¼¼°èÀÇ À¯¸® ¹ÝÀÀ±â ½ÃÀå
Glass Reactor
»óǰÄÚµå : 1774878
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 483 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,239,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,719,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°è À¯¸® ¹ÝÀÀ±â ½ÃÀåÀº 2030³â±îÁö 13¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 10¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â À¯¸® ¹ÝÀÀ±â ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 4.2%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 13¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ÀçŶ À¯¸® ¹ÝÀÀ±â´Â CAGR 5.5%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 3¾ï 6,030¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ´ÜÃþ À¯¸® ¹ÝÀÀ±â ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR 4.6%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 2¾ï 7,890¸¸ ´Þ·¯, Áß±¹Àº CAGR 7.9%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ À¯¸® ¹ÝÀÀ±â ½ÃÀåÀº 2024³â¿¡ 2¾ï 7,890¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â°£ CAGR 7.9%·Î 2030³â±îÁö 2¾ï 7,070¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 1.6%¿Í 3.3%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 2.4%·Î ¼ºÀåÇÒ Àü¸ÁÀÔ´Ï´Ù.

¼¼°è À¯¸® ¹ÝÀÀ±â ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ Á¤¸®

À¯¸® ¹ÝÀÀ±â¶õ ¹«¾ùÀΰ¡?

À¯¸® ¹ÝÀÀ±â´Â ÀϹÝÀûÀ¸·Î ºØ±Ô»ê À¯¸®·Î ¸¸µé¾îÁø °í¼º´ÉÀÇ Åõ¸íÇÑ ¿ë±â·Î È­ÇÐ ¹ÝÀÀ, È¥ÇÕ, Áõ·ù, °áÁ¤È­ ¹× ±âŸ ½ÇÇè½Ç ±Ô¸ð ¹× »ê¾÷ °øÁ¤ ÀÛ¾÷¿¡ »ç¿ëµË´Ï´Ù. ÀÌ ¹ÝÀÀ±â´Â °í¾Ð, °í¿Â ¹× È­ÇÐÀû ºÎ½ÄÀ» °ßµô ¼ö ÀÖµµ·Ï ¼³°èµÇ¾úÀ¸¸ç, ¹ÝÀÀ °øÁ¤¿¡ ´ëÇÑ Å¹¿ùÇÑ °¡½Ã¼ºÀ» Á¦°øÇÕ´Ï´Ù. ºÒȰ¼ºÀÌ¸ç ¸ð´ÏÅ͸µÀÌ ¿ëÀÌÇÏ¿© Á¦¾à, È­ÇÐ, ¼®À¯È­ÇÐ, »ý¸í°øÇÐ, ½ÄÀ½·á, Çмú ¿¬±¸ µîÀÇ ºÐ¾ß¿¡¼­ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù.

À¯¸® ¹ÝÀÀ±â´Â ¾Ð·Â, Áø°ø ¹× ¿Âµµ Á¦¾î ¿É¼ÇÀ» °®Ãá ½Ì±Û ¹× ´õºí ÀçŶ ¸ðµ¨À» Æ÷ÇÔÇÑ ´Ù¾çÇÑ ±¸¼ºÀ¸·Î Á¦°øµË´Ï´Ù. ÀÌÁß ÀçŶ ¸®¾×ÅÍ´Â ¼øÈ¯ À¯Ã¼¸¦ ÅëÇØ Á¤È®ÇÑ ¿Âµµ Á¶ÀýÀÌ °¡´ÉÇÏ¿© ¼¶¼¼ÇÑ ¹ÝÀÀ°ú Á¦Ç° Àϰü¼ºÀ» º¸ÀåÇÕ´Ï´Ù. ¸ðµâ½Ä ¼³°è·Î Ä¿ÆÐ½ÃÅÍ, ¸®½Ã¹ö, ±³¹Ý±â, ±³¹Ý±â, ¼¾¼­¿ÍÀÇ ÅëÇÕµµ °¡´ÉÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ƯÈ÷ °í¼øµµ, ÀçÇö¼º, Åõ¸í¼ºÀÌ Áß¿äÇÑ ¿¬±¸ °³¹ß, °øÁ¤ °³¹ß, Áß¼Ò±Ô¸ð »ý»ê¿¡ ÇʼöÀûÀÔ´Ï´Ù.

À¯¸® ¹ÝÀÀ±â ½ÃÀåÀ» ÃËÁøÇÏ´Â Çõ½Å°ú Á¦Ç° µ¿ÇâÀº?

À¯¸® ¹ÝÀÀ±â ½ÃÀåÀº ²÷ÀÓ¾ø´Â ±â¼ú Çõ½Å°ú ¸ÂÃãÇü ÀÚµ¿È­ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ º¯È­Çϰí ÀÖ½À´Ï´Ù. Áß¿äÇÑ Æ®·»µå Áß Çϳª´Â ¿Âµµ, ±³¹Ý ¼Óµµ, ¾Ð·Â, pH¸¦ ½Ç½Ã°£À¸·Î ¸ð´ÏÅ͸µÇÏ°í °ü¸®ÇÏ¿© ¹ÝÀÀÀÇ Á¤È®¼º°ú ¾ÈÀü¼ºÀ» ³ôÀÌ´Â µðÁöÅÐ Á¦¾î ½Ã½ºÅÛÀÇ ÅëÇÕÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ½º¸¶Æ® À¯¸® ¹ÝÀÀ±â´Â ÅÍÄ¡½ºÅ©¸° HMI, ÇÁ·Î±×·¡¸Óºí ·ÎÁ÷ ÄÁÆ®·Ñ·¯(PLC), ¹èÄ¡ ÃßÀû¼º, GMP Áؼö, °øÁ¤ ÃÖÀûÈ­¸¦ Áö¿øÇÏ´Â µ¥ÀÌÅÍ ·Î±ë ±â´ÉÀ» °®Ãß°í ÀÖ½À´Ï´Ù.

Àç·áÀÇ °­È­µµ ½ÃÀåÀÇ ¹ßÀüÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ³ôÀº ³»¿­¼º°ú È­ÇÐÀû ºÒȰ¼º Ư¼ºÀ¸·Î À¯¸íÇÑ ºØ±Ô»ê 3.3 À¯¸®´Â PTFE ¶óÀÌ´×, À¯¸®¿Í ±Ý¼Ó ÇÏÀ̺긮µå, Á¤Àü±â ¹æÁö ÄÚÆÃ°ú °áÇÕÇÏ¿© ¿­¾ÇÇÑ °øÁ¤ ȯ°æ¿¡¼­ÀÇ ³»±¸¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. ¶ÇÇÑ, Áø°ø ´Ü¿­, ¹æÆø ÇÏ¿ì¡, Ŭ¸°·ë ´ëÀÀ µîÀÇ ±â¼ú Çõ½ÅÀ¸·Î Á¦¾à ¹× ¹ÙÀÌ¿À ÀǾàǰ Á¦Á¶¿¡ ´ëÇÑ Àû¿ë ¹üÀ§°¡ È®´ëµÇ°í ÀÖ½À´Ï´Ù.

¸ðµâ½Ä ¹× È®Àå °¡´ÉÇÑ ¿øÀÚ·Î ½Ã½ºÅÛÀÌ ¼±È£µÇ°í ÀÖÀ¸¸ç, ¹èÄ¡ Å©±â ¹× »ý»ê·® º¯È­¿¡ ½±°Ô ´ëÀÀÇÒ ¼ö ÀÖ´Â ¸ðµâ½Ä ¿øÀÚ·Î ½Ã½ºÅÛÀÌ ¼±È£µÇ°í ÀÖ½À´Ï´Ù. °ø±Þ¾÷üµéÀº ¾ö°ÝÇÑ ±ÔÁ¦ ¹× ¿î¿µ ¿ä°ÇÀ» ÃæÁ·Çϱâ À§ÇØ ½ºÅ°µå ÀåÂø ½Ã½ºÅÛ, ¸ð¹ÙÀÏ Ç÷§Æû, À¯¸®¿Í ½ºÅ×Àθ®½º ½ºÆ¿ ¶Ç´Â ÇϽºÅÚ·ÎÀÌ ±¸¼º ¿ä¼Ò¸¦ °áÇÕÇÑ ÇÏÀ̺긮µå ¹ÝÀÀ±â¸¦ Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ, ÀÚµ¿È­ ¹× µðÁöÅÐ ½ÇÇè½Ç ÀÎÇÁ¶ó(LIMS ¹× MES ½Ã½ºÅÛ Æ÷ÇÔ)¿ÍÀÇ ÅëÇÕÀ» ÅëÇØ ÆÄÀÏ·µ ±Ô¸ð¿¡¼­ »ý»ê ±Ô¸ð±îÁö ¿øÈ°ÇÑ °øÁ¤ Á¦¾î°¡ °¡´ÉÇÕ´Ï´Ù.

Àü ¼¼°èÀûÀ¸·Î À¯¸® ¹ÝÀÀ±â ¼ö¿ä¸¦ ÁÖµµÇÏ´Â »ê¾÷°ú ¿ëµµ´Â?

À¯¸® ¹ÝÀÀ±â´Â È­ÇÐÀû ¼øµµ, Åõ¸í¼º, ³»½Ä¼ºÀÌ ÇʼöÀûÀÎ ¿©·¯ »ê¾÷ ºÐ¾ß¿¡¼­ ³ôÀº ¼ö¿ä°¡ ÀÖ½À´Ï´Ù. Á¦¾à ¹× ¹ÙÀÌ¿À Á¦¾à ºÐ¾ß¿¡¼­ À¯¸® ¹ÝÀÀ±â´Â ¿ø·á ÇÕ¼º, ¹é½Å Á¦Á¶, »ý¹° ¹ÝÀÀ±â ±â¹Ý ¹ßÈ¿ °øÁ¤ µî¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ºÒȰ¼º Ç¥¸éÀº Á¦Ç°ÀÇ ¹«°á¼ºÀ» À¯ÁöÇÏ´Â µ¥ µµ¿òÀÌ µÇ¸ç, °¡½Ã¼ºÀ» ÅëÇØ ¿¬±¸¿ø°ú ǰÁú °ü¸® ÆÀÀÌ ½Ç½Ã°£À¸·Î ¹ÝÀÀÀ» ½Ã°¢ÀûÀ¸·Î ¸ð´ÏÅ͸µÇÒ ¼ö ÀÖ½À´Ï´Ù.

È­ÇÐ »ê¾÷µµ ÁÖ¿ä »ç¿ëÀÚÀ̸ç, »ê, ÇҷΰÕ, »êÈ­Á¦ µî ºÎ½Ä¼º ¹°ÁúÀ» Æ÷ÇÔÇÏ´Â ¹ÝÀÀ¿¡ À¯¸® ¹ÝÀÀ±â¸¦ »ç¿ëÇÕ´Ï´Ù. Ư¼ö È­ÇÐÁ¦Ç° Á¦Á¶¾÷ü¿Í CRO(ÀǾàǰ °³¹ß ¼öʱâ°ü)´Â °íºÎ°¡°¡Ä¡ Áß°£Ã¼, ¿°·á, Æú¸®¸ÓÀÇ °³¹ß ¹× ½ÃÇè¿¡ ÀÌ·¯ÇÑ ½Ã½ºÅÛÀ» ÀÌ¿ëÇϰí ÀÖ½À´Ï´Ù. À½·á ¹× ½Äǰ ºÐ¾ß¿¡¼­´Â À¯¸® ¹ÝÀÀ±â´Â Çâ·á °³¹ß, ¹ßÈ¿, ÃßÃâ °øÁ¤, ƯÈ÷ À¯±â³ó Á¦Ç° ¹× Ŭ¸° ¶óº§ Á¦Ç°¿¡ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù.

Çаè¿Í ¿¬±¸ ±â°ü¿¡¼­ À¯¸® ¹ÝÀÀ±â´Â Àç·á °úÇÐ, Ã˸Š¿¬±¸, ȯ°æ È­Çп¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. »õ·Î¿î ÀÀ¿ë ºÐ¾ß·Î´Â ±×¸° ÄɹÌÄà ¹× ¿¬¼Ó È帧 °øÁ¤¿¡ »ç¿ëµÇ¾î Èֹ߼º ¹× À§ÇèÇÑ È­ÇÕ¹°ÀÇ ¾ÈÀüÇÑ ½ÇÇèÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÆÄÀÏ·µ Ç÷£Æ® ¹× °øÁ¤ °³¹ß ½ÇÇè½Ç¿¡¼­ À¯¸® ¹ÝÀÀ±â´Â º¥Ä¡ ½ºÄÉÀϰú »ê¾÷ ½ºÄÉÀÏÀ» ¿¬°áÇÏ´Â È®Àå °¡´ÉÇÑ Ç÷§ÆûÀ¸·Î ÁÖ¸ñ¹Þ°í ÀÖ½À´Ï´Ù.

À¯¸® ¹ÝÀÀ±â ¼¼°è ½ÃÀå ¼ºÀåÀÇ ¿øµ¿·ÂÀº?

¼¼°è À¯¸® ¹ÝÀÀ±â ½ÃÀåÀÇ ¼ºÀåÀº Á¦¾à ¹× È­ÇÐÁ¦Ç°¿¡ ´ëÇÑ R&D ÅõÀÚ Áõ°¡, °í¼øµµ °øÁ¤ Àåºñ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ÀÚµ¿È­ ½ÇÇè½Ç ¹× ÆÄÀÏ·µ ½ºÄÉÀÏ ±â¼ú äÅà Áõ°¡ µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÀǾàǰ °³¹ß, ¹é½Å ¿¬±¸, Á¤¹Ð È­ÇÐ ÇÕ¼º, ƯÈ÷ ½ÅÈï Áúȯ ¹× °³ÀÎ ¸ÂÃãÇü ÀÇ·á¿¡ ´ëÇÑ ´ëÀÀÀÌ ±ÞÁõÇϸ鼭 ¸ðµâ½Ä GMP ´ëÀÀ À¯¸® ¹ÝÀÀ±â¿¡ ´ëÇÑ ¼ö¿ä°¡ Å©°Ô Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

¶ÇÇÑ, ģȯ°æ È­ÇÐ ¹× Áö¼Ó °¡´ÉÇÑ Á¦Á¶ ¹æ½ÄÀ¸·ÎÀÇ ÀüȯÀº ±ú²ýÇÏ°í ¾ÈÀüÇϸç Àç»ç¿ë °¡´ÉÇÑ °øÁ¤ ¼³Á¤À» °¡´ÉÇÏ°Ô ÇÏ´Â À¯¸® ¿øÀÚ·ÎÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾ç ¹× ¶óƾ¾Æ¸Þ¸®Ä«¿¡¼­ ¼öŹ Á¦Á¶ ¹× CRO Áõ°¡´Â ƯÈ÷ ¾ÈÀü ±â´ÉÀ» ÅëÇÕÇÑ ¸ÂÃãÇüÀÇ ÇÕ¸®ÀûÀÎ °¡°ÝÀÇ ½Ã½ºÅÛÀ» Á¦°øÇÏ´Â À¯¸® ¹ÝÀÀ±â °ø±Þ¾÷ü¿¡°Ô »õ·Î¿î ±âȸ¸¦ Á¦°øÇϰí ÀÖÀ¸¸ç, FDA, EMA, ISO Ç¥ÁØÀÇ ±ÔÁ¦ Áؼö ¶ÇÇÑ À¯¸® ¹ÝÀÀ±âÀÇ ºÒȰ¼º Ư¼ºÀ¸·Î ÀÎÇØ À¯¸® ¹ÝÀÀ±â°¡ ºÒȰ¼º Ư¼º°ú °ËÁõÀÇ ¿ëÀ̼ºÀ¸·Î ÀÎÇØ À¯¸® ¹ÝÀÀ±â°¡ ¼±È£µÇ´Â °Íµµ ÁÖ¿ä ¼ºÀå ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.

¶ÇÇÑ, ½ÇÇè½Ç ¹× »ê¾÷ ȯ°æ¿¡¼­ ÀÚµ¿È­¿Í µðÁöÅÐÈ­ÀÇ ÅëÇÕÀº µ¥ÀÌÅÍ ±â¹Ý ÀÇ»ç°áÁ¤°ú ½Ç½Ã°£ °øÁ¤ ÃÖÀûÈ­¸¦ Áö¿øÇÏ´Â ½º¸¶Æ® À¯¸® ¹ÝÀÀ±â ½Ã½ºÅÛÀÇ »ç¿ëÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. È­ÇÐ ¿¬±¸, »ý¸í°øÇÐ Çõ½Å, À¯¿¬ÇÑ »ý»ê ±â¼ú¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ÅõÀÚ·Î ÀÎÇØ À¯¸® ¹ÝÀÀ±â ½ÃÀåÀº ƯÈ÷ Á¦¾à Áß½ÉÁö, ¿¬±¸ Áý¾àÀû °æÁ¦ ¹× ½ÅÈï Á¦Á¶ Áö¿ª¿¡¼­ Àü ¼¼°èÀûÀ¸·Î Áö¼ÓÀûÀ¸·Î È®´ëµÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ºÎ¹®

À¯Çü(ÀçŶ À¯Çü, ´ÜÃþ À¯Çü, ´ÙÃþ À¯Çü, ±¤Ã˸ŠÀ¯Çü, °í¾Ð À¯Çü, ±âŸ À¯Çü), ¿ë·®(20lt ¹Ì¸¸, 20lt-60lt, 60lt-100lt, 100lt-250lt, 250lt ÀÌ»ó), À¯Åë ä³Î(Á÷Á¢ ÆÇ¸Å À¯Åë ä³Î, °£Á¢ ÆÇ¸Å À¯Åë ä³Î), ÃÖÁ¾»ç¿ëÀÚ(½ÇÇè°øÀå ÃÖÁ¾»ç¿ëÀÚ, È­ÇÐ ÃÖÁ¾»ç¿ëÀÚ, Á¦¾à ÃÖÁ¾»ç¿ëÀÚ, ¿¬±¸±â°ü ÃÖÁ¾»ç¿ëÀÚ, ±âŸ ÃÖÁ¾»ç¿ëÀÚ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼­, ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Glass Reactor Market to Reach US$1.3 Billion by 2030

The global market for Glass Reactor estimated at US$1.0 Billion in the year 2024, is expected to reach US$1.3 Billion by 2030, growing at a CAGR of 4.2% over the analysis period 2024-2030. Jacketed Glass Reactor, one of the segments analyzed in the report, is expected to record a 5.5% CAGR and reach US$360.3 Million by the end of the analysis period. Growth in the Single Layer Glass Reactor segment is estimated at 4.6% CAGR over the analysis period.

The U.S. Market is Estimated at US$278.9 Million While China is Forecast to Grow at 7.9% CAGR

The Glass Reactor market in the U.S. is estimated at US$278.9 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$270.7 Million by the year 2030 trailing a CAGR of 7.9% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 1.6% and 3.3% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 2.4% CAGR.

Global Glass Reactor Market - Key Trends & Drivers Summarized

What Is a Glass Reactor and Why Is It Vital in Chemical and Pharmaceutical Processing?

A glass reactor is a high-performance, transparent vessel typically made from borosilicate glass and used for chemical reactions, mixing, distillation, crystallization, and other lab-scale or industrial processing tasks. These reactors are designed to withstand high pressures, temperatures, and chemical corrosion, offering superior visibility into reaction processes. They are widely utilized across sectors such as pharmaceuticals, chemicals, petrochemicals, biotechnology, food & beverage, and academic research due to their inert nature and ease of monitoring.

Glass reactors come in various configurations, including single- and double-jacketed models, with options for pressure, vacuum, and temperature control. Double-jacketed reactors allow for precise thermal regulation via circulating fluids, enabling sensitive reactions and product consistency. Their modular design also supports integration with condensers, receivers, stirrers, and sensors. These systems are essential in R&D, process development, and small-to-medium-scale production, particularly where high purity, reproducibility, and transparency are critical.

What Innovations and Product Trends Are Advancing the Glass Reactor Market?

The glass reactor market is being transformed by continuous technological innovation and increasing demand for customized, automated systems. One key trend is the integration of digital control systems that monitor and manage temperature, agitation speed, pressure, and pH in real time, enhancing reaction precision and safety. These smart glass reactors are equipped with touchscreen HMIs, programmable logic controllers (PLCs), and data logging features to support batch traceability, GMP compliance, and process optimization.

Material enhancements are also driving market progress. Borosilicate 3.3 glass, known for its high thermal resistance and chemical inertness, is now being paired with PTFE linings, glass-metal hybrids, or anti-static coatings to improve durability in challenging process environments. Additionally, innovations in vacuum insulation, explosion-proof housings, and cleanroom compatibility are expanding the application scope in pharmaceutical and biopharma production.

The growing preference for modular, scalable reactor systems is enabling easier adaptation to changing batch sizes and production volumes. Suppliers are offering skid-mounted systems, mobile platforms, and hybrid reactors that combine glass with stainless steel or Hastelloy components to meet stringent regulatory and operational demands. Moreover, automation and integration with digital lab infrastructure (including LIMS and MES systems) are facilitating seamless process control from pilot to production scale.

Which Industries and Applications Are Driving Glass Reactor Demand Globally?

Glass reactors are in high demand across several industries where chemical purity, transparency, and corrosion resistance are essential. In the pharmaceutical and biopharmaceutical sectors, glass reactors are extensively used for API synthesis, vaccine production, and bioreactor-based fermentation processes. Their inert surfaces help maintain product integrity, while the visibility allows researchers and quality teams to monitor reactions visually in real-time.

The chemical industry is another major user, employing glass reactors for reactions involving corrosive agents like acids, halogens, and oxidizers. Specialty chemical manufacturers and contract research organizations (CROs) rely on these systems for developing and testing high-value intermediates, dyes, and polymers. In the food and beverage sector, glass reactors are increasingly applied for flavor development, fermentation, and extraction processes-especially for organic and clean-label product lines.

In academia and institutional research, glass reactors play a vital role in material science, catalysis studies, and environmental chemistry. Emerging applications include their use in green chemistry and continuous flow processing, where they support safe experimentation with volatile or hazardous compounds. In addition, pilot plants and process development labs are turning to glass reactors as scalable platforms that bridge bench-scale and industrial-scale production.

What Is Driving the Growth of the Global Glass Reactor Market?

The growth in the global glass reactor market is driven by several factors, including rising R&D investments in pharmaceuticals and chemicals, growing demand for high-purity process equipment, and increasing adoption of automated lab and pilot-scale technologies. The surge in drug development, vaccine research, and precision chemical synthesis-especially in response to emerging diseases and personalized medicine-is significantly fueling the demand for modular, GMP-compliant glass reactors.

In addition, the global shift toward green chemistry and sustainable manufacturing practices is supporting the adoption of glass reactors, which enable clean, safe, and reusable process setups. The rise of contract manufacturing and CROs in Asia-Pacific and Latin America is creating new opportunities for glass reactor suppliers, especially those offering customizable, affordable systems with integrated safety features. Regulatory compliance with FDA, EMA, and ISO standards is also a key growth enabler, as glass reactors are often preferred for their inert nature and ease of validation.

Furthermore, the integration of automation and digitalization in laboratory and industrial environments is boosting the use of smart glass reactor systems that support data-driven decision-making and real-time process optimization. With continued investment in chemical research, biotechnology innovation, and flexible production technologies, the glass reactor market is poised for sustained global expansion-particularly in pharmaceutical hubs, research-intensive economies, and emerging manufacturing regions.

SCOPE OF STUDY:

The report analyzes the Glass Reactor market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (Jacketed Glass Reactor, Single Layer Glass Reactor, Multi-Layer Glass Reactor, Photocatalytic Glass Reactor, High-Pressure Glass Reactor, Other Glass Reactor Types); Capacity (Below 20 ltr Capacity, 20 ltr - 60 ltr Capacity, 60 ltr - 100 ltr Capacity, 100 ltr - 250 ltr Capacity, Above 250 ltr Capacity); Distribution Channel (Direct Sales Distribution Channel, Indirect Sales Distribution Channel); End-Use (Pilot Plants End-Use, Chemical End-Use, Pharmaceutical End-Use, Research Institutions End-Use, Other End-Use)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 36 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â