¼¼°èÀÇ Æ÷½ºÆ÷¶ó¹Ì´ÙÀÌÆ® ½ÃÀå
Phosphoramidite
»óǰÄÚµå : 1777426
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 378 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,228,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,684,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ Æ÷½ºÆ÷¶ó¹Ì´ÙÀÌÆ® ½ÃÀåÀº 2030³â±îÁö 16¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 11¾ï ´Þ·¯·Î ÃßÁ¤µÈ Æ÷½ºÆ÷¶ó¹Ì´ÙÀÌÆ® ¼¼°è ½ÃÀåÀº 2030³â¿¡´Â 16¾ï ´Þ·¯¿¡ À̸£°í, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 6.3%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ DNA Æ÷½ºÆ÷¶ó¹Ì´ÙÀÌÆ®´Â CAGR 7.4%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 6¾ï 6,270¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. RNA Æ÷½ºÆ÷¶ó¹Ì´ÙÀÌÆ® ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 4.4%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 3¾ï 650¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 10.1%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Æ÷½ºÆ÷¶ó¹Ì´ÙÀÌÆ® ½ÃÀåÀº 2024³â¿¡ 3¾ï 650¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 10.1%·Î ¼ºÀåÇÏ¿© 2030³â±îÁö 3¾ï 3,600¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 3.0%¿Í 6.2%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 4.1%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.

Æ÷½ºÆ÷¶ó¹Ì´ÙÀÌÆ® ½ÃÀå : ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Æ÷½ºÆ÷¾Æ¹ÌŸÀÌÆ®°¡ ÇÙ»ê ÇÕ¼º¿¡ Áß¿äÇÑ ¼ººÐÀÎ ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

Æ÷½ºÆ÷¾Æ¹Ìµå È­ÇÐÀº DNA, RNA, ¿Ã¸®°í´ºÅ¬·¹¿ÀŸÀ̵åÀÇ ÇÕ¼º¿¡ ±âº»ÀûÀÎ ¿ªÇÒÀ» Çϸç, ºÐÀÚ»ý¹°ÇÐ, Á¦¾à¿¬±¸, À¯Àü°øÇп¡¼­ Áß¿äÇÑ ½Ã¾àÀÌ µÇ°í ÀÖ½À´Ï´Ù. Æ÷½ºÆ÷¾Æ¹Ì´ÙÀÌÆ®´Â °íü»ó ÇÕ¼º¿¡ »ç¿ëµÇ´Â ¹ÝÀÀ¼º Áß°£Ã¼·Î PCR, À¯ÀüÀÚ ÆíÁý, ¾ÈƼ¼¾½º Ä¡·á, siRNA(ÀúºÐÀÚ °£¼· RNA), CRISPR ±â¹Ý À¯ÀüÀÚ ÆíÁý ±â¼úÀ» À§ÇÑ ÇÕ¼º ¿Ã¸®°í´ºÅ¬·¹¿ÀŸÀ̵å Á¦Á¶¿¡ ³Î¸® »ç¿ëµÇ´Â ¹æ¹ýÀÔ´Ï´Ù.

ÇÕ¼º»ý¹°ÇÐ, À¯ÀüÀÚÄ¡·á, ¸ÂÃãÀÇ·á°¡ È®»êµÇ¸é¼­ °í¼øµµ Æ÷½ºÆ÷¾Æ¹Ìµå ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. Á¦¾àȸ»ç, »ý¸í°øÇÐ ±â¾÷, Çмú ¿¬±¸ ±â°üÀº Áø´Ü ºÐ¼®, ¹é½Å °³¹ß, Ç¥Àû ¾à¹° Àü´Þ ½Ã½ºÅÛ¿¡ ÇʼöÀûÀÎ ¸ÂÃãÇü DNA ¹× RNA ¼­¿­À» Á¦Á¶Çϱâ À§ÇØ Æ÷½ºÆ÷¾Æ¹Ìµå È­Çп¡ ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Â÷¼¼´ë ½ÃÄö½Ì(NGS)°ú RNA Ä¡·áÁ¦°¡ Æ÷½ºÆ÷¶ó¹Ì´ÙÀÌÆ®ÀÇ Àû¿ë ¹üÀ§¸¦ È®´ëÇÏ¿© ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

Æ÷½ºÆ÷¾Æ¹Ìµå ½ÃÀåÀ» ÁÖµµÇÏ´Â ÁÖ¿ä µ¿ÇâÀº?

Æ÷½ºÆ÷¾Æ¹Ìµå ½ÃÀåÀº À¯ÀüÀÚ ÀÇÇÐ, ÇÕ¼º »ý¹°ÇÐ, ÇÙ»ê ±â¹Ý Ä¡·áÁ¦ÀÇ ¹ßÀü¿¡ ÈûÀÔ¾î ºü¸£°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ¸î °¡Áö Áß¿äÇÑ Æ®·»µå°¡ »ê¾÷ÀÇ ¼ºÀå ±Ëµµ¸¦ Çü¼ºÇϰí ÀÖ½À´Ï´Ù.

°¡Àå Áß¿äÇÑ Æ®·»µå Áß Çϳª´Â ÇÙ»ê ±â¹Ý Ä¡·áÁ¦, ƯÈ÷ mRNA ¹é½Å, ¾ÈƼ¼¾½º ¿Ã¸®°í´ºÅ¬·¹¿ÀƼµå(ASOs), small interfering RNA(siRNA) ¿ä¹ý¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡ÀÔ´Ï´Ù. mRNA ±â¹Ý Äڷγª19 ¹é½ÅÀÇ ¼º°øÀº ÇÕ¼º RNAÀÇ ÀáÀç·ÂÀ» º¸¿©ÁÖ¾ú°í, ´ë±Ô¸ð RNA »ý»ê¿¡ »ç¿ëµÇ´Â º¯Çü ¹× ºñº¯Çü Æ÷½ºÆ÷¶ó¹Ì´ÙÀÌÆ®¿¡ ´ëÇÑ ¼ö¿ä¸¦ Áõ°¡½ÃÄ×½À´Ï´Ù. mRNA ±â¹Ý ¾Ï ¸é¿ª¿ä¹ý, ¸ÂÃãÇü ¹é½Å, Èñ±ÍÁúȯ Ä¡·áÁ¦°¡ ±Þ¼ºÀåÇϰí ÀÖ´Â °¡¿îµ¥, Æ÷½ºÆ÷¾Æ¹Ìµå Á¦Á¶¾÷üµéÀº ¾÷°è Áõ°¡ÇÏ´Â ¼ö¿ä¸¦ ÃæÁ·½Ã۱â À§ÇØ »ý»ê´É·ÂÀ» È®´ëÇϰí ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ Æ®·»µå´Â CRISPR°ú À¯ÀüÀÚ ÆíÁý ±â¼úÀÇ ºÎ»óÀÔ´Ï´Ù. CRISPR ±â¹Ý ½Ã½ºÅÛÀº Æ÷½ºÆ÷¾Æ¹Ì´ÙÀÌÆ® È­ÇÐÀ» ÀÌ¿ëÇÏ¿© ÇÕ¼ºµÈ ÇÕ¼º °¡À̵å RNA(gRNA) ºÐÀÚ¿¡ ÀÇÁ¸ÇÕ´Ï´Ù. À¯ÀüÀÚ ÆíÁý ¿¬±¸, ¼¼Æ÷ ¹× À¯ÀüÀÚ Ä¡·á ÀÀ¿ë, Á¤¹ÐÀÇ·áÀÇ È®´ë·Î ÀÎÇØ Ä¡·á ÀÀ¿ëÀ» À§ÇØ ¼³°èµÈ °í¼øµµ Ư¼ö Æ÷½ºÆ÷¶ó¹Ì´ÙÀÌÆ®¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

Â÷¼¼´ë ¿°±â¼­¿­ ºÐ¼®(NGS) ¹× ºÐÀÚÁø´Ü ºÐ¾ßµµ Æ÷½ºÆ÷¾Æ¹Ìµå ¼Òºñ¸¦ ÃËÁøÇÏ´Â ÁÖ¿ä ¿äÀÎÀÔ´Ï´Ù. NGS Ç÷§Æû¿¡¼­´Â ÇÕ¼º ¿Ã¸®°í´ºÅ¬·¹¿ÀƼµå¸¦ ½ÃÄö½ÌÀÇ ÇÁ¶óÀÌ¸Ó ¹× ¾î´ðÅÍ·Î »ç¿ëÇϱ⠶§¹®¿¡ ¾ÈÁ¤¼º°ú È¿À²À» ³ôÀÎ º¯ÇüµÈ Æ÷½ºÆ÷¾Æ¹Ì´ÙÀÌÆ®¸¦ ´ë·® »ý»êÇØ¾ß ÇÕ´Ï´Ù. ¾×ü »ý°Ë Áø´Ü, °³ÀÎ ¸ÂÃãÇü À¯ÀüüÇÐ, º´¿øÃ¼ °ËÃ⠺м®ÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ÀÓ»ó ¹× ¿¬±¸ ÇöÀå¿¡¼­ Æ÷½ºÆ÷¾Æ¹Ìµå ±â¹Ý ½Ã¾àÀº Çʼö ºÒ°¡°áÇÑ ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù.

¶ÇÇÑ, È­ÇÐÀû º¯Çü ¹× Ư¼ö Æ÷½ºÆ÷¾Æ¹Ì´ÙÀÌÆ®°¡ ÀÀ¿ë °¡´É¼ºÀ» ³ÐÈ÷°í ÀÖ½À´Ï´Ù. Çü±¤ Ç¥ÁöµÈ Æ÷½ºÆ÷¾Æ¹Ì´ÙÀÌÆ®, ¹ÙÀÌ¿ÀÄÜÁê°ÔÀÌÆ® À¯µµÃ¼, ¶ôµåÇÙ»ê(LNA) Æ÷½ºÆ÷¾Æ¹Ì´ÙÀÌÆ®´Â ÷´Ü ºÐÀÚ ÇÁ·Îºê, ½Ç½Ã°£ PCR ºÐ¼®, RNA ±â¹Ý Ä¡·áÁ¦ °³¹ßÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. °íó¸® ½ºÅ©¸®´×(HTS), ½Å¾à°³¹ß, ³ª³ëÀÔÀÚ ±â¹Ý ¾à¹° Àü´Þ ½Ã½ºÅÛÀ» À§ÇÑ Æ÷½ºÆ÷¾Æ¹Ìµå ½Ã¾àÀÇ ¸ÂÃãÈ­´Â ½ÃÀåÀÇ Çõ½ÅÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

ÃÖÁ¾ ¿ëµµ´Â Æ÷½ºÆ÷¾Æ¹ÌŸÀÌÆ® ½ÃÀå¿¡ ¾î¶² ¿µÇâÀ» ¹ÌÄ¡°í Àִ°¡?

Æ÷½ºÆ÷¾Æ¹Ì´ÙÀÌÆ®ÀÇ ´Ù¾çÇÑ ¿ëµµ´Â Á¦¾à, »ý¸í°øÇÐ, ºÐÀÚÁø´Ü, ÇÕ¼º»ý¹°ÇÐ µî ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. °¢ ºÐ¾ß¸¶´Ù °íÀ¯ÇÑ ¿ä±¸»çÇ×ÀÌ ÀÖ¾î Æ¯¼ö Æ÷½ºÆ÷¾Æ¹ÌŸÀÌÆ® ½Ã¾àÀÇ °³¹ß ¹× »ý»ê¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù.

Á¦¾à »ê¾÷°ú »ý¸í°øÇÐ »ê¾÷Àº ƯÈ÷ ¿Ã¸®°í´ºÅ¬·¹¿ÀƼµå ±â¹Ý ÀǾàǰ °³¹ß¿¡¼­ Æ÷½ºÆ÷¶ó¹Ì´ÙÀÌÆ®ÀÇ °¡Àå Å« ¼ö¿äóÀÔ´Ï´Ù. ¾ÈƼ¼¾½º ¿Ã¸®°í´ºÅ¬·¹¿ÀƼµå(ASO), siRNA ÀǾàǰ, ¾ÛŸ¸Ó ±â¹Ý Ä¡·áÁ¦, mRNA ¹é½Å µîÀ» °³¹ßÇÏ´Â ±â¾÷µéÀº Á¤¹ÐÇÑ ¿Ã¸®°í´ºÅ¬·¹¿ÀƼµå ÇÕ¼º¿¡ Æ÷½ºÆ÷¾Æ¹Ìµå È­ÇÐÀ» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. FDA°¡ ÆÄƼ½Ç¶õ(À¯Àü¼º ATTR ¾Æ¹Ð·ÎÀ̵åÁõ), ´©½Ã³Ú¼¾(ô¼ö¼º ±ÙÀ§ÃàÁõ) µî ¿©·¯ RNA ±â¹Ý Ä¡·áÁ¦¸¦ ½ÂÀÎÇϸ鼭 Æ÷½ºÆ÷¾Æ¹Ìµå ±â¹Ý ÀǾàǰ °³¹ß¿¡ ´ëÇÑ ÅõÀÚ°¡ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù.

ºÐÀÚÁø´Ü ¹× À¯ÀüüÇÐ ºÐ¾ß¿¡¼­ Æ÷½ºÆ÷¾Æ¹Ìµå ±â¹Ý ¿Ã¸®°í´ºÅ¬·¹¿ÀƼµå´Â PCR ÇÁ¶óÀ̸Ó, ½ÃÄö½Ì ÇÁ·Îºê, ¸¶ÀÌÅ©·Î¾î·¹ÀÌ, À¯ÀüÀÚ ¹ßÇö ºÐ¼®¿¡ ÇʼöÀûÀÎ ±¸¼º ¿ä¼Ò·Î »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. °íÃæ½Çµµ º¯Çü ´ºÅ¬·¹¿ÀƼµå¿¡ ´ëÇÑ ¼ö¿ä´Â ÇöÀå Áø´Ü, °¨¿°¼º Áúȯ ½ºÅ©¸®´×, ¾Ï ¹ÙÀÌ¿À¸¶Ä¿ °ËÃâ Áõ°¡¿Í ÇÔ²² Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¾×ü »ý°Ë ±â¼ú°ú °¡Á¤¿ë À¯ÀüÀÚ °Ë»ç ŰƮ°¡ ÁÖ·ù°¡ µÊ¿¡ µû¶ó Æ÷½ºÆ÷¾Æ¹Ìµå °ø±Þ¾÷ü´Â ´Ù¾çÇÑ ÀÀ¿ë ºÐ¾ßÀÇ ¿ä±¸¸¦ ÃæÁ·½Ã۱â À§ÇØ Á¦Ç°À» È®ÀåÇϰí ÀÖ½À´Ï´Ù.

ÇÕ¼º»ý¹°ÇÐ ºÐ¾ßµµ Æ÷½ºÆ÷¾Æ¹Ì´ÙÀÌÆ®ÀÇ ±Þ¼ºÀå ½ÃÀåÀÔ´Ï´Ù. °úÇÐÀÚµéÀº À¯ÀüÀÚº¯Çü»ý¹°Ã¼(GMO), »ý¸í°øÇÐ È¿¼Ò, »ê¾÷ ¹× ȯ°æ¿ë ÇÕ¼º ´ë»ç °æ·Î¸¦ ¸¸µé±â À§ÇØ ¸ÂÃãÇü DNA ¹× RNA ¼­¿­À» ¼³°èÇϰí ÀÖ½À´Ï´Ù. Æ÷½ºÆ÷¾Æ¹Ì´ÙÀÌÆ®¸¦ ±â¹ÝÀ¸·Î ÇÑ DNA ÇÕ¼ºÀÌ ³ó¾÷ »ý¸í°øÇÐ, ¹ÙÀÌ¿À¿¬·á »ý»ê, È¿¼Ò °øÇп¡ ÅëÇյǸ鼭 ½ÃÀå¿¡ »õ·Î¿î ¼ºÀå ±âȸ¸¦ °¡Á®¿À°í ÀÖ½À´Ï´Ù.

Æ÷½ºÆ÷¾Æ¹Ìµå ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

Æ÷½ºÆ÷¾Æ¹Ìµå ½ÃÀåÀÇ ¼ºÀåÀº À¯ÀüÀÚ ÀÇÇÐÀÇ ¹ßÀü, ÇÙ»ê ±â¹Ý ÀǾàǰ ½ÂÀÎ Áõ°¡, ÇÕ¼º »ý¹°ÇÐ ÀÀ¿ë ºÐ¾ß È®´ë µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù.

ÁÖ¿ä ¼ºÀå ¿äÀÎ Áß Çϳª´Â RNA ±â¹Ý Ä¡·áÁ¦ ¹× ¹é½Å¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡ÀÔ´Ï´Ù. mRNA ¹é½Å Ç÷§ÆûÀÇ ¼º°øÀº RNA°¡ ½ÇÇà °¡´ÉÇÑ Ä¡·á ¼ö´ÜÀÓÀ» Áõ¸íÇϰí, Á¦¾àȸ»çµéÀÌ RNA °£¼·(RNAi) Ä¡·á, ÀÚ°¡ÁõÆø RNA(saRNA) ¹é½Å, ¿øÇü RNA(circRNA) ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇß½À´Ï´Ù. ÀÌ ¶§¹®¿¡ RNA ÇÕ¼º, È­ÇÐÀû º¯Çü, ³ª³ëÀÔÀÚ Á¦Á¦¿ëÀ¸·Î Á¶Á¤µÈ Æ÷½ºÆ÷¾Æ¹ÌŸÀÌÆ® ½Ã¾à¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

DNA/RNA ÀÚµ¿ÇÕ¼º±âÀÇ ±â¼ú ¹ßÀüµµ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù. °í󸮷® ¿Ã¸®°í´ºÅ¬·¹¿ÀƼµå ÇÕ¼º±âÀÇ µµÀÔÀ¸·Î ¸ÂÃãÇü ÇÙ»ê »ý»êÀÇ È¿À²¼ºÀÌ Çâ»óµÇ¾î ¿¬±¸ÀÚµéÀº Á¤¹ÐÇÏ°Ô º¯ÇüµÈ ´õ ±æ°í º¹ÀâÇÑ RNA ºÐÀÚ¸¦ »ý¼ºÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. Æ÷½ºÆ÷¾Æ¹Ì´ÙÀÌÆ® Á¦Á¶¾÷ü´Â °í󸮷® ÇÕ¼º ¿ëµµ¸¦ Áö¿øÇϱâ À§ÇØ ½Ã¾àÀÇ ¼øµµ, ¾ÈÁ¤¼º ¹× º¸Á¸¼º Çâ»ó¿¡ ÁßÁ¡À» µÎ°í ÀÖ½À´Ï´Ù.

¶ÇÇÑ, ÇÙ»ê ±â¹Ý ÀǾàǰ¿¡ ´ëÇÑ ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀÎÀÌ È®´ëµÇ°í ÀÖ´Â °Íµµ ½ÃÀå ¼ö¿ä¸¦ °­È­Çϰí ÀÖ½À´Ï´Ù. FDA, EMA µî ±ÔÁ¦ ±â°üÀº ¿©·¯ ¾ÈƼ¼¾½º ¿Ã¸®°í´ºÅ¬·¹¿ÀƼµå, siRNA ±â¹Ý ÀǾàǰ, À¯ÀüÀÚ ÆíÁý Ä¡·áÁ¦¸¦ ½ÂÀÎÇÏ¿© ¿Ã¸®°í´ºÅ¬·¹¿ÀƼµå ±â¹Ý ÀǾàǰÀÇ »ó¾÷Àû °¡´É¼ºÀ» °­È­Çϰí ÀÖ½À´Ï´Ù. RNA Ä¡·áÁ¦ ¹× À¯ÀüÀÚ Ä¡·á ºÐ¾ß¿¡ ÁøÃâÇÏ´Â ±â¾÷ÀÌ ´Ã¾î³²¿¡ µû¶ó °íǰÁú Æ÷½ºÆ÷¾Æ¹Ìµå ½Ã¾à¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

Áö¼Ó°¡´É¼º°ú ģȯ°æ È­Çп¡ ´ëÇÑ ³ë·Âµµ Æ÷½ºÆ÷¾Æ¹Ìµå »ý»ê¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ Æ÷½ºÆ÷¾Æ¹Ì´ÙÀÌÆ® ±â¹Ý È­ÇÐÇÕ¼ºÀ» ´ëüÇÒ ¼ö Àִ ģȯ°æ ±â¼ú·Î ¹«¿ë¸Å DNA ÇÕ¼º ±â¼úÀ̳ª È¿¼Ò DNA ÇÕ¼º ±â¼úÀÌ ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº ¾ÆÁ÷ Ãʱ⠴ܰ迡 ÀÖÁö¸¸, ±â¾÷µéÀº ¾÷°è ÀüüÀÇ È¯°æ ¸ñÇ¥¿¡ ºÎÇÕÇϱâ À§ÇØ º¸´Ù Áö¼Ó °¡´ÉÇÑ ½Ã¾à ¹èÇÕ°ú ȯ°æ ģȭÀû ÀÎ ÇÕ¼º ¹æ¹ý¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

À¯Çü(DNA Æ÷½ºÆ÷¶ó¹Ì´ÙÀÌÆ®, RNA Æ÷½ºÆ÷¶ó¹Ì´ÙÀÌÆ®, Ç¥Áö Æ÷½ºÆ÷¶ó¹Ì´ÙÀÌÆ®, ¼ö½Ä Æ÷½ºÆ÷¶ó¹Ì´ÙÀÌÆ®, ±âŸ), ¿ëµµ(Drug Discovery °³¹ß, Áø´Ü °³¹ß, ±âŸ), ÃÖÁ¾ ¿ëµµ(Á¦¾à ±â¾÷ ¹× ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö ±â¾÷, Çмú±â°ü ¹× ¿¬±¸±â°ü, ±âŸ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Phosphoramidite Market to Reach US$1.6 Billion by 2030

The global market for Phosphoramidite estimated at US$1.1 Billion in the year 2024, is expected to reach US$1.6 Billion by 2030, growing at a CAGR of 6.3% over the analysis period 2024-2030. DNA Phosphoramidites, one of the segments analyzed in the report, is expected to record a 7.4% CAGR and reach US$662.7 Million by the end of the analysis period. Growth in the RNA Phosphoramidites segment is estimated at 4.4% CAGR over the analysis period.

The U.S. Market is Estimated at US$306.5 Million While China is Forecast to Grow at 10.1% CAGR

The Phosphoramidite market in the U.S. is estimated at US$306.5 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$336.0 Million by the year 2030 trailing a CAGR of 10.1% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 3.0% and 6.2% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 4.1% CAGR.

Phosphoramidite Market: Key Trends & Drivers Summarized

Why Is Phosphoramidite a Crucial Component in Nucleic Acid Synthesis?

Phosphoramidite chemistry plays a fundamental role in the synthesis of DNA, RNA, and oligonucleotides, making it a critical reagent in molecular biology, pharmaceutical research, and genetic engineering. Phosphoramidites are reactive intermediates used in solid-phase synthesis, a method widely employed in the production of synthetic oligonucleotides for PCR, gene editing, antisense therapies, siRNA (small interfering RNA), and CRISPR-based gene editing technologies.

As synthetic biology, gene therapies, and personalized medicine gain traction, demand for high-purity phosphoramidites has surged. Pharmaceutical companies, biotech firms, and academic research institutions rely on phosphoramidite chemistry to produce custom DNA and RNA sequences, which are essential for diagnostic assays, vaccine development, and targeted drug delivery systems. Additionally, next-generation sequencing (NGS) and RNA therapeutics have expanded the application scope of phosphoramidites, further driving market growth.

What Are the Key Trends Driving the Phosphoramidite Market?

The phosphoramidite market is undergoing rapid expansion, fueled by advancements in genetic medicine, synthetic biology, and nucleic acid-based therapeutics. Several key trends are shaping the industry's growth trajectory.

One of the most significant trends is the increasing demand for nucleic acid-based therapeutics, particularly mRNA vaccines, antisense oligonucleotides (ASOs), and small interfering RNA (siRNA) therapies. The success of mRNA-based COVID-19 vaccines has demonstrated the potential of synthetic RNA, boosting demand for modified and unmodified phosphoramidites used in large-scale RNA production. As mRNA-based cancer immunotherapies, personalized vaccines, and rare disease treatments gain momentum, phosphoramidite manufacturers are scaling up production capacity to meet growing industry needs.

Another important trend is the rise of CRISPR and gene editing technologies. CRISPR-based systems rely on synthetic guide RNA (gRNA) molecules, which are synthesized using phosphoramidite chemistry. The expansion of gene editing research, cell and gene therapy applications, and precision medicine is driving demand for high-purity, specialty phosphoramidites designed for therapeutic applications.

The next-generation sequencing (NGS) and molecular diagnostics sectors are also key drivers of phosphoramidite consumption. NGS platforms use synthetic oligonucleotides as sequencing primers and adapters, necessitating the large-scale production of modified phosphoramidites with enhanced stability and efficiency. With the growing adoption of liquid biopsy diagnostics, personalized genomics, and pathogen detection assays, phosphoramidite-based reagents are becoming indispensable in clinical and research settings.

Additionally, chemical modifications and specialty phosphoramidites are expanding application possibilities. Fluorescent-labeled phosphoramidites, bioconjugated derivatives, and locked nucleic acid (LNA) phosphoramidites are enabling the development of advanced molecular probes, real-time PCR assays, and RNA-based therapeutics. The customization of phosphoramidite reagents for high-throughput screening (HTS), drug discovery, and nanoparticle-based drug delivery systems is further driving market innovation.

How Are End-Use Applications Influencing the Phosphoramidite Market?

The diverse applications of phosphoramidites span multiple industries, including pharmaceuticals, biotechnology, molecular diagnostics, and synthetic biology. Each sector presents unique requirements, influencing the development and production of specialized phosphoramidite reagents.

The pharmaceutical and biotech industries represent the largest consumers of phosphoramidites, particularly for oligonucleotide-based drug development. Companies developing antisense oligonucleotides (ASOs), siRNA drugs, aptamer-based therapeutics, and mRNA vaccines rely on phosphoramidite chemistry for precise oligonucleotide synthesis. The FDA’s approval of multiple RNA-based therapies, such as patisiran (for hereditary ATTR amyloidosis) and nusinersen (for spinal muscular atrophy), has accelerated investments in phosphoramidite-based drug development.

In molecular diagnostics and genomics, phosphoramidite-based oligonucleotides are essential components of PCR primers, sequencing probes, microarrays, and gene expression assays. The demand for high-fidelity, modified nucleotides has increased with the rise of point-of-care diagnostics, infectious disease screening, and cancer biomarker detection. As liquid biopsy technologies and at-home genetic testing kits become mainstream, phosphoramidite suppliers are expanding their offerings to meet diverse application needs.

The synthetic biology sector is another rapidly growing market for phosphoramidites. Scientists are engineering custom DNA and RNA sequences to create genetically modified organisms (GMOs), bioengineered enzymes, and synthetic metabolic pathways for industrial and environmental applications. The integration of phosphoramidite-based DNA synthesis into agricultural biotechnology, biofuel production, and enzyme engineering is opening new growth opportunities for the market.

What Factors Are Driving the Growth of the Phosphoramidite Market?

The growth in the phosphoramidite market is driven by multiple factors, including advancements in genetic medicine, increasing nucleic acid-based drug approvals, and the expansion of synthetic biology applications.

One of the primary growth drivers is the rising demand for RNA-based therapeutics and vaccines. The success of mRNA vaccine platforms has validated RNA as a viable therapeutic modality, encouraging pharmaceutical companies to invest in RNA interference (RNAi) therapies, self-amplifying RNA (saRNA) vaccines, and circular RNA (circRNA) technologies. This has led to increased demand for phosphoramidite reagents tailored for RNA synthesis, chemical modifications, and nanoparticle formulation.

Technological advancements in automated DNA/RNA synthesizers are also propelling market growth. The introduction of high-throughput oligonucleotide synthesizers has improved the efficiency of custom nucleic acid production, enabling researchers to generate longer, more complex RNA molecules with precise modifications. Manufacturers of phosphoramidites are focusing on improving reagent purity, stability, and shelf life to support high-throughput synthesis applications.

Additionally, the expanding regulatory approval of nucleic acid-based drugs is strengthening market demand. Regulatory agencies such as the FDA and EMA have approved multiple antisense oligonucleotides, siRNA-based drugs, and gene-editing therapies, reinforcing the commercial viability of oligonucleotide-based pharmaceuticals. As more companies enter the RNA therapeutics and gene therapy space, the demand for high-quality phosphoramidite reagents is expected to surge.

Sustainability and green chemistry initiatives are also influencing phosphoramidite production. Solvent-free and enzymatic DNA synthesis technologies are emerging as eco-friendly alternatives to traditional phosphoramidite-based chemical synthesis. While these technologies are still in their early stages, companies are investing in more sustainable reagent formulations and greener synthesis methods to align with industry-wide environmental goals.

SCOPE OF STUDY:

The report analyzes the Phosphoramidite market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (DNA Phosphoramidites, RNA Phosphoramidites, Labeled Phosphoramidites, Modifier Phosphoramidites, Others); Application (Drug Discovery & Development, Diagnostics Development, Others); End-Use (Pharma & Biotech Companies, Academic & Research Institutes, Others)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 39 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â