¼¼°èÀÇ ÀÚ¿¬ÀçÇØ °¨Áö IoT ½ÃÀå
Natural Disaster Detection IoT
»óǰÄÚµå : 1775028
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 386 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,239,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,719,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°è ÀÚ¿¬ÀçÇØ °¨Áö IoT ½ÃÀåÀº 2030³â±îÁö 31¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 5¾ï 3,830¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ÀÚ¿¬ÀçÇØ °¨Áö IoT ¼¼°è ½ÃÀåÀº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 33.8%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 31¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ÀÚ¿¬ÀçÇØ °¨Áö IoT Çϵå¿þ¾î´Â CAGR 30.9%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 13¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÚ¿¬ÀçÇØ °¨Áö IoT ¼Ö·ç¼Ç ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 34.5%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 1¾ï 4,670¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 43.3%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ÀÚ¿¬ÀçÇØ °¨Áö IoT ½ÃÀåÀº 2024³â¿¡ 1¾ï 4,670¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â°£ CAGR 43.3%·Î 2030³â±îÁö 7¾ï 8,320¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 27.7%¿Í 30.3%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 28.6%·Î ¼ºÀåÇÒ Àü¸ÁÀÔ´Ï´Ù.

¼¼°è ÀÚ¿¬ÀçÇØ °¨Áö IoT ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ Á¤¸®

IoT´Â ÀÚ¿¬ÀçÇØ °¨Áö ¹× Á¶±â °æº¸ ½Ã½ºÅÛ¿¡ ¾î¶² Çõ¸íÀ» °¡Á®¿Ã °ÍÀΰ¡?

»ç¹°ÀÎÅͳÝ(IoT)ÀÌ ÀÚ¿¬ÀçÇØ °¨Áö ½Ã½ºÅÛ¿¡ ÅëÇյǸ鼭 Á¤ºÎ, ÀÀ±Þ ¼­ºñ½º ¹× Áö¿ª »çȸ°¡ Àç³­À» ¿¹Ãø, ¸ð´ÏÅ͸µ ¹× ´ëÀÀÇÏ´Â ¹æ½ÄÀÌ ¹Ù²î°í ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ Àç³­ °¨Áö ¹æ¹ýÀº °í¸³µÈ ¼¾¼­ ³×Æ®¿öÅ©, ±â»ó ¸ðµ¨, ÁöÁø ¸ð´ÏÅ͸µ ½ºÅ×À̼ǿ¡ ÀÇÁ¸ÇÏ¿© ½Ç½Ã°£ ¿¬°á¼º°ú ¿¹Ãø ºÐ¼®ÀÌ ºÎÁ·ÇÑ °æ¿ì°¡ ¸¹¾ÒÀ¸³ª, IoT ±â¹Ý ½Ã½ºÅÛÀº »óÈ£ ¿¬°áµÈ ¼¾¼­, µå·Ð, µå·Ð, À§¼º ¿µ»ó, ÀΰøÁö´É(AI)À» Ȱ¿ëÇϰí, ³ôÀº Á¤È®µµ¿Í ½Ç½Ã°£ Àç³­ ¿¹ÃøÀ» Á¦°øÇÕ´Ï´Ù. ½Ç½Ã°£À¸·Î Á¤È®ÇÑ Àç³­ ¿¹ÃøÀ» Á¦°øÇÔÀ¸·Î½á Àç³­¿¡ ´ëÇÑ ´ëºñ¸¦ Å©°Ô °­È­Çß½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº Àç³­ÀÌ ¹ß»ýÇϱ⠽¬¿î Áö¿ª¿¡ ¼¾¼­ ³ëµå¸¦ ¹èÄ¡ÇÏ°í ¿Âµµ, ½Àµµ, ÁöÁø Ȱµ¿, ÇØ¾ç ÆÄµµ ÆÐÅÏ µîÀÇ È¯°æ ÆÄ¶ó¹ÌÅ͸¦ ¸ð´ÏÅ͸µÇÏ¿© ÁöÁø, ¾²³ª¹Ì, »êºÒ, Ç㸮ÄÉÀÎ µîÀ» Á¶±â¿¡ ¹ß°ßÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý µ¥ÀÌÅÍ Ã³¸®´Â °ú°Å ÆÐÅϰú ½ÇÁ¦ ȯ°æ ÀÔ·ÂÀ» ÅëÇÕÇÏ¿© ¿¹Ãø ¸ðµ¨À» ´õ¿í Á¤±³ÇÏ°Ô ¸¸µé¾î ´ç±¹ÀÌ Àû½Ã¿¡ ´ëÇÇ °æº¸¸¦ ¹ß·ÉÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ½º¸¶Æ®½ÃƼÀÇ ºÎ»óÀ¸·Î Àç³­ °ü¸®¿¡ IoT µµÀÔÀÌ °¡¼ÓÈ­µÇ°í ÀÖÀ¸¸ç, °¢±¹ Á¤ºÎ´Â Àç³­ ´ëÀÀ ºÎ¼­¿Í ÇÇÇØ Áö¿ª »çȸ °£ÀÇ ÀÚµ¿È­µÈ ½Ç½Ã°£ Åë½ÅÀ» ÃËÁøÇÏ´Â °ß°íÇÑ ÀÎÇÁ¶ó¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ±×·¯³ª Á¤ÀüÀ̳ª ÀÎÇÁ¶ó ºØ±«·Î ÀÎÇØ ¿¬°áÀÌ ²÷±æ ¼ö ÀÖ´Â Àç³­ Áö¿ª°ú °°Àº °¡È¤ÇÑ »óȲ¿¡¼­ IoT ³×Æ®¿öÅ©ÀÇ ³»°áÇÔ¼ºÀ» º¸ÀåÇÏ´Â °ÍÀº ¿©ÀüÈ÷ °úÁ¦·Î ³²¾ÆÀÖ½À´Ï´Ù. ¿§Áö ÄÄÇ»ÆÃ, AI ±â¹Ý ºÐ¼®, À§¼º ±â¹Ý IoT ³×Æ®¿öÅ©ÀÇ Áö¼ÓÀûÀÎ ¹ßÀüÀº Àç³­ °¨Áö ½Ã½ºÅÛÀÇ È¿À²¼ºÀ» ´õ¿í °­È­ÇÏ¿© º¸´Ù ½Å¼ÓÇϰí Á¤È®ÇÑ ±ä±Þ ´ëÀÀÀ» °¡´ÉÇÏ°Ô ÇÒ °ÍÀ¸·Î ±â´ëµË´Ï´Ù.

IoT Àç³­ ¸ð´ÏÅ͸µ °­È­¿¡¼­ À§¼º°ú AI ±â¼úÀÇ ¿ªÇÒÀº?

À§¼º ±â¼ú°ú IoT ³×Æ®¿öÅ©ÀÇ À¶ÇÕÀ¸·Î ÀÚ¿¬ÀçÇØ °¨ÁöÀÇ Á¤È®¼º°ú È®À强ÀÌ Å©°Ô Çâ»óµÇ¾ú½À´Ï´Ù. Àú±Ëµµ(LEO) À§¼º°ú Áö»óÀÇ IoT ¼¾¼­ ³ëµå¸¦ °áÇÕÇÏ¿© ÀáÀçÀûÀÎ Àç³­À» ³ªÅ¸³»´Â Áö°¢ÆÇ º¯µ¿, ºñÁ¤»óÀûÀÎ ÇØ¾ç ÆÐÅÏ, ±â¾Ð º¯µ¿À» °¨ÁöÇÒ ¼ö ÀÖ´Â Á¾ÇÕÀûÀÎ ¸ð´ÏÅ͸µ ½Ã½ºÅÛÀ» ±¸ÃàÇÒ ¼ö ÀÖÀ¸¸ç, AI ±â¹Ý ¿¹Ãø ºÐ¼®Àº IoT µð¹ÙÀ̽º¿¡¼­ »ý¼ºµÈ ¹æ´ëÇÑ µ¥ÀÌÅÍ ¼¼Æ®¸¦ ó¸®ÇÏ¿© À» ó¸®Çϰí, ÀÓ¹ÚÇÑ Àç¾ÓÀ» ³ªÅ¸³¾ ¼ö ÀÖ´Â ÆÐÅÏÀ» ½Äº°ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. °ú°Å µ¥ÀÌÅ͸¦ ±â¹ÝÀ¸·Î ÈÆ·ÃµÈ ¸Ó½Å·¯´× ¸ðµ¨Àº Ç㸮ÄÉÀÎ, È«¼ö, »ê»çÅÂÀÇ ¹ß»ý °¡´É¼º°ú ½É°¢¼ºÀ» º¸´Ù Á¤È®ÇÏ°Ô ¿¹ÃøÇÒ ¼ö ÀÖ°Ô µÇ¾î ´ç±¹ÀÌ Àû±ØÀûÀ¸·Î ÀÚ¿øÀ» ¹èÄ¡ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ IoT ±â¹Ý Àç³­ ¸ð´ÏÅ͸µ ½Ã½ºÅÛ¿¡ ºí·ÏüÀÎÀ» µµÀÔÇÔÀ¸·Î½á µ¥ÀÌÅÍÀÇ ¹«°á¼ºÀ» º¸ÀåÇϰí Àü ¼¼°è ±â°ü °£ÀÇ ¾ÈÀüÇÑ ½Ç½Ã°£ Åë½ÅÀ» ½ÇÇöÇÒ ¼ö ÀÖ½À´Ï´Ù. ÇÑÆí, ¿­ ¼¾¼­¿Í ÇÏÀÌÆÛ½ºÆåÆ®·³ ¼¾¼­¸¦ žÀçÇÑ µå·Ð ±â¹Ý IoT Ç÷§ÆûÀº »êºÒ °¨Áö¿¡ Çõ¸íÀ» °¡Á®¿ÔÀ¸¸ç, È­Àç ÁøÇà »óȲÀ» ½Ç½Ã°£À¸·Î ¿µ»óÈ­ÇÏ°í ¸ÅÇÎÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº ´ëÀÀ ½Ã°£ ´ÜÃà, Àç»ê ÇÇÇØ °¨¼Ò, ÀÎ¸í ±¸Á¶¿¡ µµ¿òÀÌ µÇ°í ÀÖÀ¸¸ç, AI, IoT, À§¼º Åë½ÅÀÇ °áÇÕÀº Àü ¼¼°è Àç³­ º¹¿ø·ÂÀ» À§ÇÑ °ß°íÇÑ ÇÁ·¹ÀÓ¿öÅ©¸¦ ±¸ÃàÇÏ¿© IoT ±â¹Ý Àç³­ °¨Áö ½ÃÀåÀ» Àü·Ê ¾ø´Â ¼ºÀåÀ¸·Î À̲ø°í ÀÖ½À´Ï´Ù.

IoT ±â¹Ý Àç³­ °¨Áö äÅÃÀÌ Á¤ºÎ ¹× »ê¾÷°è¿¡¼­ ÃßÁø·ÂÀ» ¾ò°í ÀÖ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?

Á¤ºÎ¿Í ¹Î°£±â¾÷Àº ±âÈÄ º¯È­·Î ÀÎÇÑ Àç³­À¸·Î ÀÎÇÑ °æÁ¦Àû, ÀÎÇÁ¶óÀû ¼Õ½ÇÀ» ÁÙÀ̱â À§ÇØ IoT¸¦ Ȱ¿ëÇÑ ÀÚ¿¬ÀçÇØ °¨Áö ½Ã½ºÅÛÀ» ºü¸£°Ô µµÀÔÇϰí ÀÖ½À´Ï´Ù. ÀÌ»ó±âÈÄ¿¡ Ãë¾àÇÑ ±¹°¡µéÀº Àç³­ ´ëºñ¸¦ °­È­Çϰí Áß¿ä ÀÎÇÁ¶ó¸¦ º¸È£Çϱâ À§ÇØ IoT¸¦ Ȱ¿ëÇÑ Á¶±â °æº¸ ½Ã½ºÅÛ¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. º¸Çè»çµéÀº ½Ç½Ã°£ Àç³­ ¸ð´ÏÅ͸µ µ¥ÀÌÅ͸¦ Ȱ¿ëÇÏ¿© À§Çè Æò°¡ ¸ðµ¨À» °³¼±Çϰí, º¸´Ù Á¤È®ÇÑ º¸Çè·á °è»ê°ú º¸Çè±Ý û±¸¸¦ ó¸®ÇÒ ¼ö ÀÖµµ·Ï Çϰí ÀÖ½À´Ï´Ù. ¿¡³ÊÁö ºÐ¾ß¿¡¼­´Â IoT ±â¹Ý Àç³­ °¨Áö°¡ Àü·Â¸Á¿¡ ÅëÇյǾî Ç㸮ÄÉÀÎ, »êºÒ, ÁöÁøÀ¸·Î ÀÎÇÑ È¥¶õÀ» ¿¹ÃøÇϰí ÃÖ¼ÒÈ­ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¸¶Âù°¡Áö·Î ³ó¾÷ ±â¾÷µéµµ IoT ¼¾¼­¸¦ Ȱ¿ëÇÏ¿© °¡¹³°ú È«¼ö·Î À̾îÁú ¼ö ÀÖ´Â ±âÈÄ À̺¯À» ÃßÀûÇÏ¿© ½Ä·® ¾Èº¸¿Í °ø±Þ¸Á º¹¿ø·ÂÀ» º¸ÀåÇϰí ÀÖ½À´Ï´Ù. ÇØ¿î¾÷°è¿Í Ç×°ø¾÷°èµµ ±â»ó À̺¯ ½Ã Ç×ÇØÀÇ ¾ÈÀü¼ºÀ» ³ôÀ̱â À§ÇØ IoT¸¦ Ȱ¿ëÇÑ ±â»ó ¿¹Ãø ½Ã½ºÅÛÀ» µµÀÔÇϰí ÀÖ½À´Ï´Ù. Àç³­ ¸ð´ÏÅ͸µ¿¡ IoTÀÇ Àû¿ëÀÌ È®´ëµÊ¿¡ µû¶ó Àç³­ º¹¿ø·ÂÀ» À§ÇÑ Ç¥ÁØÈ­µÈ ÇÁ·¹ÀÓ¿öÅ©¸¦ °³¹ßÇϱâ À§ÇÑ ÇÏÀÌÅ×Å© ±â¾÷, Á¤ºÎ±â°ü, ¿¬±¸±â°üÀÇ Çù·ÂÀÌ È°¹ßÇØÁö°í ÀÖ½À´Ï´Ù. ±×·¯³ª »óÈ£ ¿¬°áµÈ IoT ½Ã½ºÅÛÀº ÇØÅ·, µ¥ÀÌÅÍ À¯Ãâ, ½Ã½ºÅÛ Àå¾ÖÀÇ ¿µÇâÀ» ¹Þ±â ½±±â ¶§¹®¿¡ »çÀ̹ö º¸¾ÈÀº ¿©ÀüÈ÷ Áß¿äÇÑ °ü½É»ç·Î ³²¾ÆÀÖ½À´Ï´Ù. °íµµÀÇ ¾Ïȣȭ ÇÁ·ÎÅäÄݰú ºÐ»êÇü µ¥ÀÌÅÍ °ü¸®¸¦ ÅëÇØ ÀÌ·¯ÇÑ ¹®Á¦¸¦ ÇØ°áÇÏ´Â °ÍÀÌ ½ÃÀå ¼ºÀåÀ» À¯ÁöÇÏ´Â µ¥ Áß¿äÇÕ´Ï´Ù.

ÀÚ¿¬ÀçÇØ °¨Áö IoT ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ÁÖ¿ä ¿äÀÎÀº?

ÀÚ¿¬ÀçÇØ °¨Áö IoT ½ÃÀåÀÇ ¼ºÀåÀº ±âÈÄ °ü·Ã ÀçÇØÀÇ ºóµµ¿Í ½É°¢¼º Áõ°¡, ½º¸¶Æ® ÀÎÇÁ¶ó¿¡ ´ëÇÑ Á¤ºÎ ÅõÀÚ Áõ°¡, AI ±â¹Ý ¿¹Ãø ºÐ¼®ÀÇ ±Þ¼ÓÇÑ È®´ë µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. ½Ç½Ã°£ µ¥ÀÌÅÍ ¼öÁý ¹× ºÐ¼®¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϸ鼭 ±â¼ú ±â¾÷µéÀº Ȥµ¶ÇÑ Á¶°Ç¿¡¼­µµ ÀÛµ¿ÇÒ ¼ö Àִ ÷´Ü IoT ¼¾¼­¸¦ °³¹ßÇϰí ÀÖÀ¸¸ç, 5G ³×Æ®¿öÅ©ÀÇ º¸±ÞÀº IoT ±â¹Ý Àç³­ ¸ð´ÏÅ͸µÀÇ Ã¤ÅÃÀ» ´õ¿í °¡¼ÓÈ­ÇÏ¿© ´õ ºü¸¥ µ¥ÀÌÅÍ Àü¼Û°ú ½Ç½Ã°£ ¿ø°Ý ¼¾½Ì ±â´ÉÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¿ø°Ý °¨Áö ±â´ÉÀ» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, À§¼º ½Ã½ºÅÛ¿¡ IoT¸¦ ÅëÇÕÇÏ¿© ¿ø°ÝÁö ¹× Àú°³¹ß Áö¿ª¿¡¼­ÀÇ Àç³­ °¨Áö ¹üÀ§¸¦ °­È­ÇÏ¿© Àü ¼¼°è Àç³­ °ü¸®ÀÇ µðÁöÅÐ °ÝÂ÷¸¦ ÇØ¼ÒÇϰí ÀÖ½À´Ï´Ù. º¸Çè»ç ¹× ±ÝÀ¶±â°üÀº À§Çè ¸ðµ¨¸µ ¹× Àç³­ ´ëÀÀ °èȹÀ» À§ÇØ IoT¿¡¼­ »ý¼ºµÈ µ¥ÀÌÅ͸¦ Ȱ¿ëÇϰí ÀÖÀ¸¸ç, ÀÌ´Â ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Àç³­ °¨Áö IoT ¼Ö·ç¼Ç¿¡ ¿§Áö ÄÄÇ»ÆÃÀÌ µµÀԵǸ鼭 ´ë±â ½Ã°£ÀÌ ´ÜÃàµÇ°í ½Ã½ºÅÛ ¾ÈÁ¤¼ºÀÌ Çâ»óµÇ¾î Áï°¢ÀûÀÎ ±ä±Þ ´ëÀÀ¿¡ ´õ¿í È¿°úÀûÀ̸ç, IoT ¼¾¼­°¡ žÀçµÈ ÀÚÀ² µå·ÐÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϸ鼭 ½ÃÀå È®´ë¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ÇÇÇØ Áö¿ª¿¡ ´ëÇÑ ½Å¼ÓÇÑ °øÁß °¨½Ã¿Í Æò°¡¸¦ °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. ±âÈÄ º¯È­¿Í Àç³­ ´ëºñ¿¡ ´ëÇÑ »çȸÀû ÀνÄÀÌ ³ô¾ÆÁö¸é¼­ ½º¸¶Æ® ±â»ó°üÃø¼Ò, °¡Á¤¿ë ÁöÁø°¨Áö±â µî ¼ÒºñÀÚ±Þ IoT Àç³­ ¸ð´ÏÅ͸µ ±â±â¿¡ ´ëÇÑ ¼ö¿äµµ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Áö¼Ó °¡´ÉÇÏ°í °ß°íÇÑ µµ½Ã ÀÎÇÁ¶ó¸¦ ±¸ÃàÇÏ·Á´Â ¼¼°èÀûÀÎ ¿òÁ÷ÀÓÀÌ Áö¼ÓµÇ´Â °¡¿îµ¥, IoT ±â¹Ý ÀÚ¿¬ÀçÇØ °¨Áö ½ÃÀåÀº AI, ¾çÀÚ ÄÄÇ»ÆÃ, À§¼º À̹ÌÁöÀÇ Çõ½ÅÀÌ Àç³­ º¹¿ø·ÂÀÇ ¹Ì·¡¸¦ Çü¼ºÇÏ´Â µ¥ ÀÖ¾î ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ¾î Áö¼ÓÀûÀ¸·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ºÎ¹®

ÄÄÆ÷³ÍÆ®(ÀÚ¿¬ÀçÇØ °¨Áö IoT Çϵå¿þ¾î, ÀÚ¿¬ÀçÇØ °¨Áö IoT ¼Ö·ç¼Ç, ÀÚ¿¬ÀçÇØ °¨Áö IoT ¼­ºñ½º), Åë½Å ½Ã½ºÅÛ(À§¼º Áö¿ø ±â±â, ÀÀ±Þ ±¸Á¶´ë Åø, Â÷·® ´ëÀÀ °ÔÀÌÆ®¿þÀÌ, ±ä±Þ ´ëÀÀ ·¹ÀÌ´õ), ÃÖÁ¾»ç¿ëÀÚ(Á¤ºÎ±â°ü ÃÖÁ¾»ç¿ëÀÚ, ºñ°ø°³ ȸ»ç ÃÖÁ¾»ç¿ëÀÚ, ¹ýÁýÇà±â°ü ÃÖÁ¾»ç¿ëÀÚ, ±¸Á¶´ë ÃÖÁ¾»ç¿ëÀÚ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Natural Disaster Detection IoT Market to Reach US$3.1 Billion by 2030

The global market for Natural Disaster Detection IoT estimated at US$538.3 Million in the year 2024, is expected to reach US$3.1 Billion by 2030, growing at a CAGR of 33.8% over the analysis period 2024-2030. Natural Disaster Detection IoT Hardware, one of the segments analyzed in the report, is expected to record a 30.9% CAGR and reach US$1.3 Billion by the end of the analysis period. Growth in the Natural Disaster Detection IoT Solutions segment is estimated at 34.5% CAGR over the analysis period.

The U.S. Market is Estimated at US$146.7 Million While China is Forecast to Grow at 43.3% CAGR

The Natural Disaster Detection IoT market in the U.S. is estimated at US$146.7 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$783.2 Million by the year 2030 trailing a CAGR of 43.3% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 27.7% and 30.3% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 28.6% CAGR.

Global Natural Disaster Detection IoT Market - Key Trends & Drivers Summarized

How Is IoT Revolutionizing Natural Disaster Detection and Early Warning Systems?

The integration of the Internet of Things (IoT) into natural disaster detection systems has transformed the way governments, emergency services, and communities predict, monitor, and respond to catastrophic events. Traditional disaster detection methods relied on isolated sensor networks, meteorological models, and seismic monitoring stations, which often lacked real-time connectivity and predictive analytics. IoT-enabled systems have significantly enhanced disaster preparedness by leveraging interconnected sensors, drones, satellite imagery, and artificial intelligence (AI) to deliver high-precision, real-time disaster forecasts. These systems deploy sensor nodes in disaster-prone regions to monitor environmental parameters such as temperature, humidity, seismic activity, and oceanic wave patterns, allowing for early detection of earthquakes, tsunamis, wildfires, and hurricanes. Cloud-based data processing further refines predictive models by integrating historical patterns with live environmental inputs, enabling authorities to issue timely evacuation alerts. The rise of smart cities has accelerated IoT adoption in disaster management, with governments investing in robust infrastructure to facilitate automated, real-time communication between disaster response units and affected communities. However, challenges remain in ensuring the resilience of IoT networks in extreme conditions, particularly in disaster-affected areas where power outages and infrastructure collapse may hinder connectivity. The continued advancement of edge computing, AI-driven analytics, and satellite-based IoT networks is expected to further strengthen the effectiveness of disaster detection systems, enabling quicker and more accurate emergency responses.

What Role Do Satellite and AI Technologies Play in Enhancing IoT Disaster Monitoring?

The fusion of satellite technology with IoT networks has significantly improved the accuracy and scalability of natural disaster detection. Low Earth orbit (LEO) satellites, coupled with ground-based IoT sensor nodes, provide a comprehensive monitoring system capable of detecting shifts in tectonic plates, abnormal oceanic patterns, and variations in atmospheric pressure that indicate potential disasters. AI-driven predictive analytics play a crucial role in processing the massive datasets generated by IoT devices, identifying patterns that may indicate an impending catastrophe. Machine learning models trained on historical data can now predict the likelihood and severity of hurricanes, floods, and landslides with greater precision, allowing authorities to deploy resources proactively. The implementation of blockchain in IoT-based disaster monitoring systems is also gaining traction, ensuring data integrity and secure real-time communication between global agencies. Meanwhile, drone-based IoT platforms equipped with thermal and hyperspectral sensors have revolutionized wildfire detection, offering real-time imaging and mapping of fire progression. These advancements are instrumental in minimizing response time, reducing property damage, and saving lives. The combination of AI, IoT, and satellite communication is establishing a robust framework for global disaster resilience, pushing the market for IoT-enabled disaster detection towards unprecedented growth.

Why Is the Adoption of IoT-Based Disaster Detection Gaining Momentum Among Governments and Industries?

Governments and private enterprises are rapidly adopting IoT-driven natural disaster detection systems to mitigate economic and infrastructural losses caused by climate change-induced catastrophes. Countries vulnerable to extreme weather events are investing in IoT-powered early warning systems to improve disaster preparedness and protect critical infrastructure. Insurance companies are leveraging real-time disaster monitoring data to refine risk assessment models, enabling more accurate premium calculations and claim processing. In the energy sector, IoT-based disaster detection is being integrated into power grids to predict and minimize disruptions caused by hurricanes, wildfires, and earthquakes. Similarly, agricultural enterprises are using IoT sensors to track climate anomalies that may lead to droughts or floods, ensuring food security and supply chain resilience. The maritime and aviation industries are also deploying IoT-powered weather prediction systems to enhance navigational safety during extreme weather conditions. The expanding applications of IoT in disaster monitoring have led to increased collaboration between tech companies, government agencies, and research institutions to develop standardized frameworks for disaster resilience. However, cybersecurity remains a key concern, as interconnected IoT systems are susceptible to hacking, data breaches, and system failures. Addressing these challenges through advanced encryption protocols and decentralized data management will be critical to sustaining market growth.

What Key Factors Are Driving the Growth of the Natural Disaster Detection IoT Market?

The growth in the natural disaster detection IoT market is driven by several factors, including the rising frequency and severity of climate-related disasters, increasing government investments in smart infrastructure, and the rapid expansion of AI-driven predictive analytics. The demand for real-time data collection and analysis has surged, prompting tech companies to develop advanced IoT sensors capable of operating in extreme conditions. The proliferation of 5G networks has further accelerated the adoption of IoT-based disaster monitoring, enabling faster data transmission and real-time remote sensing capabilities. Additionally, the growing integration of IoT into satellite systems has enhanced disaster detection coverage in remote and underdeveloped regions, bridging the digital divide in global disaster management. Insurance firms and financial institutions are increasingly leveraging IoT-generated data for risk modeling and disaster response planning, further fueling market growth. Moreover, the emergence of edge computing in disaster detection IoT solutions has reduced latency and increased system reliability, making these systems more effective for immediate emergency response. The increasing adoption of autonomous drones equipped with IoT sensors has also contributed to market expansion, enabling rapid aerial surveillance and assessment of disaster-affected areas. Growing public awareness of climate change and disaster preparedness is further driving demand for consumer-grade IoT disaster monitoring devices, such as smart weather stations and home-based seismic detectors. As the global push for sustainable and resilient urban infrastructure continues, the IoT-based natural disaster detection market is expected to witness sustained expansion, with innovations in AI, quantum computing, and satellite imaging playing a pivotal role in shaping the future of disaster resilience.

SCOPE OF STUDY:

The report analyzes the Natural Disaster Detection IoT market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Component (Natural Disaster Detection IoT Hardware, Natural Disaster Detection IoT Solutions, Natural Disaster Detection IoT Services); Communication System (Satellite-Assisted Equipment, First Responder Tools, Vehicle-Ready Gateways, Emergency Response Radars); End-Use (Government Organizations End-Use, Private Companies End-Use, Law Enforcement Agencies End-Use, Rescue Personnel End-Use)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 47 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â