¼¼°èÀÇ »ýü ÀûÇÕ¼º 3D ÇÁ¸°ÆÃ Àç·á ½ÃÀå
Biocompatible 3D Printing Materials
»óǰÄÚµå : 1768804
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 168 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,222,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,666,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ »ýü ÀûÇÕ¼º 3D ÇÁ¸°ÆÃ Àç·á ½ÃÀåÀº 2030³â±îÁö 36¾ï ´Þ·¯¿¡ À̸¥´Ù

2024³â¿¡ 14¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â »ýü ÀûÇÕ¼º 3D ÇÁ¸°ÆÃ Àç·á ¼¼°è ½ÃÀåÀº 2024-2030³â CAGR 17.7%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 36¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ Æú¸®¸Ó´Â CAGR 19.0%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 18¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±Ý¼Ó ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR17.0%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 3¾ï 9,170¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR17.1%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ »ýü ÀûÇÕ¼º 3D ÇÁ¸°ÆÃ Àç·á ½ÃÀåÀº 2024³â¿¡ 3¾ï 9,170¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 5¾ï 5,860¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 17.1%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 15.8%¿Í 14.5%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 11.9%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ »ýü ÀûÇÕ¼º 3D ÇÁ¸°ÆÃ Àç·á ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

»ýü ÀûÇÕ¼º 3D ÇÁ¸°ÆÃ Àç·á¶õ ¹«¾ùÀ̸ç, ¿Ö Áß¿äÇѰ¡?

»ýü ÀûÇÕ¼º 3D ÇÁ¸°ÆÃ Àç·á´Â ºÎÀÛ¿ëÀ̳ª ÇÕº´ÁõÀ» À¯¹ßÇÏÁö ¾Ê°í »ýü ½Ã½ºÅÛ°ú ¾ÈÀüÇÏ°Ô »óÈ£ÀÛ¿ëÇÒ ¼ö ÀÖµµ·Ï ¼³°èµÈ Ư¼ö Àç·á·Î, Ãß°¡ Á¦Á¶¿ëÀ¸·Î ¼³°èµÈ Ư¼ö Àç·áÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Àç·á´Â ÀÇÇÐ, Ä¡ÀÇÇÐ, »ýü°øÇÐ µîÀÇ ºÐ¾ß¿¡¼­ Áß¿äÇϸç, ȯÀÚ ¸ÂÃãÇü ÀÓÇöõÆ®, º¸Ã¶¹°, ¼ö¼ú °¡À̵å, ÀÎü¿Í ¿øÈ°ÇÏ°Ô ÅëÇյǵµ·Ï ¼³°èµÈ Á¶Á÷ ½ºÄ³Æúµù µîÀ» ¸¸µå´Â µ¥ »ç¿ëµË´Ï´Ù. ¸é¿ª ¹ÝÀÀ, ¿°Áõ, °ÅºÎ¹ÝÀÀÀ» À¯¹ßÇÒ ¼ö ÀÖ´Â ±âÁ¸ ¼ÒÀç¿Í ´Þ¸® »ýüÀûÇÕ¼º ¼ÒÀç´Â ÀÌ·¯ÇÑ À§ÇèÀ» ÃÖ¼ÒÈ­Çϵµ·Ï ¼³°èµÇ¾î Àå±â°£ ü³»¿¡¼­ »ç¿ëÇϱ⿡ ÀûÇÕÇÕ´Ï´Ù. »ýü ÀûÇÕ¼º 3D ÇÁ¸°ÆÃ Àç·áÀÇ Á߿伺Àº ºü¸£°Ô ¹ßÀüÇϰí ÀÖ´Â °³ÀÎ ¸ÂÃãÇü ÀÇ·á ºÐ¾ß¸¦ µÞ¹ÞħÇÒ ¼ö ÀÖ´Â ÀáÀç·Â¿¡ ÀÖ½À´Ï´Ù. ÀÇ·á±â±âÀÇ ½Å¼ÓÇÑ ÇÁ·ÎÅäŸÀÌÇΰú ¸ÂÃãÇü Á¦ÀÛÀ» °¡´ÉÇÏ°Ô ÇÏ´Â »ýü ÀûÇÕ¼º 3D ÇÁ¸°ÆÃÀ» ÅëÇØ ÀÇ·á ¼­ºñ½º Á¦°ø¾÷ü´Â °³º° ȯÀÚÀÇ ÇØºÎÇÐÀû ¹× ±â´ÉÀû ¿ä±¸¿¡ Á¤È®È÷ ¸Â´Â ¼Ö·ç¼ÇÀ» ¸¸µé ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¸ÂÃãÈ­´Â ȯÀÚÀÇ °á°ú °³¼±, ȸº¹ ½Ã°£ ´ÜÃà, Æí¾ÈÇÔ Çâ»óÀ¸·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. ÇコÄÉ¾î »ê¾÷ÀÌ °³ÀÎ ¸ÂÃãÇü Ä¡·á·Î ÀüȯÇÏ´Â °¡¿îµ¥, »ýü ÀûÇÕ¼º 3D ÇÁ¸°ÆÃ Àç·á´Â È¿´ÉÀ» À§ÇØ ¼³°èµÇ¾úÀ» »Ó¸¸ ¾Æ´Ï¶ó ÀÎü ³» ´õ ³ªÀº ÅëÇÕÀ» ÃËÁøÇϰí Ä¡·á È¿°ú¸¦ Çâ»ó½ÃŰ´Â ¼Ö·ç¼ÇÀ» Á¦°øÇÏ¿© º¯È­ÀÇ °¡´É¼ºÀ» Á¦°øÇÕ´Ï´Ù.

3D ÇÁ¸°ÆÃ¿¡ »ç¿ëµÇ´Â ´Ù¾çÇÑ »ýü ÀûÇÕ¼º Àç·á´Â ¹«¾ùÀΰ¡?

»ýü ÀûÇÕ¼º 3D ÇÁ¸°ÆÃ Àç·á¿¡´Â ´Ù¾çÇÑ Æú¸®¸Ó, ¼¼¶ó¹Í, ±Ý¼ÓÀÌ Æ÷ÇԵǸç, °¢ Àç·á´Â ÀÇ·á¿ëµµ¿¡ ÀûÇÕÇÑ Æ¯Á¤ Ư¼ºÀ» °®µµ·Ï ½ÅÁßÇÏ°Ô ¼±Åõ˴ϴÙ. Æú¸®À¯»ê(PLA), Æú¸®Ä«ÇÁ·Î¶ôÅæ(PCL), Æú¸®¿¡Å׸£¿¡Å׸£ÄÉÅæ(PEEK)°ú °°Àº Æú¸®¸Ó´Â À¯¿¬¼º, »ýü Èí¼ö¼º, ´Ù¾çÇÑ 3D ÇÁ¸°ÆÃ ±â¼ú°úÀÇ È£È¯¼ºÀ¸·Î ÀÎÇØ ÀÚÁÖ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. »õ·Î¿î Á¶Á÷ÀÌ Çü¼ºµÇ¸é Á¡Â÷ ºÐÇØµÇ¾î ±¸Á¶Àû ¿ªÇÒÀ» ¸Ã°Ô µË´Ï´Ù. ¹Ý¸é, PEEK´Â ³»±¸¼ºÀÌ ¶Ù¾î³ª°í °¡º­¿î Æú¸®¸Ó·Î ¸ê±ÕÀ» °ßµô ¼ö ÀÖ°í Àå±â°£ ÀÓÇöõÆ®¿¡ ÀûÇÕÇÏ¿© ôÃß ÀÓÇöõÆ® ¹× ƯÁ¤ Á¤Çü¿Ü°ú ¿ëµµ¿¡ º¸´Ù ¿µ±¸ÀûÀÎ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ÇÏÀ̵å·Ï½Ã¾ÆÆÄŸÀÌÆ®°¡ ÇÔÀ¯µÈ »ýüÀûÇÕ¼º ¼¼¶ó¹ÍÀº õ¿¬ »À ¹Ì³×¶ö°ú À¯»çÇÏ¿© »À ÅëÇÕÀ» ÃËÁøÇÏ°í »À¿Í ÀÓÇöõÆ®¸¦ º¸´Ù È¿°úÀûÀ¸·Î °áÇÕÇÒ ¼ö Àֱ⠶§¹®¿¡ »À ¹× Ä¡°ú¿ëµµ¿¡ ÀÚÁÖ »ç¿ëµË´Ï´Ù. ƼŸ´½°ú ÄÚ¹ßÆ® Å©·Ò Çձݰú °°Àº ±Ý¼Óµµ °­µµ, ³»±¸¼º, »ýüÀûÇÕ¼º ¶§¹®¿¡ ¹ÙÀÌ¿À¸ÞµðÄà ºÐ¾ß, ƯÈ÷ Á¤Çü¿Ü°ú¿ë ÀÓÇöõÆ® ¹× Ä¡°ú¿ë ÀÓÇöõÆ® 3D ÇÁ¸°ÆÃÀÇ Áß½ÉÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ƼŸ´½Àº »À Á¶Á÷°úÀÇ ¿ì¼öÇÑ ÀûÇÕ¼ºÀ¸·Î À¯¸íÇÏ¿© Àΰø°üÀý ¹× Ä¡°ú¿ë ÀÓÇöõÆ®¿¡ ¼±È£µÇ°í ÀÖ½À´Ï´Ù. 3D ÇÁ¸°ÆÃÀº °íÀ¯ÇÑ ±â°èÀû ¹× »ý¹°ÇÐÀû Ư¼ºÀ» °¡Áø ´Ù¾çÇÑ Àç·á¸¦ Á¦°øÇÔÀ¸·Î½á ´Ù¾çÇÑ ¿ëµµÀÇ Æ¯Á¤ ¿ä±¸¸¦ ÃæÁ·ÇÏ´Â ¸ÂÃãÇü ÀåÄ¡¿Í ÀÓÇöõÆ®¸¦ Á¦ÀÛÇÒ ¼ö ÀÖ¾î ÀÇ·á ºÐ¾ß¿¡¼­ »ýü ÀûÇÕ¼º Àç·áÀÇ ´Ù¾ç¼º°ú È¿´ÉÀ» ¸ðµÎ Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.

»ýü ÀûÇÕ¼º 3D ÇÁ¸°ÆÃ Àç·áÀÇ °³¹ß ¹× µµÀÔ¿¡´Â ¾î¶² ¾î·Á¿òÀÌ Àִ°¡?

»ýü ÀûÇÕ¼º 3D ÇÁ¸°ÆÃ Àç·áÀÇ Å« ÀáÀç·Â¿¡µµ ºÒ±¸Çϰí, °³¹ß ¹× µµÀÔ¿¡´Â ±ÔÁ¦ ½ÂÀÎ, Àç·áÀÇ Àϰü¼º, ºñ¿ë µî ¿©·¯ °¡Áö ¹®Á¦°¡ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àç·á´Â ÀÇ·á¿ëÀ̱⠶§¹®¿¡ FDA³ª EMA¿Í °°Àº ±ÔÁ¦ ±â°üÀÌ ¼³Á¤ÇÑ ¾ö°ÝÇÑ ±âÁØÀ» ÃæÁ·ÇØ¾ß Çϸç, ¹«µ¶¼º, ³»±¸¼º, ü³» Àå±â »ç¿ë¿¡ ´ëÇÑ ¾ÈÀü¼ºÀ» È®ÀÎÇϱâ À§ÇØ ±¤¹üÀ§ÇÑ Å×½ºÆ®¸¦ °ÅÃÄ¾ß ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀÎ ÀýÂ÷´Â ¿À·£ ½Ã°£°ú ºñ¿ëÀÌ ¼Ò¿äµÇ¸ç, ½Å¼ÒÀç°¡ ½ÃÀå¿¡ ºü¸£°Ô ÁøÀÔÇÏ´Â µ¥ °É¸²µ¹ÀÌ µË´Ï´Ù. 3D ÇÁ¸°ÆÃ ÀÇ·á±â±â¿¡¼­ ÀçÇö °¡´ÉÇÑ Ç°ÁúÀ» ´Þ¼ºÇϱâ À§Çؼ­´Â Á¦Á¶ ¸Å°³º¯¼ö¸¦ ¸é¹ÐÈ÷ Á¦¾îÇÏ°í °ß°íÇÑ Ç°Áú º¸Áõ ÇÁ·Î¼¼½º°¡ ÇÊ¿äÇϸç, ÀÌ´Â º¹ÀâÇÑ ¸®¼Ò½º¸¦ ÇÊ¿ä·Î ÇÕ´Ï´Ù. ¸®¼Ò½º°¡ ÇÊ¿äÇÕ´Ï´Ù. ¶ÇÇÑ, »ýü ÀûÇÕ¼º Àç·á, ƯÈ÷ ƼŸ´½À̳ª PEEK¿Í °°Àº Àç·á´Â °í°¡ÀÇ °æÇâÀÌ ÀÖÀ¸¸ç, ƯÈ÷ ¼Ò±Ô¸ð ÀÇ·á ¼­ºñ½º Á¦°ø¾÷ü³ª ¿¹»ê Á¦¾àÀÌ ½ÉÇÑ ÀÇ·á±â°üÀÇ °æ¿ì »ç¿ëÀÌ Á¦Çѵ˴ϴÙ. ºñ¿ë È¿À²¼ºÀÇ Çʿ伺°ú °íǰÁú, ¾ÈÀüÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â Àç·á¿¡ ´ëÇÑ ¿ä±¸ »çÀÌÀÇ ±ÕÇüÀ» ¸ÂÃß´Â °ÍÀº ÇöÀç ÁøÇà ÁßÀÎ °úÁ¦ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦´Â Àç·áÀÇ Àϰü¼ºÀ» °³¼±Çϰí, ºñ¿ëÀ» Àý°¨Çϸç, ±ÔÁ¦ ÇÁ·Î¼¼½º¸¦ °£¼ÒÈ­Çϰí, »ýü ÀûÇÕ¼º 3D ÇÁ¸°ÆÃ Àç·á°¡ ÀÇ·á ¹× Ä¡°ú ºÐ¾ß¿¡¼­ ³Î¸® »ç¿ëµÉ ¼ö ÀÖµµ·Ï Áö¼ÓÀûÀÎ ¿¬±¸¿Í ±â¼ú ¹ßÀüÀÇ Çʿ伺À» °­Á¶Çϰí ÀÖ½À´Ï´Ù.

»ýü ÀûÇÕ¼º 3D ÇÁ¸°ÆÃ Àç·á ½ÃÀåÀÇ ¼ºÀå µ¿·ÂÀº?

»ýü ÀûÇÕ¼º 3D ÇÁ¸°ÆÃ Àç·á ½ÃÀåÀÇ ¼ºÀå¿¡´Â ÀÇ·á ±â¼úÀÇ ¹ßÀü, °³ÀÎ ¸ÂÃãÇü ÇコÄÉ¾î ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, Á¤Çü¿Ü°ú, Ä¡°ú, Àç»ýÀÇ·á µîÀÇ ºÐ¾ß¿¡¼­ÀÇ Àû¿ë ¹üÀ§ È®´ë µî ¸î °¡Áö Áß¿äÇÑ ¿äÀÎÀÌ ÀÖ½À´Ï´Ù. °í·ÉÈ­, ¸¸¼ºÁúȯ, ¿Ü»ó µî ´Ù¾çÇÑ °Ç°­»óŰ¡ Áõ°¡ÇÔ¿¡ µû¶ó °¢ ȯÀÚÀÇ °íÀ¯ÇÑ ¿ä±¸¿¡ ¸Â°Ô ¸ÂÃãÈ­µÈ ÀÇ·á±â±â, ÀÓÇöõÆ®, º¸Ã¶¹°¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀûÃþ °¡°ø ±â¼úÀº ºü¸£°Ô ¹ßÀüÇϰí ÀÖÀ¸¸ç, ƯÁ¤ ÇØºÎÇÐÀû ¹× ±â´ÉÀû ¿ä±¸ »çÇ×À» ÃæÁ·½Ãų ¼ö ÀÖ´Â °íǰÁúÀÇ »ýüÀûÇÕ¼º Àç·á¸¦ ±¤¹üÀ§ÇÏ°Ô »ç¿ëÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, ÀÇ·á°¡ ÃÖ¼Ò Ä§½ÀÀûÀ̰í ªÀº ½Ã¼ú·Î ÀüȯÇÔ¿¡ µû¶ó Ä¡À¯ ¼Óµµ¸¦ ³ôÀ̰í ÇÕº´Áõ À§ÇèÀ» ÁÙÀÌ´Â Àç·á¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ±ÔÁ¦ ´ç±¹Àº 3D ÇÁ¸°ÆÃ ÀÇ·á±â±â¿¡ ´ëÇØ Á¡Á¡ ´õ °ü´ëÇØÁö°í ÀÖÀ¸¸ç, »ýü ÀûÇÕ¼º Àç·á ½ÃÀå ÁøÀÔÀ» ¿ëÀÌÇÏ°Ô Çϰí ÀÌ ºÐ¾ßÀÇ Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Áö¼Ó °¡´ÉÇÑ ÀǷḦ ÇâÇÑ ¿òÁ÷ÀÓÀº PLA ¹× PCL°ú °°Àº »ýºÐÇØ¼º ¼ÒÀç¿¡ ´ëÇÑ °ü½ÉÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. ÀÌ ¼ÒÀç´Â ü³»¿¡¼­ ºÐÇØµÇ±â ¶§¹®¿¡ ÀÌÂ÷ÀûÀÎ Á¦°Å ¼ö¼úÀÌ ÇÊ¿äÇÏÁö ¾Ê½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀÌ °áÇÕµÇ¾î »ýü ÀûÇÕ¼º 3D ÇÁ¸°ÆÃ Àç·á ½ÃÀåÀÇ È®ÀåÀ» ÃËÁøÇϰí, Çö´ë ÀÇ·á, °³ÀÎ ¸ÂÃãÇü ÀÇ·á, Àç»ý ÀÇ·áÀÇ Ãʼ®À¸·Î¼­ ¿ªÇÒÀ» È®°íÈ÷ Çϸç, ¸ÂÃãÇü »ýüÀûÇÕ¼º ¼Ö·ç¼ÇÀÌ ´Ù¾çÇÑ ÀÇ·á ÀÀ¿ë ºÐ¾ß¿¡¼­ ȯÀÚ °á°ú¸¦ °³¼±ÇÒ ¼ö ÀÖ´Â ¹Ì·¡¸¦ ¾à¼ÓÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

À¯Çü(Æú¸®¸Ó, ±Ý¼Ó, ±âŸ À¯Çü), ÇüÅÂ(ºÐ¸», ¾×ü, ±âŸ ÇüÅÂ), ¿ëµµ(ÀÓÇöõÆ® ¹× Àΰø °üÀý, ÇÁ·ÎÅäŸÀÌÇÎ ¹× ¼ö¼ú¿ë °¡À̵å, Á¶Á÷°øÇÐ, ±âŸ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

´ç»ç´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Biocompatible 3D Printing Materials Market to Reach US$3.6 Billion by 2030

The global market for Biocompatible 3D Printing Materials estimated at US$1.4 Billion in the year 2024, is expected to reach US$3.6 Billion by 2030, growing at a CAGR of 17.7% over the analysis period 2024-2030. Polymer, one of the segments analyzed in the report, is expected to record a 19.0% CAGR and reach US$1.8 Billion by the end of the analysis period. Growth in the Metal segment is estimated at 17.0% CAGR over the analysis period.

The U.S. Market is Estimated at US$391.7 Million While China is Forecast to Grow at 17.1% CAGR

The Biocompatible 3D Printing Materials market in the U.S. is estimated at US$391.7 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$558.6 Million by the year 2030 trailing a CAGR of 17.1% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 15.8% and 14.5% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 11.9% CAGR.

Global Biocompatible 3D Printing Materials Market - Key Trends and Drivers Summarized

What Are Biocompatible 3D Printing Materials, and Why Are They Important?

Biocompatible 3D printing materials are specialized materials engineered for additive manufacturing that can safely interact with biological systems without causing adverse reactions or complications. These materials are critical in fields like medicine, dentistry, and biomedical engineering, where they are used to create patient-specific implants, prosthetics, surgical guides, and tissue scaffolds designed to integrate seamlessly with the human body. Unlike traditional materials, which can provoke immune responses, inflammation, or even rejection, biocompatible materials are designed to minimize these risks, making them suitable for use within the body over extended periods. The importance of biocompatible 3D printing materials lies in their potential to support the rapidly advancing field of personalized medicine. By allowing for rapid prototyping and customization of medical devices, biocompatible 3D printing enables healthcare providers to create solutions tailored precisely to the anatomical and functional needs of individual patients. This customization can lead to improved patient outcomes, reduced recovery times, and increased comfort, as devices can be made to conform perfectly to the unique characteristics of each patient’s body. With the healthcare industry moving towards individualized treatment, biocompatible 3D printing materials offer transformative possibilities, providing solutions that are not only engineered for efficacy but also promote better integration within the human body, enhancing the effectiveness of medical treatments.

How Are Different Biocompatible Materials Used in 3D Printing?

Biocompatible 3D printing materials encompass a wide array of polymers, ceramics, and metals, each carefully chosen for its specific properties that align with medical applications. Polymers such as polylactic acid (PLA), polycaprolactone (PCL), and polyether ether ketone (PEEK) are frequently used due to their flexibility, bioresorbability, and compatibility with diverse 3D printing technologies. PLA and PCL are biodegradable polymers, which makes them particularly useful for applications such as tissue scaffolding, where they gradually break down as new tissue forms and takes over the structural role. PEEK, on the other hand, is a durable, lightweight polymer that can withstand sterilization and is suited for long-term implants, offering a more permanent solution for spinal implants and certain orthopedic applications. Biocompatible ceramics, including hydroxyapatite, are frequently used in bone and dental applications, as their similarity to natural bone mineral promotes osteointegration, allowing the bone to bond more effectively with the implant. Metals such as titanium and cobalt-chrome alloys are also central to 3D printing in the biomedical field, especially for orthopedic and dental implants, due to their strength, durability, and high level of biocompatibility. Titanium, for example, is renowned for its exceptional compatibility with bone tissue, making it a preferred choice for joint replacements and dental implants. By offering a range of materials with unique mechanical and biological properties, 3D printing allows for the creation of customized devices and implants that meet the specific needs of different applications, enhancing both the versatility and effectiveness of biocompatible materials in the medical field.

What Challenges Exist in Developing and Implementing Biocompatible 3D Printing Materials?

Despite the significant potential of biocompatible 3D printing materials, their development and implementation come with several challenges, particularly in terms of regulatory approval, material consistency, and cost. Because these materials are intended for medical use, they must meet rigorous standards set by regulatory agencies like the FDA and EMA, which require extensive testing to confirm that they are non-toxic, durable, and safe for long-term use within the body. This regulatory approval process can be both lengthy and costly, posing a barrier for new materials to enter the market quickly. Consistency in material properties is another critical challenge, as slight variations in composition or processing methods can significantly impact the biocompatibility, mechanical properties, and degradation rates of these materials, which are essential considerations in medical applications. Achieving reproducible quality in 3D-printed medical devices requires meticulous control over manufacturing parameters and robust quality assurance processes, which can be complex and resource-intensive. Furthermore, biocompatible materials, particularly those like titanium and PEEK, tend to be expensive, limiting their accessibility, especially for smaller healthcare providers or institutions operating within tight budget constraints. Balancing the need for cost-effectiveness with the demand for high-quality, safe, and reliable materials is an ongoing challenge. These issues highlight the need for continued research and technological advancements to improve material consistency, reduce costs, and streamline regulatory processes, ensuring that biocompatible 3D printing materials can be widely used in the medical and dental sectors.

What Drives the Growth of the Biocompatible 3D Printing Materials Market?

The growth of the biocompatible 3D printing materials market is fueled by several key factors, including advancements in medical technology, the rising demand for personalized healthcare solutions, and an expanding range of applications in fields like orthopedics, dentistry, and regenerative medicine. With the global increase in age-related health conditions, chronic diseases, and traumatic injuries, there is a growing need for customized medical devices, implants, and prosthetics that can be tailored to the unique needs of each patient. Additive manufacturing technologies are evolving rapidly, allowing for a broader range of high-quality biocompatible materials that can meet specific anatomical and functional requirements. Additionally, as healthcare moves towards minimally invasive and shorter-duration procedures, there is a heightened demand for materials that promote quicker healing and reduce the risk of complications-goals that biocompatible 3D-printed devices are uniquely positioned to support. Regulatory bodies are increasingly open to 3D-printed medical devices, helping to ease market entry for biocompatible materials and foster innovation in this area. The push for sustainable healthcare practices also drives interest in biodegradable materials, such as PLA and PCL, which degrade within the body and eliminate the need for secondary removal surgeries. Together, these factors are propelling the expansion of the biocompatible 3D printing materials market, solidifying its role as a cornerstone of modern, personalized, and regenerative medicine, and promising a future in which customized, biocompatible solutions enhance patient outcomes across a wide array of medical applications.

SCOPE OF STUDY:

The report analyzes the Biocompatible 3D Printing Materials market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (Polymer, Metal, Other Types); Form (Powder, Liquid, Other Forms); Application (Implants & Prosthesis, Prototyping & Surgical Guides, Tissue Engineering, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 34 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â