¼¼°èÀÇ ½ÅÆ¿·¹ÀÌ¼Ç °ËÃâ±â ½ÃÀå
Scintillation Detectors
»óǰÄÚµå : 1768761
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 178 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,225,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,675,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ½ÅÆ¿·¹ÀÌ¼Ç °ËÃâ±â ½ÃÀåÀº 2030³â±îÁö 3¾ï 7,090¸¸ ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 2¾ï 6,020¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ ½ÅÆ¿·¹ÀÌ¼Ç °ËÃâ±â ½ÃÀåÀº 2024-2030³â¿¡ CAGR 6.1%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 3¾ï 7,090¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®Çϰí ÀÖ´Â ºÎ¹®ÀÇ ÇϳªÀÎ ÇコÄɾî´Â CAGR 6.5%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 1¾ï 8,680¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. »ê¾÷¡¤Á¦Á¶¾÷ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ Áß CAGR 6.0%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 6,730¸¸ ´Þ·¯·Î ÃßÁ¤¡¤Áß±¹Àº CAGR 9.4%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ½ÅÆ¿·¹ÀÌ¼Ç °ËÃâ±â ½ÃÀåÀº 2024³â¿¡ 6,730¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 8,710¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀº 9.4%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 3.5%¿Í 4.8%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 4.4%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°è ½ÅÆ¿·¹ÀÌ¼Ç °ËÃâ±â ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ Á¤¸®

½ÅÆ¿·¹ÀÌ¼Ç °ËÃâ±â¶õ ¹«¾ùÀ̸ç, ¿Ö ¹æ»ç¼± °ËÃâ¿¡ ÇʼöÀûÀΰ¡?

½ÅÆ¿·¹ÀÌ¼Ç °ËÃâ±â´Â °í¿¡³ÊÁö ±¤ÀÚ ¶Ç´Â ÀÔÀÚ¸¦ °¡½Ã±¤¼±À¸·Î º¯È¯ÇÏ¿© ÀÌ¿ÂÈ­ ¹æ»ç¼±À» °ËÃâ ¹× ÃøÁ¤ÇÏ´Â µ¥ »ç¿ëµÇ´Â Ư¼ö ±â±âÀÔ´Ï´Ù. ÀÌ °ËÃâ±â´Â ¿ä¿ÀµåÈ­³ªÆ®·ý, ¿ä¿ÀµåÈ­¼¼½·, À¯±â°áÁ¤ µîÀÇ ¼¶±¤¹°Áú·Î ±¸¼ºµÇ¾î ÀÖÀ¸¸ç, ¹æ»ç¼±ÀÌ ´êÀ¸¸é ¼¶±¤À» ¹ß»êÇÕ´Ï´Ù. ¹æÃâµÈ ºûÀº ±¤ÀüÀÚÁõ¹è°ü(PMT)À̳ª Æ÷Åä´ÙÀÌ¿Àµå¿¡ ÀÇÇØ Æ÷Âø ¹× ÁõÆøµÇ¾î Á¤·®È­ÇÒ ¼ö ÀÖ´Â Àü±â ½ÅÈ£¸¦ »ý¼ºÇÕ´Ï´Ù. ½ÅÆ¿·¹ÀÌ¼Ç °ËÃâ±â´Â ÀÇ·á ¿µ»ó, ¿øÀڷ¹ßÀü¼Ò °¨½Ã, ±¹Åä ¾Èº¸, »ê¾÷ ¹æ»ç¼± ÃÔ¿µ, °úÇÐ ¿¬±¸ µî ´Ù¾çÇÑ ºÐ¾ß¿¡ ÇʼöÀûÀÔ´Ï´Ù. °¨¸¶¼±, X¼± ¹× ±âŸ ¹æ»ç¼º ¹æÃâÀ» ½Å¼ÓÇϰí Á¤È®ÇÏ°Ô °¨ÁöÇÏ´Â ´É·ÂÀº ¾ÈÀüÀ» º¸ÀåÇϰí, Áø´ÜÀ» ¼öÇàÇϸç, ÷´Ü °úÇÐ ½ÇÇèÀ» ¼öÇàÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.

´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ È¿À²ÀûÀÎ ¹æ»ç¼± °ËÃâÀÇ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ´Â °ÍÀÌ ½ÅÆ¿·¹ÀÌ¼Ç °ËÃâ±â°¡ ³Î¸® äÅõǰí ÀÖ´Â ÁÖ¿ä ¿äÀÎÀÔ´Ï´Ù. ÇコÄÉ¾î ºÐ¾ß¿¡¼­´Â ¾çÀüÀÚ¹æ»ç¼±´ÜÃþÃÔ¿µ(PET)°ú ´Ü±¤ÀÚ¹æ»ç¼±´ÜÃþÃÔ¿µ(SPECT)¿¡ ³Î¸® »ç¿ëµÇ¾î ¾Ï, ½ÉÇ÷°üÁúȯ, ½Å°æÁúȯ µîÀÇ Áúº´À» Á¤¹ÐÇÏ°Ô Áø´ÜÇÏ´Â µ¥ µµ¿òÀ» ÁÖ°í ÀÖ½À´Ï´Ù. ÇÑÆí, ¿øÀÚ·Â ¹ßÀüÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¾ÈÀü°ú ±ÔÁ¦ Áؼö¸¦ º¸ÀåÇϱâ À§ÇØ ½Å·ÚÇÒ ¼ö ÀÖ´Â ¹æ»ç¼± ¸ð´ÏÅ͸µ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ½ÅÆ¿·¹ÀÌ¼Ç °ËÃâ±â´Â ±¹°æ, Ç׸¸, °øÇ׿¡¼­ ¹æ»ç¼º ¹°ÁúÀÇ ºÒ¹ý ¿î¼ÛÀ» °¨ÁöÇÏ´Â ±¹Åä ¾Èº¸¿¡µµ Áß¿äÇÕ´Ï´Ù. ÀÌó·³ ¼¶±¤ °ËÃâ±â´Â ¹Î°¨µµ, ºÐÇØ´É, ÀÀ´ä½Ã°£À» Çâ»ó½ÃŰ´Â ¼¶±¤Ã¼ Àç·áÀÇ ÁøÈ­¿Í ÇÔ²² ¹æ»ç¼± °ËÃâÀÇ ¿ä±¸¿¡ ÇʼöÀûÀÎ ±â¼ú·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù.

¼¶±¤ °ËÃâ±â´Â ¿ëµµÀÇ °ËÃâ È¿À²À» ¾î¶»°Ô Çâ»ó½Ãų ¼ö Àִ°¡?

½ÅÆ¿·¹ÀÌ¼Ç °ËÃâ±â´Â °í°¨µµ, ºü¸¥ ÀÀ´ä½Ã°£, ³ÐÀº ¿¡³ÊÁö ¹üÀ§¿¡ ´ëÀÀÇÏ¿© ¹æ»ç¼± °ËÃâ È¿À²À» Å©°Ô Çâ»ó½Ãŵ´Ï´Ù. ÀÌ °ËÃâ±â´Â ¾ËÆÄ¼±, º£Å¸¼±, °¨¸¶¼±, Áß¼ºÀÚ¼± µî ´Ù¾çÇÑ ÀÌ¿ÂÈ­ ¹æ»ç¼±À» ½Äº°ÇÒ ¼ö ÀÖÀ¸¹Ç·Î ´Ù¾çÇÑ ¿ëµµ¿¡ ´ëÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î ÀÇ·á¿ë ¿µ»ó Áø´Ü¿¡¼­ ½ÅÆ¿·¹ÀÌ¼Ç °ËÃâ±â´Â PET ¹× SPECT ½ºÄ³³Ê¿¡ ÇʼöÀûÀ̸ç, ü³»¿¡ ÁÖÀÔµÈ ¹æ»ç¼º ÃßÀûÀÚ¿¡¼­ ¹æÃâµÇ´Â °¨¸¶¼±À» Æ÷ÂøÇÕ´Ï´Ù. ÀÌ °ËÃâ±â´Â °í°¨µµÀ̱⠶§¹®¿¡ Àú¼±·®À¸·Î »ó¼¼ÇÑ ¿µ»ó ÃÔ¿µÀÌ °¡´ÉÇϸç, Á¤È®ÇÑ °á°ú¸¦ Á¦°øÇϸ鼭 ȯÀÚ¿¡°Ô º¸´Ù ¾ÈÀüÇÑ Áø´Ü °úÁ¤À» Á¦°øÇÕ´Ï´Ù. ¸¶Âù°¡Áö·Î ȯ°æ ¸ð´ÏÅ͸µ ¹× ¿øÀÚ·Â ¾ÈÀü ºÐ¾ß¿¡¼­´Â ¹æ»ç¼± ¼öÁØÀÇ Áö¼ÓÀûÀÎ ¸ð´ÏÅ͸µ¿¡ »ç¿ëµÇ¾î ¹æ»ç¼±ÀÇ ºñÁ¤»óÀûÀÎ ±Þ»ó½ÂÀÌ ÀÖÀ» °æ¿ì ½Ç½Ã°£À¸·Î °æ°íÇÏ¿© Àû½Ã¿¡ ¿¹¹æ Á¶Ä¡¸¦ ÃëÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù.

·çÅׯ¬ ¿Á½Ã¿À¸£Åä½Ç¸®ÄÉÀÌÆ®(LSO) ¹× ºñ½º¹«½º °Ô¸£¸¶´½ °Ô¸£¸¶³×ÀÌÆ®(BGO)¿Í °°Àº ÷´Ü Àç·áÀÇ »ç¿ëÀ¸·Î ½ÅÆ¿·¹ÀÌ¼Ç °ËÃâ±âÀÇ ¼º´ÉÀÌ ´õ¿í Çâ»óµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àç·á´Â ´õ ³ôÀº ±¤ Ãâ·Â, ´õ ³ªÀº °¨¸¶¼± Â÷´Ü·Â, ´õ ºü¸¥ °¨¼è ½Ã°£À» Á¦°øÇÏ¿© °í¿¡³ÊÁö ȯ°æ¿¡¼­ °ËÃâ±â¸¦ º¸´Ù È¿À²ÀûÀ̰í È¿°úÀûÀ¸·Î ¸¸µì´Ï´Ù. ÇコÄÉ¾î ¹× ¾ÈÀü ¿Ü¿¡µµ ½ÅÆ¿·¹ÀÌ¼Ç °ËÃâ±â´Â ¼®À¯ ¹× °¡½º »ê¾÷¿¡¼­ ÁöÇÏ ¾Ï¼®¿¡¼­ ¹æÃâµÇ´Â °¨¸¶¼±À» ÃøÁ¤Çϰí ÁöÃþÀ» ½Äº°Çϱâ À§ÇØ ÁöÇÏ ¾Ï¼®¿¡¼­ ¹æÃâµÇ´Â °¨¸¶¼±À» ÃøÁ¤ÇÏ´Â ½ÃÃß¿¡ ³Î¸® »ç¿ëµË´Ï´Ù. ÀÌ µ¥ÀÌÅÍ´Â ÀÚ¿ø Ž»ç ¹× ½ÃÃß ÀÛ¾÷ÀÇ ÃÖÀûÈ­¿¡ µµ¿òÀÌ µË´Ï´Ù. °ËÃâ±âÀÇ ¸íÈ®ÇÑ ½Ç½Ã°£ ÃøÁ¤ ´É·ÂÀº ÀÛ¾÷ È¿À²¼º°ú ¾ÈÀü ±ÔÁ¤ Áؼö¸¦ º¸ÀåÇϸç, »ê¾÷ ¿ëµµ¿¡¼­ ±× °¡Ä¡¸¦ ³ôÀÔ´Ï´Ù. °ËÃâ È¿À²ÀÌ »ê¾÷°è¿¡¼­ Áß¿äÇÑ ¿ä¼Ò·Î ¶°¿À¸£¸é¼­ ½ÅÆ¿·¹ÀÌ¼Ç °ËÃâ±âÀÇ ¿ªÇÒÀº Á¤È®ÇÑ ¹æ»ç¼± ¸ð´ÏÅ͸µ°ú Áø´ÜÀÇ Áß½ÉÀÌ µÇ°í ÀÖ½À´Ï´Ù.

±â¼úÀÇ ¹ßÀüÀº ½ÅÆ¿·¹ÀÌ¼Ç °ËÃâ±â¸¦ ¾î¶»°Ô ¹ßÀü½Ã۰í Àִ°¡?

±â¼úÀÇ ¹ßÀüÀº ½ÅÆ¿·¹ÀÌ¼Ç °ËÃâ±âÀÇ ¼³°è, ¼º´É ¹× ÀÀ¿ë ¹üÀ§¸¦ Çâ»ó½ÃŰ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ½ÅÆ¿·¹ÀÌÅÍ Àç·áÀÇ Çõ½ÅÀº ´õ ³ôÀº ±¤¼öÀ², ´õ ºü¸¥ °¨¼è ½Ã°£, Çâ»óµÈ ¿Âµµ ¾ÈÁ¤¼º µî ¿ì¼öÇÑ Æ¯¼ºÀ» °¡Áø »õ·Î¿î °áÁ¤ÀÇ °³¹ß·Î À̾îÁ³½À´Ï´Ù. ¿¹¸¦ µé¾î ·çÅׯ¬ÀÌÆ®·ý ¿Á½Ã¿ÃÅä½Ç¸®ÄÉÀÌÆ®(LYSO)¿Í °°Àº ¼¼·ý µµÇÎ °áÁ¤ÀÇ »ç¿ëÀº ´õ ³ªÀº ¿¡³ÊÁö ºÐÇØ´É°ú Çâ»óµÈ °¨µµ¸¦ ÅëÇØ PET ½ºÄ³³ÊÀÇ ¼º´ÉÀ» Çâ»ó½ÃÄ×½À´Ï´Ù. ÀÌ·¯ÇÑ Àç·á´Â ƯÈ÷ ÀÇ·á Áø´Ü ¹× ÇÙ¹°¸®ÇÐ ¿¬±¸¿¡¼­ º¸´Ù ¼±¸íÇÑ À̹ÌÁö¿Í Á¤È®ÇÑ ÃøÁ¤À» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. µðÁöÅÐ ÆÇµ¶ ÀüÀÚÀåºñ¿Í ÷´Ü ±¤ÀüÀÚ Áõ¹è°ü(PMT) ¶Ç´Â ½Ç¸®ÄÜ ±¤ÀüÀÚ Áõ¹è°ü(SiPM)ÀÇ ÅëÇÕÀ¸·Î S/Nºñ°¡ ´õ¿í °³¼±µÇ¾î Àüü ¿ëµµ¿¡¼­ º¸´Ù Á¤È®ÇÏ°í ºü¸¥ °ËÃâÀÌ °¡´ÉÇØÁ³½À´Ï´Ù.

½ÅÆ¿·¹ÀÌ¼Ç °ËÃâ±â ½Ã½ºÅÛ¿¡ AI ¹× ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀÌ ³»ÀåµÇ¾î ºÐ¼® ´É·ÂÀÌ °­È­µÈ °Íµµ Å« ¹ßÀüÀ¸·Î, AI°¡ žÀçµÈ °ËÃâ±â´Â º¹ÀâÇÑ ¹æ»ç¼± µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î ºÐ¼®ÇÏ¿© ÀÌ»ó ¡Èĸ¦ ÀÚµ¿À¸·Î °¨ÁöÇÏ°í ¿¹Áöº¸Àü ¹× ÀÇ»ç°áÁ¤À» °­È­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î ¿øÀÚ·Â ½Ã¼³¿¡¼­ AI·Î °­È­µÈ ½ÅÆ¿·¹ÀÌ¼Ç °ËÃâ±â´Â ÀáÀçÀûÀÎ ´©ÃâÀ̳ª ºñÁ¤»óÀûÀÎ ¹æ»ç¼± ÆÐÅÏÀ» º¸´Ù Á¤È®ÇÏ°Ô ½Äº°ÇÏ¿© ÀÎÀû ¿À·ù¸¦ ÁÙÀ̰í Àû½Ã¿¡ °³ÀÔÀ» º¸ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¼ÒÇüÈ­ ±â¼úÀ» ÅëÇØ ºñ»ó ´ëÀÀ, ±¹°æ º¸¾È, ȯ°æ Á¶»ç¿Í °°Àº ÇöÀå ¿ëµµ¿¡ ÀûÇÕÇÑ ¼ÒÇü ÈÞ´ë¿ë ½ÅÆ¿·¹ÀÌ¼Ç °ËÃâ±â¸¦ °³¹ßÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ È޴뼺À¸·Î ÀÎÇØ ¼¶±¤ °ËÃâ±âÀÇ »ç¿ë ¹üÀ§°¡ ±âÁ¸ ȯ°æ¿¡¼­ È®ÀåµÇ¾î ¿ø°ÝÁö³ª ±î´Ù·Î¿î ȯ°æ¿¡¼­µµ ±¤¹üÀ§ÇÏ°Ô »ç¿ëÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ±â¼ú Çõ½ÅÀÌ °¨µµ, ÇØ»óµµ, ÀÚµ¿È­¸¦ Áö¼ÓÀûÀ¸·Î °³¼±ÇÔ¿¡ µû¶ó ½ÅÆ¿·¹ÀÌ¼Ç °ËÃâ±âÀÇ Ã¤ÅÃÀº ½Å±Ô ¹× ±âÁ¸ ¿ëµµ¿¡¼­ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

½ÅÆ¿·¹ÀÌ¼Ç °ËÃâ±â ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

½ÅÆ¿·¹ÀÌ¼Ç °ËÃâ±â ½ÃÀåÀÇ ¼ºÀåÀº ÀÇ·á Áø´Ü¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ¿øÀÚ·Â ¾ÈÀü¿¡ ´ëÇÑ °ü½É Áõ°¡, »ê¾÷ ¹× º¸¾È ºÐ¾ß¿¡¼­ÀÇ Àû¿ë È®´ë µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÇコÄÉ¾î ºÐ¾ß¿¡¼­´Â ¸¸¼ºÁúȯ, ƯÈ÷ ¾ÏÀÇ È®»êÀ¸·Î ÀÎÇØ Á¤È®ÇÑ Áø´ÜÀ» À§ÇØ ½ÅÆ¿·¹ÀÌ¼Ç °ËÃâ±â¿¡ Å©°Ô ÀÇÁ¸ÇÏ´Â PET ¹× SPECT À̹Ì¡¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¸¹Àº Áö¿ª¿¡¼­ °í·ÉÈ­°¡ ÁøÇàµÇ¸é¼­ °í±Þ ÀÇ·á¿ë ¿µ»óó¸® ±â¼úÀÇ Çʿ伺ÀÌ ´õ¿í ³ô¾ÆÁ® ½ÅÆ¿·¹ÀÌ¼Ç °ËÃâ±â¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¿øÀÚ·Â ºÐ¾ß¿¡¼­´Â ¿øÀڷ¹ßÀü¼ÒÀÇ ¾ö°ÝÇÑ ¾ÈÀü ±ÔÁ¦¿Í Áö¼ÓÀûÀÎ ¹æ»ç¼± ¸ð´ÏÅ͸µÀÇ Çʿ伺ÀÌ ¼¶±¤ °ËÃâ±âÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¼¼°è °¢±¹ Á¤ºÎ´Â ¹Î°£ÀÇ ¾ÈÀü°ú ÀáÀçÀûÀÎ ¹æ»ç¼± À§ÇùÀ» ¸ð´ÏÅ͸µÇϱâ À§ÇØ ¹æ»ç¼± °¨Áö ÀÎÇÁ¶ó¸¦ ¾÷±×·¹À̵åÇÏ´Â µ¥ ÅõÀÚÇϰí ÀÖÀ¸¸ç, ÀÌ´Â ½ÃÀå ¼ºÀåÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù.

±¹Åä ¾Èº¸¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ½ÅÆ¿·¹ÀÌ¼Ç °¨Áö±â´Â ¹æ»ç¼º ¹°ÁúÀÇ ºÒ¹ý ¿î¼ÛÀ» ¹æÁöÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. º¸¾È ±â°üÀº ±¹°æ º¸¾È, °øÇ× ½É»ç, °ø°ø Çà»ç º¸¾ÈÀ» À§ÇØ ÀÌ·¯ÇÑ °¨Áö±â¸¦ »ç¿ëÇÏ¿© ±× Àû¿ë ¹üÀ§¸¦ È®ÀåÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Àç·á °úÇаú µðÁöÅÐ ±â¼úÀÇ ¹ßÀüÀ¸·Î ½ÅÆ¿·¹ÀÌ¼Ç °ËÃâ±â´Â ´õ Àú·ÅÇϰí, ´õ ½Å·ÚÇÒ ¼ö ÀÖ°í, ´õ È¿À²ÀûÀÌ µÇ¾î ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ äÅõǰí ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀ» Áß½ÉÀ¸·Î ÇÑ ½ÅÈï ½ÃÀåÀº »ê¾÷, ÀÇ·á, º¸¾È ºÐ¾ß¿¡¼­ °ý¸ñÇÒ ¸¸ÇÑ ¼ºÀåÀ» ÀÌ·ç¸ç ÷´Ü ¹æ»ç¼± °ËÃ⠽ýºÅÛ¿¡ ´ëÇÑ Å« ¼ö¿ä¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¹æ»ç´É ¿À¿°À» ÃßÀûÇÏ°í ´ëÁßÀÇ ¾ÈÀüÀ» º¸ÀåÇϱâ À§ÇÑ È¯°æ ¸ð´ÏÅ͸µ ³ë·Âµµ ½ÃÀå È®´ë¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¹æ»ç´É À§Çè¿¡ ´ëÇÑ Àü ¼¼°èÀûÀÎ ÀνÄÀÌ ³ô¾ÆÁö°í, ±â¼ú Çõ½Å°ú ±ÔÁ¦ ´ç±¹ÀÇ Áö¿øÀÌ °áÇյǸ鼭 ½ÅÆ¿·¹ÀÌ¼Ç °ËÃâ±â ½ÃÀåÀº ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ °­·ÂÇÑ ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ºÎ¹®

¾ÖÇø®ÄÉÀ̼Ç(ÇコÄɾî, »ê¾÷¡¤Á¦Á¶, ¹æÀ§, ±âŸ ¾ÖÇø®ÄÉÀ̼Ç)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇÕ´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Scintillation Detectors Market to Reach US$370.9 Million by 2030

The global market for Scintillation Detectors estimated at US$260.2 Million in the year 2024, is expected to reach US$370.9 Million by 2030, growing at a CAGR of 6.1% over the analysis period 2024-2030. Healthcare, one of the segments analyzed in the report, is expected to record a 6.5% CAGR and reach US$186.8 Million by the end of the analysis period. Growth in the Industry & Manufacturing segment is estimated at 6.0% CAGR over the analysis period.

The U.S. Market is Estimated at US$67.3 Million While China is Forecast to Grow at 9.4% CAGR

The Scintillation Detectors market in the U.S. is estimated at US$67.3 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$87.1 Million by the year 2030 trailing a CAGR of 9.4% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 3.5% and 4.8% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 4.4% CAGR.

Global Scintillation Detectors Market - Key Trends & Drivers Summarized

What Are Scintillation Detectors & Why Are They Essential in Radiation Detection?

Scintillation detectors are specialized instruments used to detect and measure ionizing radiation by converting high-energy photons or particles into visible light. These detectors consist of scintillator materials, such as sodium iodide, cesium iodide, or organic crystals, which emit flashes of light when struck by radiation. The emitted light is then captured and amplified by photomultiplier tubes (PMTs) or photodiodes to generate electrical signals that can be quantified. Scintillation detectors are vital in a wide array of applications, including medical imaging, nuclear power plant monitoring, homeland security, industrial radiography, and scientific research. Their ability to provide rapid and accurate detection of gamma rays, X-rays, and other radioactive emissions makes them crucial for ensuring safety, conducting diagnostics, and performing advanced scientific experiments.

The growing need for efficient radiation detection across multiple industries is a primary driver for the widespread adoption of scintillation detectors. In the healthcare sector, they are extensively used in positron emission tomography (PET) and single-photon emission computed tomography (SPECT), helping diagnose diseases such as cancer, cardiovascular disorders, and neurological conditions with high precision. Meanwhile, the rise of nuclear energy production has led to an increased demand for reliable radiation monitoring systems to ensure safety and regulatory compliance. Scintillation detectors are also critical in homeland security for detecting illicit transportation of radioactive materials at borders, ports, and airports. This broad applicability, combined with advancements in scintillator materials that improve sensitivity, resolution, and response time, makes scintillation detectors an indispensable technology for modern radiation detection needs.

How Do Scintillation Detectors Improve Detection Efficiency Across Applications?

Scintillation detectors significantly enhance radiation detection efficiency due to their high sensitivity, fast response time, and broad energy range capabilities. These detectors can identify various forms of ionizing radiation, including alpha, beta, gamma, and neutron radiation, making them versatile tools for diverse applications. In medical imaging, for instance, scintillation detectors are integral to PET and SPECT scanners, where they capture the gamma rays emitted by radiotracers injected into the body. The high sensitivity of these detectors allows for detailed imaging with lower radiation doses, making the diagnostic process safer for patients while providing accurate results. Similarly, in environmental monitoring and nuclear safety, scintillation detectors are used to continuously monitor radiation levels, offering real-time alerts in case of abnormal radiation spikes, thus ensuring timely preventive measures.

The use of advanced materials, such as lutetium oxyorthosilicate (LSO) and bismuth germanate (BGO), has further improved the performance of scintillation detectors. These materials offer higher light output, better stopping power for gamma rays, and faster decay times, making the detectors more efficient and effective in high-energy environments. In addition to healthcare and safety, scintillation detectors are widely used in the oil and gas industry for well logging, where they measure gamma radiation emitted by subsurface rocks to determine geological formations. This data helps in resource exploration and optimizing drilling operations. The detectors' ability to provide clear, real-time measurements makes them valuable in industrial applications, ensuring operational efficiency and safety compliance. As detection efficiency continues to be a critical factor across industries, the role of scintillation detectors remains central to accurate radiation monitoring and diagnostics.

How Are Technological Advancements Shaping the Evolution of Scintillation Detectors?

Technological advancements have been pivotal in enhancing the design, performance, and application scope of scintillation detectors. Innovations in scintillator materials have led to the development of new crystals with superior properties, such as higher light yields, faster decay times, and improved temperature stability. For example, the use of cerium-doped crystals like lutetium-yttrium oxyorthosilicate (LYSO) has improved the performance of PET scanners by providing better energy resolution and increased sensitivity. Such materials enable scintillation detectors to deliver clearer images and more accurate measurements, especially in medical diagnostics and nuclear physics research. The integration of digital readout electronics and advanced photomultiplier tubes (PMTs) or silicon photomultipliers (SiPMs) has further improved the signal-to-noise ratio, enabling more precise and faster detection across applications.

The incorporation of AI and machine learning algorithms in scintillation detector systems is another significant advancement, enhancing their analytical capabilities. AI-powered detectors can analyze complex radiation data in real-time, enabling automated anomaly detection, predictive maintenance, and enhanced decision-making. For instance, in nuclear facilities, AI-enhanced scintillation detectors can identify potential leaks or unusual radiation patterns more accurately, reducing human error and ensuring timely interventions. Additionally, miniaturization technologies have enabled the development of compact, portable scintillation detectors suitable for field applications, such as emergency response, border security, and environmental surveys. This portability expands the reach of scintillation detectors beyond traditional settings, allowing for broader use in remote locations and challenging environments. As technological innovations continue to enhance sensitivity, resolution, and automation, the adoption of scintillation detectors is expected to increase across emerging and established applications.

What Factors Are Driving Growth in the Scintillation Detectors Market?

The growth in the scintillation detectors market is driven by several factors, including the rising demand for medical diagnostics, increased focus on nuclear safety, and expanding applications in industrial and security sectors. In the healthcare sector, the growing prevalence of chronic diseases, especially cancer, has led to a higher demand for PET and SPECT imaging, which relies heavily on scintillation detectors for accurate diagnostics. The aging population in many regions further fuels the need for advanced medical imaging technologies, boosting the demand for scintillation detectors. In the nuclear energy sector, stringent safety regulations and the need for continuous radiation monitoring in nuclear power plants drive the adoption of scintillation detectors. Governments worldwide are investing in upgrading radiation detection infrastructure, both for civilian safety and for monitoring potential radiological threats, which supports market growth.

The rise of homeland security concerns is another major driver, with scintillation detectors playing a crucial role in preventing the illegal transport of radioactive materials. Security agencies use these detectors for border security, airport screening, and public event safety, increasing the scope of their applications. Additionally, advancements in material science and digital technologies have made scintillation detectors more affordable, reliable, and efficient, encouraging broader adoption across sectors. Emerging markets, particularly in Asia-Pacific, are witnessing significant growth in industrial, medical, and security sectors, creating substantial demand for advanced radiation detection systems. Environmental monitoring initiatives, aimed at tracking radioactive contamination and ensuring public safety, also contribute to the market’s expansion. As global awareness of radiation risks increases, coupled with technological innovations and regulatory support, the scintillation detectors market is poised for robust growth across diverse industries.

SCOPE OF STUDY:

The report analyzes the Scintillation Detectors market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Application (Healthcare, Industry & Manufacturing, Defense, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 34 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â