ÇÏ´Â »óȲ¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ¿¡³ÊÁö È¿À²ÀûÀÎ °æÈ­, Æó±â¹° °¨¼Ò, ±ä ¼ö¸íÀ» Á¦°øÇÏ´Â UV °æÈ­Çü ÄÚÆÃÁ¦, À×Å©, Á¢ÂøÁ¦¿¡ ´ëÇÑ ¼ö¿ä°¡ ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

³ª³ë ÀÓÇÁ¸°Æ®, ¼ÒÇÁÆ® ·Îº¸Æ½½º, Æ÷Åä´Ð ĨÀÇ »õ·Î¿î ÀÀ¿ë ºÐ¾ß°¡ °è¼Ó ÁøÈ­Çϰí ÀÖ´Â °¡¿îµ¥, °í¼º´É ±â´É¼º Æ÷ÅäÆú¸®¸Ó ½ÃÀåÀº Å©°Ô È®´ëµÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. AI ±â¹Ý Àç·á ¼³°è, ½Ç½Ã°£ ±¤ÁßÇÕ ¸ð´ÏÅ͸µ, ÇÏÀ̺긮µå °æÈ­ ±â¼úÀÇ ÅëÇÕÀ» ÅëÇØ ±¤ÁßÇÕü´Â Çõ½ÅÀ» ´õ¿í °¡¼ÓÈ­Çϰí Â÷¼¼´ë Á¦Á¶ ¹× Àç·á °úÇÐÀÇ Ãʼ®ÀÌ µÉ °ÍÀÔ´Ï´Ù.

ºÎ¹®

Å×Å©³î·¯Áö(½ºÅ×·¹¿À ¸®¼Ò±×·¡ÇÇ, µðÁöÅÐ ±¤ÇÁ·Î¼¼½º, ¿¬¼Ó µðÁöÅÐ ±¤ÇÁ·Î¼¼½º);¿ëµµ(Ä¡°ú, ÀÇ·á, û°¢, ÁÖ¾ó¸®, ÀÚµ¿Â÷, ÇÁ·ÎÅäŸÀÌÇÎ, »ê¾÷/¿£Áö´Ï¾î¸µ, ÀÏ·ºÆ®·Î´Ð½º, ¼ÒºñÀç, ±âŸ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼­, ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Photopolymers Market to Reach US$5.7 Billion by 2030

The global market for Photopolymers estimated at US$3.1 Billion in the year 2024, is expected to reach US$5.7 Billion by 2030, growing at a CAGR of 10.8% over the analysis period 2024-2030. Stereolithography, one of the segments analyzed in the report, is expected to record a 11.7% CAGR and reach US$3.8 Billion by the end of the analysis period. Growth in the Digital Light Processing segment is estimated at 9.5% CAGR over the analysis period.

The U.S. Market is Estimated at US$840.7 Million While China is Forecast to Grow at 14.8% CAGR

The Photopolymers market in the U.S. is estimated at US$840.7 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$1.2 Billion by the year 2030 trailing a CAGR of 14.8% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 7.7% and 9.6% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 8.6% CAGR.

Global Photopolymer Market - Key Trends & Drivers Summarized

Photopolymers are rapidly transforming multiple industries, from 3D printing and microelectronics to biomedical applications and flexible electronics. These light-sensitive materials undergo a polymerization reaction when exposed to specific wavelengths of light, enabling high-precision curing, patterning, and fabrication processes. Photopolymer-based technologies are widely used in additive manufacturing, dental restorations, printed circuit boards (PCBs), and holography, driving the demand for advanced formulations with enhanced mechanical properties, resolution, and durability.

A key trend in the photopolymer market is the increasing adoption of 3D printing and rapid prototyping. As digital light processing (DLP), stereolithography (SLA), and two-photon polymerization (TPP) technologies advance, photopolymers are becoming integral to the production of high-resolution, complex geometries for aerospace, automotive, and healthcare applications. The development of biocompatible and high-performance resins is further expanding the use of photopolymers in customized implants, prosthetics, and medical devices.

Another significant driver is the integration of photopolymers in high-resolution microfabrication. Industries such as semiconductors, optoelectronics, and flexible displays are leveraging UV-curable photopolymers for nanoimprint lithography (NIL), advanced packaging, and organic LED (OLED) encapsulation. The shift toward miniaturization and flexible electronics has fueled innovations in photoresists, stretchable photopolymers, and hybrid nanocomposite materials that enable next-generation wearable sensors, electronic skin, and optoelectronic circuits.

How Are Photopolymers Transforming 3D Printing, Electronics, and Medical Applications?

The 3D printing industry is one of the largest consumers of photopolymers, benefiting from fast-curing, high-resolution, and functionalized resins. Traditional thermoplastics struggle to achieve fine detail and isotropic mechanical properties, whereas photopolymer-based resins provide exceptional surface finish, durability, and accuracy. Advanced photopolymer formulations with heat resistance, impact strength, and bioactivity are enabling industrial-grade printing of automotive components, aerospace parts, and customized medical implants.

In the electronics sector, photopolymers play a crucial role in printed circuit board (PCB) manufacturing, microfluidic devices, and display technologies. UV-curable photoresists are essential for etching and patterning processes in semiconductor fabrication, ensuring precise feature replication and high-resolution circuit traces. Additionally, flexible and stretchable photopolymers are enabling wearable electronics, conformal sensors, and next-generation display materials, such as liquid crystal displays (LCDs) and organic photovoltaic films.

The biomedical field is witnessing significant advancements with biocompatible and degradable photopolymers for tissue engineering, drug delivery systems, and regenerative medicine. Researchers are developing photo-crosslinkable hydrogels that mimic extracellular matrices (ECMs), allowing for controlled cell growth and tissue regeneration. Furthermore, light-activated adhesives and surgical glues are emerging as minimally invasive alternatives for wound closure, internal organ repair, and targeted drug release.

What Technological Advancements Are Shaping the Future of Photopolymers?

The photopolymer industry is undergoing a transformation, with innovations in material chemistry, photoinitiator design, and light-curing mechanisms leading to superior performance, sustainability, and new application areas.

One of the most significant breakthroughs is the development of eco-friendly, solvent-free photopolymer formulations. Traditional UV-curable coatings and inks often contain volatile organic compounds (VOCs), raising environmental concerns. However, the introduction of water-based photopolymers, bio-derived monomers, and low-energy curing resins is making photopolymer technology more sustainable and regulatory-compliant.

Another major advancement is the rise of multi-functional and hybrid photopolymers. Researchers are engineering dual-cure resins that combine thermal and photopolymerization mechanisms, resulting in higher mechanical strength and post-process stability. Additionally, the integration of nanofillers, carbon nanotubes, and graphene into photopolymer matrices is enhancing electrical conductivity, thermal stability, and mechanical reinforcement, paving the way for photopolymer-based conductive inks, EMI shielding coatings, and next-generation energy storage devices.

A growing area of interest is self-healing and shape-memory photopolymers, which have the ability to autonomously repair microcracks, fractures, and deformation upon exposure to external stimuli such as heat or light. These smart materials hold immense potential for applications in automotive coatings, aerospace components, and bio-inspired robotics, enabling structures that can self-repair and adapt to environmental conditions.

What Are the Key Factors Driving the Growth of the Photopolymer Market?

The growth in the photopolymer market is driven by several factors, including technological advancements in additive manufacturing, increasing demand for high-resolution electronics, expanding applications in healthcare, and the push for sustainable materials. The rising adoption of 3D printing across aerospace, automotive, and consumer goods sectors is fueling demand for high-performance photopolymer resins that offer exceptional precision, mechanical stability, and chemical resistance.

The electronics industry’s transition toward miniaturization, flexible circuits, and high-density interconnects (HDI) is another major growth driver. Photopolymers are increasingly being used in advanced packaging, micro-optics, and photonic devices, where their high-resolution patterning capabilities enable next-generation electronic and optoelectronic systems. Additionally, the rise of wearable technology and Internet of Things (IoT) devices is creating demand for stretchable, transparent, and biocompatible photopolymers that integrate seamlessly with smart textiles and biosensors.

The healthcare sector’s growing reliance on 3D printing for personalized medicine, prosthetics, and dental restorations is significantly expanding the market for biocompatible and sterilizable photopolymer resins. Innovations in photo-crosslinkable hydrogels for tissue scaffolding, drug delivery systems, and cell encapsulation are driving new applications in regenerative medicine and biomedical engineering.

Additionally, the increasing emphasis on sustainable materials and green chemistry is reshaping the photopolymer industry. Governments and regulatory bodies are imposing stricter VOC emission standards, pushing manufacturers to develop low-toxicity, bio-based, and recyclable photopolymers. The demand for UV-curable coatings, inks, and adhesives that offer energy-efficient curing, reduced waste, and longer lifespan is further propelling market growth.

As emerging applications in nanoimprinting, soft robotics, and photonic chips continue to evolve, the market for high-performance, functionalized photopolymers is set for substantial expansion. The integration of AI-driven material design, real-time photopolymerization monitoring, and hybrid curing techniques will further accelerate innovation, making photopolymers a cornerstone of next-generation manufacturing and material science.

SCOPE OF STUDY:

The report analyzes the Photopolymers market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Technology (Stereolithography, Digital Light Processing, Continuous Digital Light Processing); Application (Dental, Medical, Audiology, Jewelry, Automotive, Prototyping, Industrial / Engineering, Electronics, Consumer Goods, Others)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 36 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â