¼¼°èÀÇ ÁöÁú ³ª³ëÀÔÀÚ ¿ø·á ½ÃÀå
Lipid Nanoparticle Raw Materials
»óǰÄÚµå : 1777382
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 368 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,195,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,585,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ÁöÁú ³ª³ëÀÔÀÚ ¿ø·á ½ÃÀåÀº 2030³â±îÁö 2¾ï 9,830¸¸ ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 2¾ï 3,010¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ÁöÁú ³ª³ëÀÔÀÚ ¿ø·á ¼¼°è ½ÃÀåÀº 2030³â¿¡´Â 2¾ï 9,830¸¸ ´Þ·¯¿¡ À̸£°í, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 4.4%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ÀÌ¿ÂÈ­ °¡´É ÁöÁúÀº CAGR 4.2%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 1¾ï 8,090¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ½Ã¾à ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR 5.1%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 6,270¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR8.0%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ÁöÁú ³ª³ëÀÔÀÚ ¿ø·á ½ÃÀåÀº 2024³â¿¡´Â 6,270¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 6,140¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 8.0%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 1.8%¿Í 3.4%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 2.6%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.

¼¼°è ÁöÁú ³ª³ëÀÔÀÚ ¿ø·á ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ Á¤¸®

ÁöÁú ³ª³ëÀÔÀÚ°¡ ¾à¹° Àü´Þ ¹× »ý¸í°øÇÐ ºÐ¾ß¿¡¼­ °¢±¤¹Þ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?

ÁöÁú ³ª³ëÀÔÀÚ(LNP)´Â mRNA ±â¹Ý ¹é½Å, À¯ÀüÀÚ Ä¡·á ¹× Ç¥Àû ¾à¹° Àü´Þ ½Ã½ºÅÛÀ» À§ÇÑ ¸Å¿ì È¿À²ÀûÀÎ ¿î¹Ýü ¿ªÇÒÀ» ÇÔÀ¸·Î½á ¾à¹° Àü´Þ ¹× »ý¸í°øÇп¡ Çõ¸íÀ» ÀÏÀ¸Ä×½À´Ï´Ù. LNP´Â ÇÙ»êÀ̳ª ´Ü¹éÁú°ú °°Àº ±úÁö±â ½¬¿î »ýü ºÐÀÚ¸¦ ĸ½¶È­ÇÏ¿© º¸È£ÇÒ ¼ö ÀÖ´Â ´É·ÂÀ¸·Î ÀÎÇØ ÃֽŠÀǾàǰ Á¦Á¦¿¡¼­ Áß¿äÇÑ ±¸¼º ¿ä¼Ò·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù. Äڷγª19 ÆÒµ¥¹ÍÀº ÁöÁú ³ª³ëÀÔÀÚÀÇ Ã¤ÅÃÀ» °¡¼ÓÈ­½ÃÄ×°í, ƯÈ÷ È­ÀÌÀÚ ¹ÙÀÌ¿À¾ØÅ×Å©¿Í ModernaÀÇ mRNA ¹é½ÅÀÇ ¼º°øÀº LNP ±â¹Ý Àü´Þ ¸ÞÄ¿´ÏÁò¿¡ Å©°Ô ÀÇÁ¸Çß½À´Ï´Ù. ±âÁ¸ÀÇ ¾à¹° Àü´Þü¿Í ´Þ¸® LNP´Â ¾ÈÁ¤¼ºÀ» ³ôÀ̰í, »ýü ÀÌ¿ë·üÀ» °³¼±Çϰí, Ç¥ÀûÈ­µÈ ¹æÃâÀ» ÅëÇØ Àü½Å µ¶¼ºÀ» ÁÙÀ̰í, Ä¡·á È¿°ú¸¦ Çâ»ó½Ãŵ´Ï´Ù. Á¤¹ÐÀÇ·á¿Í °³ÀθÂÃãÇü ÀǾàǰ¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ LNP ±â¼úÀÇ ¿¬±¸°³¹ß¿¡ ´õ¿í ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ³ª³ë±â¼ú°ú ÁöÁúÈ­ÇÐÀÇ ¹ßÀüÀ¸·Î ¾Ï Ä¡·á, Èñ±Í À¯ÀüÁúȯ, °¨¿°Áúȯ µî ´Ù¾çÇÑ Ä¡·á ¿ëµµ¿¡ ¸Â´Â °íµµ·Î ƯȭµÈ LNP Á¦Á¦ÀÇ Á¦Á¶°¡ °¡´ÉÇØÁ³½À´Ï´Ù. Á¦¾à¾÷°èÀÇ LNP ÀÇÁ¸µµ°¡ ³ô¾ÆÁö¸é¼­ ÀÌ¿ÂÈ­ °¡´É ÁöÁú, ÀÎÁöÁú, ÄÝ·¹½ºÅ×·Ñ, PEGÈ­ ÁöÁú µî LNP Á¦Á¦ ÃÖÀûÈ­¿¡ ÇʼöÀûÀÎ °íǰÁú ¿ø·á¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù.

ÁöÁú ³ª³ë ÀÔÀÚÀÇ Çõ½ÅÀ» ÃËÁøÇÏ´Â ÁÖ¿ä ¿ø·á´Â ¹«¾ùÀΰ¡?

ÁöÁú ³ª³ëÀÔÀÚ ½ÃÀåÀº ¿ø·áÀÇ Á¤È®ÇÑ È¥ÇÕ¿¡ ÀÇÁ¸Çϰí ÀÖÀ¸¸ç, °¢ ¿ø·á´Â ÃÖÁ¾ Á¦Á¦ÀÇ ¾ÈÁ¤¼º, È¿À²¼º ¹× »ýü ÀûÇÕ¼ºÀ» À¯ÁöÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÀÌ¿ÂÈ­ °¡´ÉÇÑ ÁöÁúÀº LNP°¡ ÇÙ»êÀ» È¿À²ÀûÀ¸·Î ĸ½¶È­ÇÏ¿© ¼¼Æ÷ ³»·Î Èí¼öµÉ ¶§ ¹æÃâÇÒ ¼ö ÀÖµµ·Ï ÇÏ´Â Áß¿äÇÑ ¼ººÐÀÔ´Ï´Ù. ÀÌ¿ÂÈ­ °¡´ÉÇÑ ÁöÁúÀÇ Áö¼ÓÀûÀÎ ÃÖÀûÈ­¸¦ ÅëÇØ mRNA ¹é½Å ¹× À¯ÀüÀÚ Ä¡·áÀÇ È¿´ÉÀ» °³¼±Çϰí, ÇÊ¿äÇÑ ¿ë·®À» ÁÙÀ̸ç, ¸é¿ª ¹ÝÀÀÀ» ÃÖ¼ÒÈ­Çϰí ÀÖ½À´Ï´Ù. ÀÎÁöÁúÀº ±¸Á¶ ¾ÈÁ¤Á¦ ¿ªÇÒÀ» ÇÏ¿© LNPÀÇ ¹«°á¼ºÀ» º¸ÀåÇÏ°í »ýü¸·°úÀÇ »óÈ£ÀÛ¿ëÀ» ÃËÁøÇÕ´Ï´Ù. ¶Ç ´Ù¸¥ Çʼö ¼ººÐÀÎ ÄÝ·¹½ºÅ×·ÑÀº ÁöÁú ÀÌÁßÃþÀÇ °­¼ºÀ» ³ôÀ̰í, ³ª³ëÀÔÀÚÀÇ ¾ÈÁ¤¼º°ú Ç÷·ù ³» ¼øÈ¯ ½Ã°£À» °³¼±ÇÕ´Ï´Ù. PEGÈ­ ÁöÁú(Æú¸®¿¡Æ¿·»±Û¸®ÄÝ ÁöÁú)Àº ¸é¿ª ÀνÄÀ» ÀúÇϽÃ۰í, ü³»¿¡¼­ÀÇ ºü¸¥ Ŭ¸®¾î·±½º¸¦ ¹æÁöÇϸç, LNP ±â¹Ý ¾à¹°ÀÇ ¹Ý°¨±â¸¦ ¿¬Àå½Ãŵ´Ï´Ù. ¶ÇÇÑ, ¿¬±¸ÁøÀº Àü´Þ È¿À²À» ³ôÀ̰í Á¶Á÷ ³» Àå±â ÃàÀûÀ» ÃÖ¼ÒÈ­Çϱâ À§ÇØ »ýºÐÇØ¼º ÁöÁú, ÀÚ±Ø ¹ÝÀÀ¼º ÁöÁú°ú °°Àº Â÷¼¼´ë ÁöÁúÀ» ¿¬±¸Çϰí ÀÖ½À´Ï´Ù. °í¼øµµ ÀǾàǰ¿ë ÁöÁú¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó Á¦¾à¾÷°èÀÇ ¾ö°ÝÇÑ ±ÔÁ¦ ¿ä°ÇÀ» ÃæÁ·½Ãų ¼ö ÀÖ´Â Àü¹® °ø±Þ¾÷ü¿Í Á¦Á¶¾÷ü°¡ È®´ëµÇ°í ÀÖ½À´Ï´Ù.

±â¼ú ¹ßÀüÀº ÁöÁú ³ª³ë ÀÔÀÚ Á¦Á¶¸¦ ¾î¶»°Ô Çü¼ºÇϰí Àִ°¡?

ÁöÁú ³ª³ëÀÔÀÚ Á¦Á¶´Â ±â¼úÀûÀ¸·Î Å©°Ô ¹ßÀüÇÏ¿© È®À强, ÀçÇö¼º, ºñ¿ë È¿À²¼ºÀÌ ³ôÀº Á¦Á¶ °øÁ¤À» ½ÇÇöÇϰí ÀÖ½À´Ï´Ù. °¡Àå ÁÖ¸ñÇÒ ¸¸ÇÑ ±â¼ú Çõ½Å Áß Çϳª´Â ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º ±â¹Ý LNP ÇÕ¼ºÀ¸·Î, À̸¦ ÅëÇØ ³ª³ë ÀÔÀÚÀÇ Å©±â, ±ÕÀϼº, ĸ½¶È­ È¿À²À» Á¤¹ÐÇÏ°Ô Á¦¾îÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ ±â¼úÀº ¹èÄ¡ °£ ÆíÂ÷¸¦ ÃÖ¼ÒÈ­Çϸ鼭 ³ôÀº 󸮷®À» »ý»êÇÒ ¼ö ÀÖ¾î ´ë±Ô¸ð ¹é½Å ¹× ÀǾàǰ »ý»ê¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ¶ÇÇÑ, AI¸¦ Ȱ¿ëÇÑ Á¦Çü ¼³°è ¹× °è»ê ¸ðµ¨¸µÀ» ÅëÇØ ƯÁ¤ ¾à¹° Àü´Þ ¿ëµµ¿¡ ÃÖÀûÈ­µÈ »õ·Î¿î ÁöÁú ±¸Á¶ÀÇ ¹ß°ßÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀ» ÁöÁú ½ºÅ©¸®´× ÇÁ·Î¼¼½º¿¡ ÅëÇÕÇÏ¿© Á¦Á¦ °³¹ß ±â°£À» Å©°Ô ´ÜÃàÇϰí LNP ±â¹Ý ½Å¾àÀÇ »ó¿ëÈ­¸¦ °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °í¼Ó ¾×ü Å©·Î¸¶Åä±×·¡ÇÇ(HPLC), Áú·®ºÐ¼®±â µî ÁöÁú Á¤Á¦ ¹× Ư¼º Æò°¡ ±â¼úÀÇ ¹ßÀüÀ¸·Î ¿ø·áÀÇ Àϰü¼º°ú ǰÁúÀÌ Çâ»óµÇ¾î ±ÔÁ¦ Áؼö ¹× Á¦Ç° ¾ÈÀü¼ºÀÌ È®º¸µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¿¬¼Ó Á¦Á¶ ±â¼úÀÇ µµÀÔÀ¸·Î ÁöÁú ³ª³ëÀÔÀÚÀÇ Á¦Á¶°¡ ÇÕ¸®È­µÇ¾î ºñ¿ë Àý°¨°ú È¿À²¼ºÀÌ Çâ»óµÇ¾ú½À´Ï´Ù. ÀÌ ºÐ¾ßÀÇ ¶Ç ´Ù¸¥ Å« ¹ßÀüÀº ÁöÁúÀÇ È¿¼Ò ÇÕ¼ºÀ» ÀÌ¿ëÇÑ ¹ÙÀÌ¿À Á¦Á¶ Á¢±Ù¹ýÀÇ ÃâÇöÀ¸·Î, ±âÁ¸ÀÇ È­ÇÐ ÇÕ¼º¿¡ ´ëÇÑ Áö¼Ó °¡´ÉÇϰí ȯ°æ ģȭÀûÀÎ ´ë¾ÈÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú ¹ßÀüÀº ¿©·¯ Ä¡·á ºÐ¾ß¿¡¼­ ÁöÁú ³ª³ëÀÔÀÚ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

ÁöÁú ³ª³ë ÀÔÀÚ ¿ø·á ¼ö¿ä¸¦ ÃËÁøÇÏ´Â ÁÖ¿ä ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎÀº ¹«¾ùÀΰ¡?

ÁöÁú ³ª³ë ÀÔÀÚ ¿ø·á ½ÃÀåÀÇ ¼ºÀåÀº mRNA ±â¹Ý Ä¡·áÁ¦ÀÇ Ã¤Åà Áõ°¡, À¯ÀüÀÚ ÆíÁý ±â¼úÀÇ È®´ë, Ç¥Àû ¾à¹° Àü´ÞÀÌ ÇÊ¿äÇÑ ¸¸¼º ÁúȯÀÇ À¯º´·ü Áõ°¡ µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. LNP ±â¹Ý Äڷγª19 ¹é½ÅÀÇ ¼º°øÀº Â÷¼¼´ë LNP ±â¹Ý Ä¡·áÁ¦ÀÇ ½Å¼ÓÇÑ °³¹ß ¹× ½ÂÀÎÀ» ¾Õ´ç°Ü °íǰÁú ÁöÁú ¿ø·á¿¡ ´ëÇÑ ¼ö¿ä¸¦ °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ¾Ï, Èñ±Í À¯Àü Áúȯ, ´ë»ç¼º Áúȯ µîÀÇ Áõ»ó¿¡ ´ëÇÑ RNA ±â¹Ý Ä¡·á ÆÄÀÌÇÁ¶óÀÎ Áõ°¡´Â ÁöÁú ³ª³ëÀÔÀÚ ½Ã½ºÅÛ¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ´õ¿í ³ôÀ̰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, CRISPR-Cas9 ±â¹Ý À¯ÀüÀÚ ÆíÁýÀ» Æ÷ÇÔÇÑ ¼¼Æ÷ ¹× À¯ÀüÀÚ Ä¡·á ÀÀ¿ë ºÐ¾ß°¡ È®´ëµÇ¸é¼­ °íÈ¿À² ¹× »ýüÀûÇÕ¼º ÁöÁú ij¸®¾îÀÇ Çʿ伺ÀÌ ´ëµÎµÇ°í ÀÖ½À´Ï´Ù. Á¦¾àȸ»ç¿Í ÇаèÀÇ ³ª³ëÀÇÇÐ ¿¬±¸¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡´Â LNP Á¦Á¦ÀÇ ²÷ÀÓ¾ø´Â °³¼±À» ÃËÁøÇÏ¿© º¸´Ù È¿°úÀûÀÌ°í ¾ÈÀüÇÑ Ä¡·á¹ýÀ» °¡Á®¿À°í ÀÖ½À´Ï´Ù. FDA ¹× EMA¿Í °°Àº ±â°üÀÌ LNP ±â¹Ý Ä¡·áÁ¦¿¡ ´ëÇÑ ÇÕ¸®ÀûÀÎ ½ÂÀÎ °æ·Î¸¦ Á¦°øÇÔ¿¡ µû¶ó ÷´Ü ¾à¹° Àü´Þ ½Ã½ºÅÛ¿¡ ´ëÇÑ ±ÔÁ¦Àû Áö¿øµµ ½ÃÀå ¼ºÀå¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, LNP Á¦Á¶¸¦ Àü¹®À¸·Î ÇÏ´Â °³¹ß ¹× Á¦Á¶¼öʱâ°ü(CDMO)ÀÇ µîÀåÀ¸·Î °íǰÁú ÁöÁú ¿ø·á¿¡ ´ëÇÑ Á¢±Ù¼ºÀÌ È®´ëµÇ¾î Á¦¾à»çµéÀº È¿À²ÀûÀ¸·Î »ý»ê·®À» È®´ëÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, ÀǾàǰ Á¦Á¶ÀÇ Áö¼Ó°¡´É¼º°ú ±×¸° Äɹ̽ºÆ®¸®¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ »ýºÐÇØ¼º ÁöÁú°ú õ¿¬ À¯·¡ ÁöÁú¿¡ ´ëÇÑ ¿¬±¸°¡ Ȱ¹ßÈ÷ ÀÌ·ç¾îÁö°í ÀÖÀ¸¸ç, À̴ ȯ°æ ºÎÇϸ¦ ÁÙÀ̱â À§ÇÑ ¾÷°èÀÇ ³ë·Â°ú ÀÏÄ¡ÇÕ´Ï´Ù. ÇâÈÄ ÁöÁú ±â¹Ý ¾à¹° Àü´Þ ½Ã½ºÅÛÀÇ Áö¼ÓÀûÀÎ ÁøÈ­´Â ÇÕ¼º »ý¹°ÇÐ ¹× ³ª³ë ÀǾàǰÀÇ ¹ßÀü°ú ÇÔ²² ÁöÁú ³ª³ë ÀÔÀÚ ¿ø·á ½ÃÀåÀÇ Ãß°¡ Çõ½ÅÀ» ÃËÁøÇϰí Çö´ë ÀǾàǰ °³¹ßÀÇ ÇÙ½É ¿ªÇÒÀ» È®°íÈ÷ÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ºÎ¹®

À¯Çü(ÀÌ¿ÂÈ­ °¡´É ÁöÁú, Á¶»ç ½Ã¾à, ±âŸ ¿øÀç·á), ÀûÀÀ Áúȯ(¾Ï, °¨¿°Áõ, Ç÷¾×Áúȯ, ±âŸ), ÃÖÁ¾»ç¿ëÀÚ(Á¦¾à ±â¾÷ ¹× ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö ±â¾÷, Çмú±â°ü ¹× ¿¬±¸±â°ü, ±âŸ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇÕ´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Lipid Nanoparticle Raw Materials Market to Reach US$298.3 Million by 2030

The global market for Lipid Nanoparticle Raw Materials estimated at US$230.1 Million in the year 2024, is expected to reach US$298.3 Million by 2030, growing at a CAGR of 4.4% over the analysis period 2024-2030. Ionizable lipids, one of the segments analyzed in the report, is expected to record a 4.2% CAGR and reach US$180.9 Million by the end of the analysis period. Growth in the Reagents segment is estimated at 5.1% CAGR over the analysis period.

The U.S. Market is Estimated at US$62.7 Million While China is Forecast to Grow at 8.0% CAGR

The Lipid Nanoparticle Raw Materials market in the U.S. is estimated at US$62.7 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$61.4 Million by the year 2030 trailing a CAGR of 8.0% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 1.8% and 3.4% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 2.6% CAGR.

Global Lipid Nanoparticle Raw Materials Market - Key Trends & Drivers Summarized

Why Are Lipid Nanoparticles Gaining Prominence in Drug Delivery and Biotechnology?

Lipid nanoparticles (LNPs) have revolutionized drug delivery and biotechnology by serving as highly efficient carriers for mRNA-based vaccines, gene therapies, and targeted drug delivery systems. Their ability to encapsulate and protect fragile biomolecules, such as nucleic acids and proteins, has positioned them as a critical component in modern pharmaceutical formulations. The COVID-19 pandemic accelerated the adoption of lipid nanoparticles, particularly with the success of mRNA vaccines from Pfizer-BioNTech and Moderna, which relied heavily on LNP-based delivery mechanisms. Unlike traditional drug delivery vehicles, LNPs provide enhanced stability, improved bioavailability, and targeted release, reducing systemic toxicity and improving therapeutic efficacy. The increasing focus on precision medicine and personalized drug formulations has further fueled research and development in LNP technology. Additionally, advancements in nanotechnology and lipid chemistry have enabled the production of highly specialized LNP formulations tailored for diverse therapeutic applications, including cancer therapy, rare genetic disorders, and infectious diseases. The pharmaceutical industry's growing reliance on LNPs has driven a surge in demand for high-quality raw materials, such as ionizable lipids, phospholipids, cholesterol, and PEGylated lipids, which are essential for optimizing LNP formulations.

What Are the Key Raw Materials Driving Lipid Nanoparticle Innovations?

The lipid nanoparticle market relies on a precise blend of raw materials, each playing a crucial role in maintaining the stability, efficiency, and biocompatibility of the final formulation. Ionizable lipids are a critical component, allowing LNPs to encapsulate nucleic acids efficiently and release them upon cellular uptake. The continuous optimization of ionizable lipids has improved the effectiveness of mRNA vaccines and gene therapies, reducing the required dosage and minimizing immune responses. Phospholipids act as structural stabilizers, ensuring the integrity of LNPs and facilitating their interaction with biological membranes. Cholesterol, another essential component, enhances lipid bilayer rigidity, improving nanoparticle stability and circulation time in the bloodstream. PEGylated lipids (polyethylene glycol lipids) reduce immune recognition, preventing rapid clearance from the body and extending the half-life of LNP-based drugs. Additionally, researchers are exploring next-generation lipids, such as biodegradable lipids and stimuli-responsive lipids, to enhance delivery efficiency and minimize long-term accumulation in tissues. The growing demand for high-purity, pharmaceutical-grade lipids has led to the expansion of specialized suppliers and manufacturers capable of meeting the stringent regulatory requirements of the pharmaceutical industry.

How Are Technological Advancements Shaping Lipid Nanoparticle Manufacturing?

The production of lipid nanoparticles has undergone significant technological advancements, ensuring scalable, reproducible, and cost-effective manufacturing processes. One of the most notable innovations is microfluidic-based LNP synthesis, which enables precise control over nanoparticle size, uniformity, and encapsulation efficiency. This technique allows for high-throughput production while minimizing batch-to-batch variability, making it ideal for large-scale vaccine and drug manufacturing. Additionally, AI-driven formulation design and computational modeling are accelerating the discovery of novel lipid structures optimized for specific drug delivery applications. The integration of machine learning algorithms into lipid screening processes has significantly reduced formulation development timelines, expediting the commercialization of new LNP-based therapeutics. Moreover, advancements in lipid purification and characterization techniques, such as high-performance liquid chromatography (HPLC) and mass spectrometry, have improved the consistency and quality of raw materials, ensuring regulatory compliance and product safety. The increasing adoption of continuous manufacturing techniques has also streamlined the production of lipid nanoparticles, reducing costs and enhancing efficiency. Another major development in the field is the emergence of biomanufacturing approaches that utilize enzymatic synthesis of lipids, offering a sustainable and eco-friendly alternative to traditional chemical synthesis. These technological advancements are playing a crucial role in meeting the rising demand for lipid nanoparticles across multiple therapeutic areas.

What Are the Key Market Drivers Fueling the Demand for Lipid Nanoparticle Raw Materials?

The growth in the lipid nanoparticle raw materials market is driven by several factors, including the increasing adoption of mRNA-based therapeutics, the expansion of gene editing technologies, and the rising prevalence of chronic diseases requiring targeted drug delivery. The success of LNP-based COVID-19 vaccines has set a precedent for the rapid development and approval of next-generation LNP-based therapies, accelerating demand for high-quality lipid raw materials. The growing pipeline of RNA-based treatments for conditions such as cancer, rare genetic disorders, and metabolic diseases has further increased reliance on lipid nanoparticle systems. Additionally, the expansion of cell and gene therapy applications, including CRISPR-Cas9-based gene editing, has fueled the need for highly efficient and biocompatible lipid carriers. The increasing investment in nanomedicine research by pharmaceutical companies and academic institutions has driven continuous improvements in LNP formulations, leading to more effective and safer therapies. Regulatory support for advanced drug delivery systems has also played a key role in market growth, with agencies such as the FDA and EMA providing streamlined approval pathways for LNP-based therapeutics. Furthermore, the rise of contract development and manufacturing organizations (CDMOs) specializing in LNP production has expanded access to high-quality lipid raw materials, enabling pharmaceutical companies to scale up production efficiently. The growing focus on sustainability and green chemistry in drug manufacturing has also led to increased research into biodegradable and naturally derived lipids, aligning with industry efforts to reduce environmental impact. Looking ahead, the continued evolution of lipid-based drug delivery systems, combined with advancements in synthetic biology and nanomedicine, is expected to drive further innovation in the lipid nanoparticle raw materials market, cementing its role as a cornerstone of modern pharmaceutical development.

SCOPE OF STUDY:

The report analyzes the Lipid Nanoparticle Raw Materials market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (Ionizable lipids, Reagents, Other Raw Materials); Disease Indication (Cancer, Infectious Diseases, Blood Diseases, Others); End-Use (Pharma & Biotech Companies, Academic & Research Institutes, Others)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 32 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â