¼¼°èÀÇ Å¸°Ù DNA RNA ½ÃÄö½Ì ½ÃÀå
Targeted DNA RNA Sequencing
»óǰÄÚµå : 1773919
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 568 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,239,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,719,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Ÿ°Ù DNA RNA ½ÃÄö½Ì ¼¼°è ½ÃÀåÀº 2030³â±îÁö 314¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 117¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â Ÿ°Ù DNA RNA ½ÃÄö½Ì ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 17.9%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 314¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ NGS´Â CAGR 15.8%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á±îÁö 170¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ Á¦Ç° ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 20.7%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 32¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 23.2%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Å¸°Ù DNA RNA ½ÃÄö½Ì ½ÃÀåÀº 2024³â¿¡ 32¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 69¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 23.2%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 13.5%¿Í 16.0%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 14.2%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ Å¸°Ù DNA RNA ½ÃÄö½Ì ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Ÿ°Ù DNA RNA ½ÃÄö½ÌÀÌ ÀüÀå À¯Àüü ¹× Àü»çü Á¢±Ù¹ýÀ» ´É°¡ÇÏ´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

Á¤¹ÐÀÇ·á¿Í ÇÏÀ̽º·çDz À¯ÀüüÇÐÀÇ ½Ã´ë¿¡, Ÿ°Ù DNA RNA ½ÃÄö½ÌÀº Àüü À¯Àüü ¹× Àü»çü ½ÃÄö½ÌÀ» ´ëüÇÒ ¼ö ÀÖ´Â ½Ç¿ëÀûÀ̰í È¿À²ÀûÀÎ ¹æ¹ýÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ÀÌ ¹æ¹ýÀº °ü½É Àִ ƯÁ¤ À¯Àüü ¿µ¿ªÀ̳ª Àü»çüÀÇ ÇÏÀ§ ÁýÇÕ¿¡ ÁýÁßÇÔÀ¸·Î½á À¯ÀüÀû º¯ÀÌ, ¹ßÇö ÇÁ·ÎÆÄÀÏ, ºÐÀÚ ¹ÙÀÌ¿À¸¶Ä¿¸¦ Á¶»çÇÒ ¼ö ÀÖ´Â ºñ¿ë È¿À²ÀûÀ̰í È®Àå °¡´ÉÇϸç ÀÓ»óÀûÀ¸·Î ÀûÇÕÇÑ ¹æ¹ýÀ» Á¦°øÇÕ´Ï´Ù. ¹æ´ëÇÑ ¾çÀÇ °ü·Ã ¾ø´Â µ¥ÀÌÅ͸¦ »ý¼ºÇϰí ÁýÁßÀûÀÎ ÄÄÇ»ÆÃ ¸®¼Ò½º¸¦ ÇÊ¿ä·Î ÇÏ´Â ÀüÀå ¿°±â¼­¿­ ºÐ¼®°ú ´Þ¸®, Ÿ°Ù ½ÃÄö½ÌÀ» ÅëÇØ ¿¬±¸ÀÚ¿Í ÀÓ»óÀÇ´Â Áúº´ °æ·Î¿Í °ü·ÃµÈ ¾Ë·ÁÁø À¯ÀüÀÚ, Á¶Àý ¿ä¼Ò, µ¹¿¬º¯ÀÌ ÇÖ½ºÆÌÀ» ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, Á¾¾çÇп¡¼­ Ç¥ÀûÈ­ ½ÃÄö½Ì ÆÐ³ÎÀ» ÅëÇØ ÀÓ»óÀÇ´Â º¸´Ù ºü¸¥ ó¸® ¼Óµµ¿Í ´õ ³ªÀº ÇØ¼® °¡´É¼ºÀ¸·Î ¾Ï °ü·Ã À¯ÀüÀÚ Àüü¿¡¼­ ½Ç¿ëÀûÀÎ µ¹¿¬º¯À̸¦ ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù. °¨¿°¼º Áúȯ ¿¬±¸¿¡¼­´Â Ç¥Àû RNA ½ÃÄö½ÌÀ» ÅëÇØ º´¿øÃ¼ ƯÀÌÀû Àü»çü¸¦ ºÐ¼®ÇÏ¿© ±ÕÁÖ ½Äº° ¹× ¾à¹° ³»¼º ÇÁ·ÎÆÄÀϸµ¿¡ µµ¿òÀ» ÁÙ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, À¯Àü¼º ÁúȯÀÇ Áø´Ü, ¾à¸®À¯ÀüüÇÐ, ¸é¿ª ·¹ÆÛÅ丮 ÇÁ·ÎÆÄÀϸµÀº Á¤È®Çϰí ÀçÇö¼º ÀÖ´Â °á°ú¸¦ ¾ò±â À§ÇØ Ç¥Àû ºÐ¼®¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ÇコÄÉ¾î ¹× »ý¸í°úÇÐ »ê¾÷ÀÌ ÀÓ»óÀûÀ¸·Î ½Ç¿ëÀûÀÌ°í ½Ã°£Àû Á¦¾àÀÌ ¾ø´Â À¯ÀüÀÚ µ¥ÀÌÅ͸¦ ¿ä±¸Çϰí ÀÖ´Â °¡¿îµ¥, Ç¥Àû ½ÃÄö½Ì ¹æ¹ýÀº ¿¬±¸¿Í ÀÓ»óÀÇ ½Ç¿ë¼º »çÀÌÀÇ °£±ØÀ» ¸Þ¿ì°í, °úµµÇÑ µ¥ÀÌÅÍ ³ëÀÌÁîÀÇ ºÎ´ã ¾øÀÌ ¿µÇâ·Â ÀÖ´Â »ý¹°ÇÐÀû Áú¹®¿¡ ´äÇÏ´Â µ¥ ÇÊ¿äÇÑ ±íÀÌ¿Í Æ¯À̼ºÀ» Á¦°øÇÕ´Ï´Ù.

±â¼ú Çõ½ÅÀ» ÅëÇØ Ÿ°Ù ½ÃÄö½ÌÀÇ È¿À²¼º°ú Á¤È®¼ºÀÌ ¾î¶»°Ô Çâ»óµÇ°í Àִ°¡?

½ÃÄö½Ì È­ÇÐ, ÇÁ·Îºê ¼³°è, ÁõÆø ÇÁ·ÎÅäÄÝ, ¹ÙÀÌ¿ÀÀÎÆ÷¸Åƽ½ºÀÇ ¹ßÀüÀ¸·Î Ÿ°Ù DNA RNA ½ÃÄö½ÌÀÇ ¹Î°¨µµ, ƯÀ̼º, 󸮷®ÀÌ Å©°Ô Çâ»óµÇ¾ú½À´Ï´Ù. ÇÏÀ̺긮µå ĸó ¹× amplicon ±â¹Ý ³óÃà°ú °°Àº ±â¼úÀº ´õ¿í Á¤±³ÇØÁ® Àúºóµµ º¯ÀÌü ¹× ±¸Á¶ÀûÀ¸·Î º¹ÀâÇÑ À¯Àüü ¿µ¿ªÀ» Á¤È®ÇÏ°Ô Å¸°ÙÆÃÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀûÀÀÇü »ùÇøµ ±â¼úÀº ³ª³ëÆ÷¾î ½ÃÄö½Ì Ç÷§Æû¿¡¼­ ½Ç½Ã°£ Ÿ°Ù ¼±ÅÃÀÌ °¡´ÉÇÏ¿© ³¶ºñµÇ´Â ¸®µå¸¦ ÁÙÀ̰í È¿À²À» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ¸ÖƼÇ÷º½º ¶óÀ̺귯¸® Áغñ ŰƮ¿Í ÀÚµ¿È­¿¡ ÀûÇÕÇÑ ¿öÅ©Ç÷ο츦 ÅëÇØ ³³±â¸¦ ´ÜÃàÇÏ°í ½Ã·á Ãë±Þ ¿À·ù¸¦ ÁÙÀ̸ç, ÀúÅõÀÔ Å°Æ®¿Í FFPE Áö¿ø ŰƮ¸¦ ÅëÇØ ÀÓ»ó ½Ã·á ¹× ¿­È­ ½Ã·áÀÇ À¯¿ë¼ºÀ» È®´ëÇÕ´Ï´Ù. µ¥ÀÌÅÍ ºÐ¼® Ãø¸é¿¡¼­´Â ÅëÇÕµÈ ¹ÙÀÌ¿ÀÀÎÆ÷¸Åƽ½º ÆÄÀÌÇÁ¶óÀΰú AI°¡ žÀçµÈ º¯ÀÌ ÄÝ·¯°¡ ¿°±â¼­¿­ ºÐ¼®ÀÌ ¾î·Á¿î ¿µ¿ª¿¡¼­µµ ¸®µå ¸ÅÇÎ, µ¹¿¬º¯ÀÌ °ËÃâ, Àü»çü Á¤·®È­ÀÇ ½Å·Ú¼ºÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý Ç÷§ÆûÀº °øµ¿ ¿¬±¸, ¾ÈÀüÇÑ µ¥ÀÌÅÍ ÀúÀå, ÀÓ»ó ½ÇÇè½ÇÀÇ °£¼ÒÈ­µÈ º¸°í¸¦ ÃËÁøÇÕ´Ï´Ù. ¶ÇÇÑ, µà¾ó DNA/RNA ÆÐ³ÎÀÇ °³¹ß·Î ´ÜÀÏ »ùÇÿ¡¼­ À¯Àüü¿Í Æ®·£½ºÅ©¸³ÅèÀÇ ÅëÇÕ ÇÁ·ÎÆÄÀϸµÀÌ °¡´ÉÇØÁ³À¸¸ç, À̴ ƯÈ÷ Á¾¾çÇÐ ¹× ¸é¿ª ÇÁ·ÎÆÄÀϸµ ¾ÖÇø®ÄÉÀ̼ǿ¡ À¯¿ëÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº ¸®µå Á¤È®µµÀÇ Çâ»ó, ½ÃÄö¼­ÀÇ °í¼ÓÈ­, ½Ã¾à ŰƮÀÇ °¡°Ý ÀÎÇÏ¿Í ÇÔ²² Ÿ°Ù ½ÃÄö½ÌÀº ´Ü¼øÇÑ ÁßÁ¡ÀûÀÎ ¹æ¹ýÀÌ ¾Æ´Ñ Á¤¹Ð Áø´Ü ¹× ¹ø¿ª ¿¬±¸¸¦ À§ÇÑ ±â¼úÀûÀ¸·Î Á¤±³ÇÏ°í ±¤¹üÀ§ÇÏ°Ô Àû¿ë °¡´ÉÇÑ ¼Ö·ç¼ÇÀ¸·Î ¹ßÀüÇϰí ÀÖ½À´Ï´Ù.

Ÿ°Ù DNA RNA ½ÃÄö½ÌÀº ¾îµð¿¡ Àû¿ëµÇ°í ÀÖÀ¸¸ç, ¾î¶² »ç¿ë »ç·Ê°¡ »ý°Ü³ª°í Àִ°¡?

Ÿ°Ù DNA RNA ½ÃÄö½ÌÀº ÀÓ»ó, Çмú ¹× »ê¾÷ ºÐ¾ß¿¡¼­ ±¤¹üÀ§ÇÏ°Ô »ç¿ëµÇ°í ÀÖÀ¸¸ç, ÀÀ¿ë ºÐ¾ß´Â ÀüÅëÀûÀÎ À¯Àüü ¿¬±¸ÀÇ Æ²À» Å©°Ô ¹þ¾î³ª°í ÀÖ½À´Ï´Ù. ÀÓ»ó Á¾¾çÇп¡¼­ Ç¥Àû ½ÃÄö½Ì ÆÐ³ÎÀº ÀÌÁ¦ °íÇü Á¾¾ç ¹× Ç÷¾× ¾Ç¼º Á¾¾çÀÇ ÀÏ»óÀûÀÎ °Ë»ç·Î ÀÚ¸® Àâ¾ÒÀ¸¸ç, ½Ç¿ëÀûÀÎ µ¹¿¬º¯ÀÌ ½Äº°, Ä¡·á ¼±Åà Áöħ, ¹Ì¼¼ ÀÜÁ¸ Áúȯ ¸ð´ÏÅ͸µ¿¡ µµ¿òÀÌ µÇ°í ÀÖ½À´Ï´Ù. »ý½Ä ÀÇÇÐ ¹× Èñ±Í Áúȯ Áø´Ü¿¡¼­ Ç¥Àû ºÐ¼®Àº Á¤ÀÇµÈ À¯ÀüÀÚ ¼¼Æ®¿¡¼­ º´¿ø¼º º¯À̸¦ ½Å¼ÓÇÏ°Ô ½ºÅ©¸®´×ÇÏ¿© Áø´Ü ¼öÀ²À» Çâ»ó½ÃŰ¸é¼­ ºñ¿ë°ú ½Ã°£À» ´ÜÃàÇÒ ¼ö ÀÖ½À´Ï´Ù. °¨¿°¼º Áúȯ ¿¬±¸¿¡¼­´Â º´¿øÃ¼ ƯÀÌÀû RNA ½ÃÄö½ÌÀÌ »õ·Î¿î º¯Á¾, Ç×±ÕÁ¦ ³»¼º ¸¶Ä¿, Ä¡·áÁ¦¿¡ ´ëÇÑ Àü»ç ¹ÝÀÀÀÇ ½Å¼ÓÇÑ ½Äº°¿¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ¸é¿ªÇÐ ¹× ¹é½Å °³¹ß ºÐ¾ß¿¡¼­´Â Ç¥Àû T ¼¼Æ÷ ¹× B ¼¼Æ÷ ¼ö¿ëü ¿°±â¼­¿­À» Ȱ¿ëÇÏ¿© ¸é¿ª ·¹ÆÛÅ丮¿Í ¹ÝÀÀ µ¿¿ªÇÐÀ» ¿¬±¸Çϰí ÀÖ½À´Ï´Ù. ÇコÄÉ¾î ºÐ¾ß ¿Ü¿¡µµ ³ó¾÷À¯ÀüüÇÐ ¿¬±¸ÀÚµéÀº Ç¥Àû ½ÃÄö½ÌÀ» »ç¿ëÇÏ¿© ½Ä¹°°ú °¡ÃàÀÇ ÇüÁúÀ» ºÐ¼®Çϰí, ȯ°æ ¸ð´ÏÅ͸µ¿¡¼­ RNA ÆÐ³ÎÀº »ýÅÂ°è ¹× »ê¾÷¿ë »ý¹° ¹ÝÀÀ±â ³» ¹Ì»ý¹° Ȱµ¿À» ÃßÀûÇÏ´Â µ¥ µµ¿òÀ» ÁÖ°í ÀÖ½À´Ï´Ù. ÀǾàǰ °³¹ß ÆÄÀÌÇÁ¶óÀο¡¼­´Â ¹ÙÀÌ¿À¸¶Ä¿ Ž»ö°ú µ¿¹ÝÁø´Ü¾à¹° °³¹ßÀ» À§ÇØ Ç¥Àû ½ÃÄö½ÌÀ» µµÀÔÇÏ´Â »ç·Ê°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Áö¿ªÀûÀ¸·Î´Â ÀÓ»óÀ¯ÀüüÇÐÀÌ º¸´Ù ¼º¼÷ÇÑ ºÏ¹Ì¿Í ¼­À¯·´¿¡¼­ µµÀÔÀÌ È°¹ßÈ÷ ÀÌ·ç¾îÁö°í ÀÖÀ¸¸ç, ¾Æ½Ã¾ÆÅÂÆò¾ç¿¡¼­´Â ¿¬±¸ ÀÚ±ÝÀÇ È®´ë, ½ÅÈï À¯ÀüüÇÐ »ýŰè, Á¤¹ÐÀÇ·á¿¡ ´ëÇÑ Á¤ºÎÀÇ ³ë·ÂÀ¸·Î ÀÎÇØ ±Þ¼ÓÇÑ ¼ºÀåÀ» º¸À̰í ÀÖ½À´Ï´Ù. ½ÃÄö¼­ÀÇ È޴뼺ÀÌ Çâ»óµÇ°í µ¥ÀÌÅÍ ºÐ¼®¿¡ ´ëÇÑ Á¢±Ù¼ºÀÌ ³ô¾ÆÁü¿¡ µû¶ó Çмú ±â°ü ¹× Áø´Ü ±â°üÀÇ Áß¼ÒÇü ½ÇÇè½Ç¿¡¼­µµ Ç¥ÀûÈ­µÈ ¹æ¹ýÀ» äÅÃÇϰí ÀÖ¾î ½ÃÀå ¹üÀ§¿Í »ç¿ë »ç·ÊÀÇ ´Ù¾ç¼ºÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù.

Ÿ°Ù DNA RNA ½ÃÄö½Ì ¼¼°è ½ÃÀå ¼ºÀå °¡¼ÓÈ­ÀÇ ¿øµ¿·ÂÀº?

Ÿ°Ù DNA RNA ½ÃÄö½Ì ½ÃÀåÀÇ ¼ºÀåÀº ÀÓ»ó ¼ö¿ä, ¿¬±¸ ¿ì¼±¼øÀ§, ºñ¿ë È¿À²¼º, ±Þ¼ÓÇÑ ±â¼ú ¼º¼÷ÀÇ ¼ö·Å¿¡ ÀÇÇØ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. Àü ¼¼°èÀûÀ¸·Î ¸¸¼ºÁúȯÀÇ Áõ°¡, ¾Ï ¹ß»ý·ü, ¸ÂÃãÇü ÀÇ·á¿¡ ´ëÇÑ °ü½ÉÀ¸·Î ÀÎÇØ ½Å¼ÓÇÏ°í ½Ç¿ëÀûÀÎ À¯ÀüÇÐÀû ÀλçÀÌÆ®¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, Ç¥Àû ½ÃÄö½ÌÀº À̸¦ Á¦°øÇϱ⿡ ÀûÇÕÇÕ´Ï´Ù. ÀüÀå À¯Àüü Á¢±Ù¹ý¿¡ ºñÇØ Ç¥ÀûÈ­ ±â¹ýÀº ½ÃÄö½Ì ºñ¿ëÀÌ ÇöÀúÈ÷ ³·°í, µ¥ÀÌÅÍ º¹À⼺ÀÌ °¨¼ÒÇϸç, º¸°í±îÁö °É¸®´Â ½Ã°£ÀÌ ´ÜÃàµÇ¾î ƯÈ÷ ÀÚ¿øÀÌ Á¦ÇÑµÈ È¯°æ¿¡¼­ ÀÏ»óÀûÀÎ Áø´Ü¿¡ ´õ ½±°Ô Á¢±ÙÇÒ ¼ö ÀÖ½À´Ï´Ù. ¸ÖƼ¿À¹Í½º Àü·«ÀÇ ÅëÇÕ°ú °ø°£ ¹× ´ÜÀÏ ¼¼Æ÷ ½ÃÄö½Ì¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ¿¬±¸ÀÚµéÀÌ ³ôÀº 󸮷® Á¤È®µµ¿Í µ¥ÀÌÅÍ °ü·Ã¼ºÀ» °áÇÕÇÒ ¼ö ÀÖ´Â ¹æ¹ýÀ» ¸ð»öÇÔ¿¡ µû¶ó äÅÃÀÌ ´õ¿í °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ƯÈ÷ Á¾¾çÇÐ, ¾à¸®À¯ÀüüÇÐ, À¯ÀüÁúȯ¿¡¼­ ÀÓ»ó »ç¿ëÀ» À§ÇÑ Ç¥ÀûÈ­µÈ NGS ÆÐ³ÎÀÌ ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀÎÀ» ¹ÞÀ¸¸é¼­ ÀÌ·¯ÇÑ Á¢±Ù¹ýÀÇ À¯¿ë¼ºÀÌ ÀÔÁõµÇ¾î ÀÓ»ó Àû¿ëÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ±¹°¡ ½ÃÄö½Ì ÇÁ·ÎÁ§Æ® ¹× ¹ÙÀÌ¿À¹ðÅ© °³¹ßÀ» À§ÇÑ Á¤ºÎ ÀÌ´Ï¼ÅÆ¼ºê¿Í ÇÔ²² À¯ÀüüÇÐ ¿¬±¸¿¡ ´ëÇÑ ÀÚ±Ý Á¶´ÞÀÌ Áõ°¡Çϸ鼭 ÀÎÇÁ¶ó ¹× Áö¿ø »ýŰèÀÇ ÆøÀÌ ³Ð¾îÁö°í ÀÖ½À´Ï´Ù. Çмú ±â°ü, »ý¸í°øÇÐ ±â¾÷, Áø´Ü ¿¬±¸¼Ò °£ÀÇ ÆÄÆ®³Ê½ÊÀº ƯÁ¤ Áý´Ü°ú Áúº´¿¡ ¸Â°Ô Á¶Á¤µÈ Ư¼ö ÆÐ³ÎÀÇ ±â¼ú Çõ½Å°ú »ó¿ëÈ­¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. µ¿½Ã¿¡, »ç¿ëÀÚ Ä£È­ÀûÀÎ ÀÚµ¿È­µÈ NGS Ç÷§Æû°ú ÅëÇÕ ºÐ¼® ¼ÒÇÁÆ®¿þ¾îÀÇ µîÀåÀ¸·Î Áß±Ô¸ð ¹× ºÐ»êÇü ½ÇÇè½ÇÀÇ Á¢±ÙÀÌ ¹ÎÁÖÈ­µÇ°í ÀÖ½À´Ï´Ù. ºÐÀÚÁø´Ü ¹× Áß°³ ¿¬±¸ ºÐ¾ß¿¡¼­ Á¤È®¼º, ¼Óµµ, °æÁ¦¼º¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó, Ÿ°Ù DNA RNA ½ÃÄö½ÌÀº Â÷¼¼´ë À¯Àüü ÀǷḦ Çü¼ºÇÏ´Â µ¥ ÀÖ¾î Á¡Á¡ ´õ Áß½ÉÀûÀÎ ¿ªÇÒÀ» ÇÏ°Ô µÉ °ÍÀÔ´Ï´Ù.

ºÎ¹®

Á¦Ç°(NGS, ±âŸ), ¿öÅ©Ç÷οì(ÇÁ¸® ½ÃÄö½Ì, ½ÃÄö½Ì, µ¥ÀÌÅÍ), À¯Çü(DNA ±â¹Ý Ÿ°Ù ½ÃÄö½Ì, RNA ±â¹Ý Ÿ°Ù ½ÃÄö½Ì), ¿ëµµ(Àΰ£ ¹ÙÀÌ¿À¸ÞµðÄà ¿¬±¸, ½Ä¹°¡¤µ¿¹° °úÇÐ, Drug Discovery, ±âŸ), ÃÖÁ¾ ¿ëµµ(Çмú ¿¬±¸, º´¿ø¡¤Å¬¸®´Ð, Á¦¾à¡¤¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö ±â¾÷, ±âŸ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM ¹× ¾÷°èº° SLM Äõ¸®¸¦ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Targeted DNA RNA Sequencing Market to Reach US$31.4 Billion by 2030

The global market for Targeted DNA RNA Sequencing estimated at US$11.7 Billion in the year 2024, is expected to reach US$31.4 Billion by 2030, growing at a CAGR of 17.9% over the analysis period 2024-2030. NGS, one of the segments analyzed in the report, is expected to record a 15.8% CAGR and reach US$17.0 Billion by the end of the analysis period. Growth in the Other Products segment is estimated at 20.7% CAGR over the analysis period.

The U.S. Market is Estimated at US$3.2 Billion While China is Forecast to Grow at 23.2% CAGR

The Targeted DNA RNA Sequencing market in the U.S. is estimated at US$3.2 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$6.9 Billion by the year 2030 trailing a CAGR of 23.2% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 13.5% and 16.0% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 14.2% CAGR.

Global Targeted DNA RNA Sequencing Market - Key Trends & Drivers Summarized

Why Is Targeted DNA RNA Sequencing Gaining Ground Over Whole Genome and Transcriptome Approaches?

In the era of precision medicine and high-throughput genomics, targeted DNA and RNA sequencing has emerged as a practical and efficient alternative to whole genome and transcriptome sequencing. By focusing on specific genomic regions or transcript subsets of interest, this method offers a highly cost-effective, scalable, and clinically relevant way to interrogate genetic variation, expression profiles, and molecular biomarkers. Unlike whole genome sequencing, which can generate enormous amounts of irrelevant data and require intensive computational resources, targeted sequencing enables researchers and clinicians to zero in on known genes, regulatory elements, or mutation hotspots linked to disease pathways. In oncology, for example, targeted sequencing panels allow clinicians to identify actionable mutations across cancer-relevant genes with faster turnaround and better interpretability. In infectious disease research, targeted RNA sequencing enables pathogen-specific transcript analysis, aiding in strain identification and drug resistance profiling. Additionally, hereditary disease diagnostics, pharmacogenomics, and immune repertoire profiling are increasingly reliant on targeted assays for precise, repeatable insights. As the healthcare and life sciences industries seek clinically actionable, time-sensitive genetic data, targeted sequencing methods are bridging the gap between research and clinical utility, offering the depth and specificity needed to answer high-impact biological questions without the burden of excessive data noise.

How Are Technology Innovations Enhancing the Efficiency and Accuracy of Targeted Sequencing?

Advancements in sequencing chemistry, probe design, amplification protocols, and bioinformatics are driving significant improvements in the sensitivity, specificity, and throughput of targeted DNA and RNA sequencing. Techniques such as hybrid capture and amplicon-based enrichment are becoming more refined, enabling accurate targeting of low-frequency variants and structurally complex genomic regions. Adaptive sampling technologies now allow for real-time target selection on nanopore sequencing platforms, reducing wasted reads and increasing efficiency. Multiplexed library preparation kits and automation-friendly workflows are cutting down turnaround times and reducing sample handling errors, while low-input and FFPE-compatible kits are expanding usability in clinical and degraded samples. On the data analysis front, integrated bioinformatics pipelines and AI-powered variant callers are enhancing the reliability of read mapping, mutation detection, and transcript quantification, even in difficult-to-sequence regions. Cloud-based platforms are facilitating collaborative research, secure data storage, and streamlined reporting for clinical labs. Furthermore, the development of dual DNA/RNA panels is supporting integrated genomic and transcriptomic profiling from a single sample, which is particularly useful in oncology and immune profiling applications. Combined with increasing read accuracy, faster sequencers, and more affordable reagent kits, these innovations are making targeted sequencing not just a focused method, but a technically sophisticated and widely deployable solution for precision diagnostics and translational research.

Where Is Targeted DNA RNA Sequencing Being Adopted, and What Are the Emerging Use Cases?

Targeted DNA and RNA sequencing is being adopted across a wide range of clinical, academic, and industrial settings, with applications extending well beyond traditional genomics research. In clinical oncology, targeted sequencing panels are now routine for solid tumors and hematologic malignancies, helping identify actionable mutations, guide therapy selection, and monitor minimal residual disease. In reproductive health and rare disease diagnostics, targeted assays enable rapid screening for pathogenic variants across defined gene sets, improving diagnostic yield while reducing costs and turnaround times. In infectious disease research, pathogen-specific RNA sequencing is being used for rapid identification of emerging variants, antimicrobial resistance markers, and transcriptional responses to therapeutic agents. The immunology and vaccine development fields are leveraging targeted T-cell and B-cell receptor sequencing to study immune repertoires and response dynamics. Beyond healthcare, agrigenomics researchers use targeted sequencing to analyze plant and livestock traits, while in environmental monitoring, RNA panels help track microbial activity in ecosystems and industrial bioreactors. Drug development pipelines are increasingly incorporating targeted sequencing for biomarker discovery and companion diagnostic development. Geographically, adoption is strong in North America and Western Europe, where clinical genomics is more mature, while Asia-Pacific is witnessing rapid growth driven by expanding research funding, genomics startup ecosystems, and government initiatives in precision medicine. With sequencing instruments becoming more portable and data analysis more accessible, small to mid-sized labs in academia and diagnostics are also embracing targeted methods, expanding market reach and diversity of use cases.

What’s Fueling the Accelerated Growth of the Global Targeted DNA RNA Sequencing Market?

The growth of the targeted DNA RNA sequencing market is being driven by the convergence of clinical demand, research prioritization, cost-efficiency, and rapid technological maturation. The global rise in chronic diseases, cancer incidence, and interest in personalized medicine is increasing demand for quick, actionable genetic insights that targeted sequencing is well-equipped to provide. Compared to whole genome approaches, targeted methods offer significantly lower sequencing costs, reduced data complexity, and faster reporting timelines-making them more accessible for routine diagnostics, especially in resource-constrained settings. The integration of multi-omic strategies and growing interest in spatial and single-cell sequencing are further fueling adoption, as researchers seek ways to combine high-throughput precision with data relevance. Regulatory approvals of targeted NGS panels for clinical use, especially in oncology, pharmacogenomics, and inherited diseases, are validating the utility of these approaches and accelerating clinical deployment. Rising funding in genomics research, coupled with government initiatives aimed at national sequencing projects and biobank development, is broadening the infrastructure and support ecosystem. Partnerships between academic institutions, biotech firms, and diagnostic labs are fostering innovation and commercialization of specialized panels tailored for specific populations or diseases. At the same time, the availability of automated, user-friendly NGS platforms and integrated analysis software is democratizing access for mid-sized and decentralized laboratories. As demand for precision, speed, and affordability grows in molecular diagnostics and translational research, targeted DNA RNA sequencing is positioned to play an increasingly central role in shaping the next generation of genomic medicine.

SCOPE OF STUDY:

The report analyzes the Targeted DNA RNA Sequencing market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Product (NGS, Others); Workflow (Pre-sequencing, Sequencing, Data); Type (DNA-based Targeted Sequencing, RNA-based Targeted Sequencing); Application (Human Biomedical Research, Plant & Animal Sciences, Drug Discovery, Others); End-Use (Academic Research, Hospitals & Clinics, Pharma & Biotech Companies, Others)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 43 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â