¼¼°èÀÇ Àü±âÈ­ÇÐ ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ ½ÃÀå
Electrochemical Energy Storage Systems
»óǰÄÚµå : 1775066
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 294 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,239,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,719,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°è Àü±âÈ­ÇÐ ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ ½ÃÀåÀº 2030³â±îÁö 4,270¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 1,211¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â Àü±âÈ­ÇÐ ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 23.4%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 4,270¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¸®Æ¬ ÀÌ¿ÂÀº CAGR26.1%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 1,971¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ³ªÆ®·ý Ȳ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR 22.4%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº ¾à 330¾ï ´Þ·¯, Áß±¹Àº CAGR 31.5%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Àü±âÈ­ÇÐ ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ ½ÃÀåÀº 2024³â¿¡ 330¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 1,049¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 31.5%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 18.5%¿Í 21.1%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 19.7%·Î ¼ºÀåÇÒ Àü¸ÁÀÔ´Ï´Ù.

¼¼°è Àü±âÈ­ÇÐ ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ ¿ä¾à

Àü±âÈ­ÇÐ ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛÀÌ ¼¼°è ¿¡³ÊÁö ÀüȯÀÇ Áß½ÉÀÌ µÇ°í ÀÖ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?

ÁÖ·Î ¹èÅ͸® ±â¼ú·Î ±¸¼ºµÈ Àü±âÈ­ÇÐ ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ(ESS)Àº ºÐ»êÇü, Żź¼ÒÈ­, µðÁöÅÐÈ­µÈ ¿¡³ÊÁö ½Ã½ºÅÛÀ¸·ÎÀÇ ÀüȯÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ±â¹Ý ÀÎÇÁ¶ó·Î ºü¸£°Ô ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº Àü±â ¿¡³ÊÁö¸¦ È­ÇÐÀû ÇüÅ·ΠÀúÀåÇß´Ù°¡ ³ªÁß¿¡ ¹æÀüÇÏ¿© ¼ÛÀü¸Á ¾ÈÁ¤È­, Àç»ý¿¡³ÊÁö ÅëÇÕ, ÇÇÅ© Â÷´Ü Áö¿ø, »ê¾÷, »ó¾÷ ¹× ÁÖ°Å ºÎ¹® Àü¹ÝÀÇ ¿¡³ÊÁö ź·Â¼º ½ÇÇö¿¡ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Àü±âÈ­ÇÐ ½Ã½ºÅÛÀº ±â°è½Ä ¹× ¿­½Ä ÃàÀüÁö¿Í ´Þ¸® ºü¸¥ ÀÀ´ä ½Ã°£, ³ôÀº ¿¡³ÊÁö ¹Ðµµ, ¸ðµâ½Ä È®À强À» °®Ãß°í ÀÖ¾î ±×¸®µå ±Ô¸ð ÃàÀü ¹× ºñÇÏÀÎµå ´õ ¹ÌÅÍ ¿ëµµ¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. Àü ¼¼°èÀûÀ¸·Î °£ÇæÀûÀΠž籤 ¹× dz·Â¿¡³ÊÁöÀÇ º¸±ÞÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ESS´Â º¯µ¿¼ºÀ» ¿ÏÈ­Çϰí À׿© Àü·ÂÀ» ÀúÀåÇÏ¸ç ¿øÈ°ÇÑ ºÎÇÏ ±ÕÇüÀ» º¸ÀåÇϱâ À§ÇØ µµÀԵǰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¿î¼Û, »ê¾÷ °øÁ¤, ºÐ»êÇü ¹ßÀüÀÇ Àü±âÈ­·Î ÀÎÇØ ¿¡³ÊÁö Â÷ÀͰŷ¡, Á֯ļö Á¶Á¤, ¿ÀÇÁ ±×¸®µå Àü·Â °ø±ÞÀ» Áö¿øÇÒ ¼ö Àִ ÷´Ü ¹èÅ͸® ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Àü±âÈ­ÇÐ ESS´Â ¶ÇÇÑ ¸¶ÀÌÅ©·Î±×¸®µå, ¹é¾÷ ½Ã½ºÅÛ, ¸ð¹ÙÀÏ ÆÄ¿ö À¯´ÖÀÇ Áß¿äÇÑ ¿øµ¿·Â ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ±¹°¡ ¿¡³ÊÁö ¾Èº¸, ¹èÃâ °¨¼Ò, µðÁöÅÐ ÀÎÇÁ¶ó¿¡¼­ ESSÀÇ Àü·«Àû °¡Ä¡°¡ ³ô¾ÆÁü¿¡ µû¶ó ESS´Â º¸¿ÏÀûÀÎ Àڻ꿡¼­ Çö´ë ¿¡³ÊÁö »ýŰèÀÇ ÇÙ½É ±¸¼º ¿ä¼Ò·Î ¹ßÀüÇϰí ÀÖ½À´Ï´Ù.

È­ÇÐÀÇ ¹ßÀü°ú ¿£Áö´Ï¾î¸µÀÇ Çõ½ÅÀº ESSÀÇ ¼º´É Çâ»óÀ» ¾î¶»°Ô ÃËÁøÇϰí Àִ°¡?

Àü±âÈ­ÇÐ ¿¡³ÊÁö ÀúÀåÀÇ ±â¼ú ¹ßÀüÀº ¿¡³ÊÁö ¹Ðµµ, Ãæ¹æÀü ÁÖ±â, ¿­ ¾ÈÁ¤¼º, kWh´ç ºñ¿ë µîÀÇ ¼º´ÉÀ» Å©°Ô Çâ»ó½ÃÄ×½À´Ï´Ù. ¸®Æ¬ À̿ ¹èÅ͸®´Â NMC, LFP, ½Ç¸®ÄÜ-ź¼Ò º¹ÇÕÀç¿Í °°Àº ¾ç±Ø ¹× À½±Ø Àç·áÀÇ Çõ½ÅÀ¸·Î ¿¡³ÊÁö ¹× ¾ÈÀü¼º ÇÁ·ÎÆÄÀÏÀÌ ¸ðµÎ Çâ»óµÇ¾î ½ÃÀåÀ» °è¼Ó Áö¹èÇϰí ÀÖ½À´Ï´Ù. °íü ¹èÅ͸®´Â ´õ ³ôÀº ¿¡³ÊÁö ¹Ðµµ¿Í °¡¿¬¼º À§Çè °¨¼Ò¸¦ ½ÇÇöÇÒ ¼ö ÀÖ´Â ÀáÀç·ÂÀ¸·Î ÀÎÇØ, ƯÈ÷ °íÁ¤Çü°ú e-¸ðºô¸®Æ¼ÀÇ Å©·Î½º¿À¹ö ¿ëµµ¿¡¼­ Àα⸦ ²ø°í ÀÖ½À´Ï´Ù. ·¹µ¶½º ÇÃ·Î¿ì ¹èÅ͸®´Â ¼ö¸íÀÌ ±æ°í Àü·Â ¹× ¿¡³ÊÁöÀÇ ½ºÄÉÀϸµÀÌ ºÐ¸®µÇ¾î ÀÖ´Â °ÍÀ¸·Î ¾Ë·ÁÁ® ÀÖÀ¸¸ç, Àå½Ã°£ÀÇ ±×¸®µå ½ºÅ丮Áö¿¡ äÅõǰí ÀÖ½À´Ï´Ù. ÇÑÆí, ³ªÆ®·ý À̿ ¹èÅ͸®, °ø±â-¾Æ¿¬ ¹èÅ͸®, ÇÏÀ̺긮µå ±Ý¼Ó ¹èÅ͸®´Â ¸®Æ¬ ±â¹Ý È­ÇÐ ¹°ÁúÀ» ´ëüÇÒ ¼ö ÀÖ´Â ºñ¿ë È¿À²ÀûÀ̰í ÀÚ¿øÀÌ Ç³ºÎÇÑ ¹èÅ͸®·Î °³¹ßÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ½Ã½ºÅÛ Â÷¿øÀÇ Çõ½Å¿¡´Â ÷´Ü ¹èÅ͸® °ü¸® ½Ã½ºÅÛ(BMS), ¿­ °ü¸® ÀåÄ¡, ÅëÇÕ ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º µîÀÌ Æ÷ÇԵǸç, º¯µ¿ÇÏ´Â ºÎÇÏ¿Í ¿Âµµ¿¡¼­ ¾ÈÀüÇϰí ÃÖÀûÈ­µÈ ÀÛµ¿À» º¸ÀåÇÕ´Ï´Ù. Ç÷¯±× ¾Ø Ç÷¹ÀÌ ±â´ÉÀ» °®Ãá Á¶¸³½Ä ¸ðµâ½Ä ÄÁÅ×À̳ÊÇü ESS À¯´ÖÀº ¼³Ä¡ ½Ã°£°ú ¼³Ä¡ÀÇ º¹À⼺À» ÁÙ¿©ÁÖ¸ç, AI ±â¹Ý ¼º´É ºÐ¼®, »óÅ ¸ð´ÏÅ͸µ, µðÁöÅÐ Æ®À© ¸ðµ¨ ÅëÇÕÀº ¿¹Ãø À¯Áöº¸¼ö ¹× ¼ö¸íÁÖ±â ÃÖÀûÈ­¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Çõ½ÅÀº Àü·Âȸ»ç, »ó¾÷¿ë, ÁÖ°Å¿ë ½ÃÀå¿¡¼­ Àü±âÈ­ÇÐ ÀúÀåÀåÄ¡ÀÇ ¿î¿µ °¡´É¼º°ú °æÀï·ÂÀ» È®ÀåÇϰí ÀÖ½À´Ï´Ù.

¾î¶² ºÐ¾ßÀÇ ¿ä±¸¿Í Á¤Ã¥ ¸ÞÄ¿´ÏÁòÀÌ Àü ¼¼°èÀûÀ¸·Î Àü±âÈ­ÇÐ ESSÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí Àִ°¡?

Àü±âÈ­ÇÐ ESSÀÇ µµÀÔÀº Á¤Ã¥Àû Àǹ«È­, ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©, ±×¸®°í ÁÖ¿ä ºÎ¹®ÀÇ ÁøÈ­ÇÏ´Â ¿¡³ÊÁö »ç¿ë ÆÐÅÏ¿¡ ÀÇÇØ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. Àü·Âȸ»çµéÀº ±×¸®µå ÀÎÇÁ¶ó ¾÷µ¥ÀÌÆ®¸¦ ¿¬±âÇϰí, Àç»ý¿¡³ÊÁö ÅëÇÕÀ» °³¼±Çϰí, ¿¡³ÊÁö ÀúÀå Àǹ«¸¦ ÁؼöÇϱâ À§ÇØ ESS¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. »ê¾÷ ½Ã¼³µéÀº ¼ö¿ä ¿ä±Ý Àý°¨, Àü·Â ½Å·Ú¼º Çâ»ó, ûÁ¤ ¿¡³ÊÁö ºÎÇÏ ÀüȯÀ» ÅëÇÑ Å»Åº¼ÒÈ­ ¸ñÇ¥¸¦ Áö¿øÇϱâ À§ÇØ ºñÇÏÀÎµå ´õ ¹ÌÅÍ ½ºÅ丮Áö¸¦ µµÀÔÇϰí ÀÖ½À´Ï´Ù. »ó¾÷¿ë °Ç¹°, µ¥ÀÌÅͼ¾ÅÍ, Ä·ÆÛ½º¿¡¼­´Â °èÅë Á¤Àü ½Ã ¿¬¼Ó¼ºÀ» º¸ÀåÇÏ°í ¼ö¿ä¹ÝÀÀ ÇÁ·Î±×·¥¿¡ Âü¿©Çϱâ À§ÇØ ESS¸¦ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ÁÖÅà ºÐ¾ß¿¡¼­´Â ƯÈ÷ ³Ý¹ÌÅ͸µÀÌ ´Ü°èÀûÀ¸·Î ÆóÁöµÇ´Â ½ÃÀåÀ̳ª »ç¿ë½Ã°£ °¡°ÝÁ¦µµ°¡ ½ÃÇàµÇ´Â ½ÃÀå¿¡¼­ ¿Á»ó ž籤 ¹ßÀü + ÃàÀü ½Ã½ºÅÛÀÌ º¸ÆíÈ­µÇ°í ÀÖ½À´Ï´Ù. °¢±¹ Á¤ºÎ´Â ½ÃÀå °³Ã´À» °¡¼ÓÈ­Çϱâ À§ÇØ ¿ë·® ¸ñÇ¥, Àμ¾Æ¼ºê ÇÁ·Î±×·¥, ÃàÀü Á¶´Þ Àǹ«È­ µîÀ» ±ÔÁ¤Çϰí ÀÖ½À´Ï´Ù. ¹Ì±¹ÀÇ ÃàÀü ÅõÀÚ ¼¼¾×°øÁ¦, EUÀÇ ±×¸°µô, ÀεµÀÇ »ý»ê¿¬°è Àμ¾Æ¼ºê(PLI) Á¦µµ µîÀÌ ±× ¿¹ÀÔ´Ï´Ù. ¿¡³ÊÁö ½ÃÀå ÀÚÀ¯È­ ¹× µ¶¸³Çü ¼­ºñ½º ½ÃÀåÀÇ µµÀÔÀ¸·Î ESS »ç¾÷ÀÚ´Â Á֯ļö Á¦¾î, Àü¾Ð Áö¿ø, ºí·¢½ºÅ¸Æ® ±â´É µîÀÇ ±×¸®µå ¼­ºñ½º¸¦ ÅëÇØ ¼öÀÍÀ» âÃâÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, Áö¼Ó°¡´É¼º°ú ¿¬°èµÈ ÀÚ±Ý Á¶´Þ°ú ±â¾÷ÀÇ ESG ¸ñÇ¥°¡ Àü±âÈ­ÇÐ ½ºÅ丮Áö¸¦ µ¿·Â¿øÀ¸·Î ÇÏ´Â ¹«°øÇØ ¹é¾÷ ¹× ºÐ»êÇü ¿¡³ÊÁö ½Ã½ºÅÛ¿¡ ´ëÇÑ ÅõÀÚ¿¡ ´ëÇÑ µ¿±â¸¦ ºÎ¿©Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Èû¿¡ ÈûÀÔ¾î ESS´Â ±ú²ýÇϰí À¯¿¬Çϸç ź·ÂÀûÀÎ Àü·Â ½Ã½ºÅÛÀ» ±¸ÇöÇϴ Ⱦ´ÜÀûÀÎ Á¸Àç·Î °­È­µÇ°í ÀÖ½À´Ï´Ù.

±â¼ú ¹× Áö¿ªÀ» ÃÊ¿ùÇÑ Àü±âÈ­ÇÐ ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ ½ÃÀåÀÇ ¼ºÀå µ¿·ÂÀº ¹«¾ùÀΰ¡?

Àü±âÈ­ÇÐ ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ ½ÃÀåÀÇ ¼ºÀåÀº ûÁ¤ ¿¡³ÊÁö¿¡ ´ëÇÑ ÅõÀÚ, Àü·Â¸Á Çö´ëÈ­, ±³Åë ¹× ÀÎÇÁ¶óÀÇ Àü±âÈ­¶ó´Â ±³Â÷ÇÏ´Â Ãß¼¼¿¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. Àç»ý¿¡³ÊÁö ¹ßÀü, ƯÈ÷ ž籤 ¹× dz·Â ¹ßÀüÀÇ ±Þ¼ÓÇÑ È®´ë·Î ÀÎÇØ ¼ÛÀü¸ÁÀÇ ½Å·Ú¼º°ú °æÁ¦¼ºÀ» º¸ÀåÇϱâ À§ÇØ È®Àå °¡´ÉÇÑ ºÐ»êÇü Àü·Â ÀúÀå¿¡ ´ëÇÑ ¿ä±¸°¡ µ¿½Ã¿¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Á¦Á¶ ±Ô¸ðÀÇ È®´ë¿Í Àç·áÀÇ Çõ½ÅÀ¸·Î ¹èÅ͸® ºñ¿ëÀÌ ³·¾ÆÁö°í °èÅ뿬°è ½ÃÀå°ú Off-grid ½ÃÀå Àü¹Ý¿¡ °ÉÃÄ µµÀÔ À庮ÀÌ ³·¾ÆÁö°í ÀÖ½À´Ï´Ù. °ø°ø ¹× ¹Î°£ ±³Åë¼ö´ÜÀÇ Àü±âÈ­´Â ±Þ¼Ó ÃæÀü ÀÎÇÁ¶ó, Â÷·® °ü¸®, V2G(Vehicle-to-Grid) ¿î¿µÀ» Áö¿øÇÏ´Â °íÁ¤Çü ESS¿¡ ´ëÇÑ ´ë±Ô¸ð 2Â÷ ¼ö¿ä¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. °³¹ßµµ»ó±¹ÀÇ ¿¡³ÊÁö Á¢±Ù¼º ÀÌ´Ï¼ÅÆ¼ºê´Â ¹èÅ͸® ±â¹Ý ¸¶ÀÌÅ©·Î±×¸®µå¸¦ Ȱ¿ëÇÏ¿© ¿Üµý Áö¿ª°ú ¼Ò¿ÜµÈ Áö¿ª»çȸ¿¡ Àü·ÂÀ» °ø±ÞÇϰí ÀÖ½À´Ï´Ù. ºÏ¹Ì, À¯·´, µ¿¾Æ½Ã¾Æ µîÀÇ Áö¿ªÀº À¯¸®ÇÑ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©, À¯Æ¿¸®Æ¼ »ç¾÷ÀÚÀÇ Àǹ«, ±âÈÄ º¯È­ ´ëÀÀÀ» ÅëÇØ °³¹ßÀ» ÁÖµµÇϰí ÀÖÀ¸¸ç, ½ÅÈï±¹ ½ÃÀåÀº ±¹Á¦ °³¹ß ÀÚ±ÝÀ» Ȱ¿ëÇÏ¿© ÀúÀå ±â¹Ý ûÁ¤ ¿¡³ÊÁö ÇÁ·ÎÁ§Æ®¸¦ °Ç¼³Çϰí ÀÖ½À´Ï´Ù. ¿¡³ÊÁö ÀúÀå, µðÁöÅÐ Á¦¾î ½Ã½ºÅÛ, ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º °£ÀÇ Áߺ¹ÀÌ È®´ëµÇ°í ÀÖ´Â °Íµµ »ýŰèÀÇ ¼ö·Å°ú Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼¸¦ Á¾ÇÕÇϸé, Àü±âÈ­ÇÐ ÀúÀå ½Ã½ºÅÛÀº Żź¼ÒÈ­ ¹× ºÐ»êÈ­µÈ ¼¼°è ¿¡³ÊÁö ȯ°æ¿¡¼­ ÇʼöÀûÀÎ ºôµù ºí·ÏÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

±â¼ú(¸®Æ¬ÀÌ¿Â, ³ªÆ®·ý Ȳ, ³³ÃàÀüÁö, ÇÃ·Î¿ì ¹èÅ͸®, ±âŸ), ¿ëµµ(Àü·Â ¿¡³ÊÁö ŸÀÓ½ÃÈÄÆ®, Àü·Â °ø±Þ ´É·Â, ºí·¢ ½ºÅ¸Æ®, Àç»ý¿¡³ÊÁö ¿ë·® Áõ°­, Á֯ļö Á¶Á¤, ±âŸ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

¿ì¸®´Â °ËÁõ µÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼­, ½ÃÀå°ú °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ Å¥·¹ÀÌÆ®µÈ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Electrochemical Energy Storage Systems Market to Reach US$427.0 Billion by 2030

The global market for Electrochemical Energy Storage Systems estimated at US$121.1 Billion in the year 2024, is expected to reach US$427.0 Billion by 2030, growing at a CAGR of 23.4% over the analysis period 2024-2030. Lithium-Ion, one of the segments analyzed in the report, is expected to record a 26.1% CAGR and reach US$197.1 Billion by the end of the analysis period. Growth in the Sodium Sulfur segment is estimated at 22.4% CAGR over the analysis period.

The U.S. Market is Estimated at US$33.0 Billion While China is Forecast to Grow at 31.5% CAGR

The Electrochemical Energy Storage Systems market in the U.S. is estimated at US$33.0 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$104.9 Billion by the year 2030 trailing a CAGR of 31.5% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 18.5% and 21.1% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 19.7% CAGR.

Global Electro-Chemical Energy Storage Systems Market - Key Trends & Drivers Summarized

Why Are Electro-Chemical Energy Storage Systems Becoming Central to the Global Energy Transition?

Electro-chemical energy storage systems (ESS), primarily comprising battery technologies, are rapidly emerging as foundational infrastructure for enabling the shift toward decentralized, decarbonized, and digitized energy systems. These systems store electrical energy in chemical form for later discharge, playing a pivotal role in stabilizing power grids, integrating renewable energy, supporting peak shaving, and enabling energy resilience across industrial, commercial, and residential sectors. Unlike mechanical or thermal storage, electro-chemical systems offer fast response times, high energy density, and modular scalability-making them ideal for grid-scale storage as well as behind-the-meter applications. As the penetration of intermittent solar and wind energy increases globally, ESS are being deployed to mitigate variability, store surplus generation, and ensure smooth load balancing. Furthermore, the electrification of transport, industrial processes, and distributed generation is reinforcing demand for advanced battery systems that can support energy arbitrage, frequency regulation, and off-grid power supply. Electro-chemical ESS also serve as critical enablers for microgrids, backup systems, and mobile power units. Their growing strategic value in national energy security, emissions reduction, and digital infrastructure is elevating them from a complementary asset to a core component of the modern energy ecosystem.

How Are Chemistry Advancements and Engineering Innovations Driving ESS Performance Gains?

Technological advancements in electro-chemical energy storage are significantly improving performance attributes such as energy density, charge/discharge cycles, thermal stability, and cost per kWh. Lithium-ion batteries continue to dominate the market, with innovations in cathode and anode materials-such as NMC, LFP, and silicon-carbon composites-enhancing both energy and safety profiles. Solid-state batteries are gaining traction for their potential to deliver higher energy densities and reduced flammability risk, especially in stationary and e-mobility crossover applications. Redox flow batteries, known for their long cycle life and decoupled power/energy scaling, are being adopted for long-duration grid storage. Meanwhile, sodium-ion, zinc-air, and hybrid metal batteries are under accelerated development as cost-effective and resource-abundant alternatives to lithium-based chemistries. System-level innovations include advanced battery management systems (BMS), thermal management units, and integrated power electronics that ensure safe and optimized operation across variable loads and temperatures. Modular containerized ESS units, prefabricated with plug-and-play capabilities, are reducing deployment time and installation complexity. Integration of AI-based performance analytics, state-of-health monitoring, and digital twin models is enabling predictive maintenance and life-cycle optimization. These innovations are broadening the operational viability and competitiveness of electro-chemical storage across utility, commercial, and residential markets.

What Sectoral Needs and Policy Mechanisms Are Driving the Adoption of Electro-Chemical ESS Globally?

Electro-chemical ESS adoption is being accelerated by policy mandates, regulatory frameworks, and evolving energy use patterns across critical sectors. Utilities are investing in ESS to defer grid infrastructure upgrades, improve renewable integration, and comply with energy storage mandates. Industrial facilities are deploying behind-the-meter storage to reduce demand charges, increase power reliability, and support decarbonization targets through clean energy load shifting. Commercial buildings, data centers, and campuses are using ESS to ensure continuity during grid outages and to participate in demand response programs. In residential segments, rooftop solar-plus-storage systems are becoming more common, especially in markets with net metering phase-outs or time-of-use pricing. National governments are establishing capacity targets, incentive programs, and storage procurement mandates to accelerate market development-examples include the U.S. Investment Tax Credit for energy storage, the EU Green Deal, and India’s Production-Linked Incentive (PLI) scheme. Energy market liberalization and the introduction of ancillary services markets are allowing ESS operators to monetize grid services such as frequency control, voltage support, and black start capabilities. Additionally, sustainability-linked financing and corporate ESG goals are motivating investment in zero-emission backup and distributed energy systems powered by electro-chemical storage. These forces are reinforcing ESS as a cross-cutting enabler of clean, flexible, and resilient power systems.

What Is Driving the Growth of the Electro-Chemical Energy Storage Systems Market Across Technologies and Geographies?

The growth in the electro-chemical energy storage systems market is driven by intersecting trends in clean energy investment, grid modernization, and electrification of transport and infrastructure. Rapid expansion of renewable energy capacity-especially solar and wind-is generating a parallel need for scalable, dispatchable storage to ensure grid reliability and economic efficiency. Falling battery costs, driven by manufacturing scale and material innovations, are lowering the barriers to adoption across grid-connected and off-grid markets. Electrification of public and private transportation is creating massive secondary demand for stationary ESS to support fast charging infrastructure, fleet management, and vehicle-to-grid (V2G) operations. Energy access initiatives in developing regions are utilizing battery-based microgrids to power remote and underserved communities. Regions such as North America, Europe, and East Asia are leading deployments due to favorable regulatory frameworks, utility mandates, and climate commitments, while emerging markets are leveraging international development funding to build storage-backed clean energy projects. The growing overlap between energy storage, digital control systems, and power electronics is also fostering ecosystem convergence and innovation. Collectively, these trends are positioning electro-chemical energy storage systems as indispensable building blocks in the decarbonized and distributed global energy landscape.

SCOPE OF STUDY:

The report analyzes the Electrochemical Energy Storage Systems market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Technology (Lithium-Ion, Sodium Sulfur, Lead Acid, Flow Battery, Others); Application (Electric Energy Time Shift, Electric Supply Capacity, Black Start, Renewable Capacity Firming, Frequency Regulation, Others)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 42 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â