¼¼°èÀÇ Áß¼ºÀÚ °ËÃâ±â ½ÃÀå
Neutron Detectors
»óǰÄÚµå : 1765463
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 92 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,198,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,594,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Áß¼ºÀÚ °ËÃâ±â ¼¼°è ½ÃÀåÀº 2030³â±îÁö 27¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 15¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â Áß¼ºÀÚ °ËÃâ±â ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 10.6%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 27¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ÇコÄɾî´Â CAGR 12.2%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 15¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. »ê¾÷¡¤Á¦Á¶¾÷ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 9.9%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº ÃßÁ¤ 3¾ï 7,450¸¸ ´Þ·¯, Áß±¹Àº CAGR 14.3%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Áß¼ºÀÚ °ËÃâ±â ½ÃÀåÀº 2024³â¿¡ 3¾ï 7,450¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 14.3%·Î ÃßÁ¤µÇ¸ç, 2030³â¿¡´Â 6¾ï 3,590¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 6.8%¿Í 8.7%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 7.8%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ Áß¼ºÀÚ °ËÃâ±â ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Áß¼ºÀÚ °ËÃâ±â¶õ?

Áß¼ºÀÚ °ËÃâ±â´Â ÇÙ¹ÝÀÀÀ̳ª ¹æ»ç¼º ºØ±« ½Ã ¹æÃâµÇ´Â ÀÌ¿ÂÈ­ ¹æ»ç¼±ÀÇ ÀÏÁ¾ÀÎ Áß¼ºÀÚ¼±À» °ËÃâ ¹× ÃøÁ¤Çϱâ À§ÇØ ¼³°èµÈ Ư¼ö ±â±âÀÔ´Ï´Ù. ÀÌ °ËÃâ±â´Â ÇÙ º¸¾È, ¹æ»ç¼± ¹æÈ£, ¿øÀڷ¹ßÀü, °úÇÐ ¿¬±¸ µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. Áß¼ºÀÚ °ËÃâ±â´Â ¿øÀÚ·Â ½Ã¼³¿¡¼­ Áß¼ºÀÚ ¹æÃâÀ» °¨½ÃÇϰí Á¦¾îÇÏ´Â µ¥ ÇʼöÀûÀ̸ç, ¾ÈÀü ¹× ±ÔÁ¦ ±âÁØ Áؼö¸¦ º¸ÀåÇÕ´Ï´Ù. °¡½º ÀÌ¿ÂÈ­, ¼¶±¤, ¹ÝµµÃ¼ °ËÃâ µî ´Ù¾çÇÑ ¿ø¸®¿¡ µû¶ó ÀÛµ¿ÇÕ´Ï´Ù.

Áß¼ºÀÚ °ËÃâ±â Á¦Á¶¿¡´Â Áß¼ºÀÚ¿Í È¿°úÀûÀ¸·Î »óÈ£ ÀÛ¿ëÇÒ ¼ö ÀÖ´Â ÀûÀýÇÑ Àç·á¸¦ ¼±ÅÃÇÏ´Â °ÍºÎÅÍ ½ÃÀÛÇÏ´Â ¿©·¯ ´Ü°è°¡ ÀÖ½À´Ï´Ù. Áß¼ºÀÚ °ËÃâ±â¿¡ »ç¿ëµÇ´Â ÀϹÝÀûÀÎ Àç·á·Î´Â ¸®Æ¬-6, ºØ¼Ò, À¯±â ½ÅÆ¿·¹ÀÌÅÍ µîÀÌ ÀÖÀ¸¸ç, °¢°¢ °ËÃâ±âÀÇ ¼º´É¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â °íÀ¯ÇÑ Æ¯¼ºÀ» °¡Áö°í ÀÖ½À´Ï´Ù. Á¦Á¶ °øÁ¤Àº ÀϹÝÀûÀ¸·Î °ËÃâ ¸Åü ¹× °ËÃâ ¼ÒÀÚ¿Í °°Àº °ËÃâ±â ±¸¼º¿ä¼ÒÀÇ Á¦Á¶·Î ½ÃÀ۵˴ϴÙ. ÀÌ·¯ÇÑ ±¸¼º¿ä¼Ò´Â ¿ÏÀüÇÑ °ËÃâ±â À¯´ÖÀ¸·Î Á¶¸³µÈ ÈÄ Á¤È®ÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â ¼º´ÉÀ» º¸ÀåÇϱâ À§ÇØ ±³Á¤ ¹× ǰÁú º¸Áõ Á¶Ä¡¸¦ ÃëÇÕ´Ï´Ù.

ÃÖ±Ù Áß¼ºÀÚ °ËÃâ±â Á¦Á¶ÀÇ ¹ßÀüÀº °¨µµ Çâ»ó, ÀÀ´ä ½Ã°£ °³¼±, È޴뼺 Çâ»ó¿¡ ÃÊÁ¡À» ¸ÂÃß°í ÀÖ½À´Ï´Ù. »õ·Î¿î ½ÅÆ¿·¹ÀÌ¼Ç °áÁ¤ ¹× °í±Þ È¥ÇÕ °¡½ºÀÇ °³¹ß°ú °°Àº °ËÃâ±â Àç·áÀÇ Çõ½ÅÀº ´õ ³·Àº Áß¼ºÀÚ Ç÷°½º ·¹º§À» °¨ÁöÇÒ ¼ö ÀÖ´Â ´õ ³ôÀº °¨µµÀÇ °ËÃâ±â¸¦ ¸¸µé¾î ³Â½À´Ï´Ù. ¶ÇÇÑ ÀüÀÚºÎǰ ¹× µ¥ÀÌÅÍ ¼öÁý ½Ã½ºÅÛÀÇ ¹ßÀüÀ¸·Î ´Ù¾çÇÑ ÇöÀå ÀÀ¿ë ºÐ¾ß¿¡ ÀûÇÕÇÑ ÈÞ´ë¿ë ¹× »ç¿ëÀÚ Ä£È­ÀûÀÎ Áß¼ºÀÚ °ËÃâ±â°¡ °³¹ßµÇ¾ú½À´Ï´Ù.

»ê¾÷°è¿¡¼­ Áß¼ºÀÚ °ËÃâ±âÀÇ ÁÖ¿ä ¿ëµµ´Â ¹«¾ùÀΰ¡?

Áß¼ºÀÚ °ËÃâ±âÀÇ ÁÖ¿ä ¿ëµµ´Â ¿øÀÚ·Â, ±¹°¡ ¾Èº¸, ÀÇ·á, °úÇÐ ¿¬±¸ µîÀÔ´Ï´Ù. ¿øÀÚ·Â ºÐ¾ß¿¡¼­ Áß¼ºÀÚ °ËÃâ±â´Â ¿øÀÚ·ÎÀÇ Áß¼ºÀÚ Ç÷°½º ·¹º§À» ¸ð´ÏÅ͸µÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. Çٺп­ ¹ÝÀÀ¿¡ ´ëÇÑ Áß¿äÇÑ µ¥ÀÌÅ͸¦ Á¦°øÇϰí ÇÙ¿¬¼â¹ÝÀÀÀ» Á¦¾îÇÏ¿© ¿øÀÚ·ÎÀÇ ¾ÈÀüÇϰí È¿À²ÀûÀÎ ¿îÀüÀ» º¸ÀåÇÕ´Ï´Ù. Á¤È®ÇÑ Áß¼ºÀÚ °ËÃâÀº ¿øÀÚ·ÎÀÇ ±ÕÇüÀ» À¯ÁöÇϰí ÀáÀçÀûÀÎ »ç°í¸¦ ¿¹¹æÇϱâ À§ÇØ ÇʼöÀûÀ̸ç, ÀÌ °ËÃâ±â´Â ¿øÀڷ¹ßÀü¼Ò¿¡¼­ ÇʼöÀûÀÎ ¿ªÇÒÀ» ÇÕ´Ï´Ù.

±¹°¡ ¾Èº¸ ºÐ¾ß¿¡¼­ Áß¼ºÀÚ °ËÃâ±â´Â ÇÙ À§ÇùÀ» ŽÁöÇÏ°í °¨½ÃÇÏ´Â µ¥ »ç¿ëµË´Ï´Ù. ºÒ¹ý ÇÙ¹°ÁúÀÇ ½Äº°, ±¹°æ Åë°ú ½Ã ¹æ»ç¼± ¼öÁØ °¨Áö, ¿øÀÚ·Â ½Ã¼³ÀÇ ¾ÈÀü È®º¸¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. Á¤ºÎ¿Í ±â°üµéÀº ÇÙÈ®»êÀ» ¹æÁöÇϰí ÀáÀçÀûÀÎ Å×·¯¸®½ºÆ®ÀÇ À§ÇùÀ¸·ÎºÎÅÍ º¸È£Çϱâ À§ÇÑ º¸¾È ´ëÃ¥ÀÇ ÀÏȯÀ¸·Î Áß¼ºÀÚ Å½Áö±â¸¦ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. Áß¼ºÀÚ¼±À» ½Å¼ÓÇϰí Á¤È®ÇÏ°Ô Å½ÁöÇÒ ¼ö ÀÖ´Â ´É·ÂÀº ±¹°¡ ¾Èº¸ ³ë·ÂÀ» °­È­Çϰí, Áß¼ºÀÚ Å½Áö±â¸¦ ´ëÅ×·¯ Ȱµ¿¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ¸¸µé°í ÀÖ½À´Ï´Ù.

ÀÇ·á »ê¾÷¿¡¼­ Áß¼ºÀÚ °ËÃâ±â´Â ¹æ»ç¼± Ä¡·á ¹× ¿µ»ó Áø´Ü¿¡ »ç¿ëµË´Ï´Ù. Áß¼ºÀÚ °ËÃâ±â´Â ¾Ï Ä¡·á ½Ã¼³¿¡¼­ Áß¼ºÀÚ¼± ¸ð´ÏÅ͸µ¿¡ »ç¿ëµÇ¾î ȯÀÚÀÇ ¾ÈÀü°ú È¿°úÀûÀÎ Ä¡·á¸¦ º¸ÀåÇÕ´Ï´Ù. Áß¼ºÀÚÀÇ Á¤È®ÇÑ °ËÃâÀº ¹æ»ç¼±·®À» ÃÖÀûÈ­Çϰí Ä¡·á Áß °Ç°­ÇÑ Á¶Á÷¿¡ ´ëÇÑ ÇÇÆøÀ» ÃÖ¼ÒÈ­Çϱâ À§ÇØ Áß¿äÇÕ´Ï´Ù. ¶ÇÇÑ, Áß¼ºÀÚ ¹æ»ç¼± ÃÔ¿µ, Áß¼ºÀÚ ¹æ»çÈ­ ºÐ¼®, Àç·á Ư¼º Æò°¡ µî ´Ù¾çÇÑ ¿ëµµ·Î ½ÇÇè½Ç¿¡¼­ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù.

¶ÇÇÑ, Áß¼ºÀÚ °ËÃâ±â´Â °úÇÐ ¿¬±¸, ƯÈ÷ ÇÙ¹°¸®ÇÐ ¹× Àç·á °úÇÐ ºÐ¾ß¿¡¼­ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¿¬±¸ÀÚµéÀº Áß¼ºÀÚ °ËÃâ±â¸¦ ÀÌ¿ëÇÏ¿© ±âº»ÀûÀÎ »óÈ£ ÀÛ¿ë ¿¬±¸, Àç·á Ư¼º Á¶»ç, Áß¼ºÀÚ »ê¶õ ½ÇÇè µîÀ» ¼öÇàÇÕ´Ï´Ù. ÀÌ·¯ÇÑ °ËÃâ±â¸¦ ÅëÇØ °úÇÐÀÚµéÀº ¿øÀÚ ¹× ¼Ò¸³ÀÚ Çö»ó¿¡ ´ëÇÑ ±ÍÁßÇÑ ÀλçÀÌÆ®¸¦ ¾òÀ» ¼ö ÀÖÀ¸¸ç, ´Ù¾çÇÑ °úÇÐ ºÐ¾ßÀÇ ¹ßÀü¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

Áß¼ºÀÚ °ËÃâ±â¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä°¡ Áõ°¡ÇÏ´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

Áß¼ºÀÚ °ËÃâ±â¿¡ ´ëÇÑ ¼ö¿ä´Â ¿øÀÚ·Â ¾ÈÀü¿¡ ´ëÇÑ °ü½É Áõ°¡, ¿øÀÚ·Â ±â¼úÀÇ ¹ßÀü, ±¹°¡ ¾Èº¸¿¡ ´ëÇÑ °ü½É Áõ°¡ µî ¸î °¡Áö Áß¿äÇÑ ¿äÀÎÀ¸·Î ÀÎÇØ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¼ö¿äÀÇ ÁÖ¿ä ¿äÀÎ Áß Çϳª´Â ¿øÀÚ·Â ºÐ¾ßÀÇ ¾ÈÀü°ú ±ÔÁ¦ Áؼö¿¡ ´ëÇÑ °ü½ÉÀÇ Áõ°¡ÀÔ´Ï´Ù. ¿øÀڷ¹ßÀüÀÌ ¼¼°è ¿¡³ÊÁö »óȲ¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» °è¼Ó ¼öÇàÇÔ¿¡ µû¶ó Á¤È®ÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â Áß¼ºÀÚ °ËÃ⠽ýºÅÛÀÇ Çʿ伺ÀÌ Á¡Á¡ ´õ Ä¿Áö°í ÀÖ½À´Ï´Ù. ±ÔÁ¦ ±â°üÀº ¿øÀÚ·Â ½Ã¼³ÀÇ ¾ÈÀüÇÑ ¿î¿µÀ» º¸ÀåÇϱâ À§ÇØ Áß¼ºÀÚ ¹æÃâ¿¡ ´ëÇÑ ¾ö°ÝÇÑ ¸ð´ÏÅ͸µÀ» ¿ä±¸Çϰí ÀÖÀ¸¸ç, ÷´Ü Áß¼ºÀÚ °ËÃâ±âÀÇ Ã¤ÅÃÀ» ÃßÁøÇϰí ÀÖ½À´Ï´Ù.

Â÷¼¼´ë ¿øÀÚ·Î ¹× Çõ½ÅÀûÀÎ ¿¬·áÁÖ±â µî ¿øÀÚ·Â ±â¼úÀÇ ¹ßÀüµµ Áß¼ºÀÚ °ËÃâ±âÀÇ ¼ö¿ä Áõ°¡¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. »ê¾÷°èÀÇ ¹ßÀü¿¡ µû¶ó ´Ù¾çÇÑ ¿îÀü Á¶°Ç¿¡¼­ Áß¼ºÀÚ °Åµ¿À» È¿°úÀûÀ¸·Î ¸ð´ÏÅ͸µÇÒ ¼ö ÀÖ´Â °ËÃâ±âÀÇ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¿øÀÚ·ÎÀÇ ¼º´É°ú ¾ÈÀü¼ºÀ» ÃÖÀûÈ­Çϱâ À§Çؼ­´Â º¸´Ù ¹Î°¨ÇÏ°í ´ÙÀç´Ù´ÉÇÑ Áß¼ºÀÚ °ËÃâ ±â¼úÀÇ °³¹ßÀÌ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ¿øÀÚ·Â ºÐ¾ßÀÇ ÁøÈ­ÇÏ´Â ¿ä±¸¸¦ ÃæÁ·ÇÏ´Â Â÷¼¼´ë °ËÃâ±â¸¦ °³¹ßÇϱâ À§ÇÑ ¿¬±¸°³¹ß¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

±¹°¡ ¾Èº¸¿¡ ´ëÇÑ ¿ì·ÁÀÇ Áõ°¡¿Í È¿°úÀûÀÎ ÇÙ À§Çù ŽÁöÀÇ Çʿ伺Àº Áß¼ºÀÚ °ËÃâ±â¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. Á¤ºÎ¿Í ¾Èº¸ ±â°üÀº ºÒ·® ÇÙ¹°ÁúÀ» ½Äº°ÇÏ°í ¹æ»ç¼± ¼öÁØÀ» ¸ð´ÏÅ͸µÇÒ ¼ö ÀÖ´Â ´É·ÂÀ» °­È­Çϱâ À§ÇØ Ã·´Ü ŽÁö ½Ã½ºÅÛ¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. Áß¼ºÀÚ ¹æ»ç¼±À» ½Å¼ÓÇÏ°Ô Å½ÁöÇÏ´Â ´É·ÂÀº ÇÙÈ®»êÀ» ¹æÁöÇϰí ÀáÀçÀûÀÎ Å×·¯ À§Çù¿¡ ´ëÀÀÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ¼¼°è ¾Èº¸ ¿ªÇÐÀÌ º¯È­ÇÔ¿¡ µû¶ó ±¹°¡ ¾Èº¸¸¦ ÁöŰ´Â µ¥ ÀÖ¾î Áß¼ºÀÚ °ËÃâ±âÀÇ Á߿伺Àº ´õ¿í Ä¿Áú °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¶ÇÇÑ, ÇÙ¹°¸® ¹× Àç·á°úÇÐ ºÐ¾ßÀÇ °úÇÐ ¿¬±¸ ¹× °³¹ß¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ Áß¼ºÀÚ °ËÃâ±â¿¡ ´ëÇÑ ¼ö¿äµµ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¿¬±¸ ±â°ü°ú ¿¬±¸¼Ò°¡ ´Ù¾çÇÑ °úÇÐ ºÐ¾ß¿¡¼­ ±âÃÊÀûÀÎ »óÈ£ ÀÛ¿ëÀ» ޱ¸Çϰí Áö½ÄÀ» Çâ»ó½Ã۱â À§ÇØ ³ë·ÂÇÔ¿¡ µû¶ó Á¤¹ÐÇÑ Áß¼ºÀÚ °ËÃâÀÇ Çʿ伺ÀÌ Á¡Á¡ ´õ Ä¿Áö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ´Ù¾çÇÑ °úÇÐÀû ½Ãµµ¸¦ Áö¿øÇÏ´Â Áß¼ºÀÚ °ËÃâ ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇÏ°í ½ÃÀå ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

Áß¼ºÀÚ °ËÃâ±â ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

Áß¼ºÀÚ °ËÃâ±â ½ÃÀåÀÇ ¼ºÀåÀº ¿øÀÚ·Â ¾ÈÀü ¹× ±ÔÁ¦¿¡ ´ëÇÑ °ü½É Áõ°¡, °ËÃâ ±â¼ú ¹ßÀü, ¿¬±¸°³¹ß ÅõÀÚ Áõ°¡ µî ¸î °¡Áö ÁÖ¿ä ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ½ÃÀå ¼ºÀå¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â °¡Àå Áß¿äÇÑ ¿äÀÎ Áß Çϳª´Â ¿øÀÚ·Â ºÐ¾ßÀÇ ¾ÈÀü°ú ±ÔÁ¤ Áؼö¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ °­Á¶ÀÔ´Ï´Ù. °¢±¹ÀÌ Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁö¿øÀ¸·Î ¿øÀÚ·ÂÀ» °è¼Ó ¼±È£ÇÔ¿¡ µû¶ó ½Å·ÚÇÒ ¼ö ÀÖ´Â Áß¼ºÀÚ °ËÃ⠽ýºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ±ÔÁ¦ ±â°üÀº Áß¼ºÀÚ ¹æÃâ ¸ð´ÏÅ͸µ¿¡ ´ëÇÑ ¾ö°ÝÇÑ ±âÁØÀ» ºÎ°úÇϰí ÀÖÀ¸¸ç, À̴ ÷´Ü Áß¼ºÀÚ °ËÃâ±â ½ÃÀåÀ» âÃâÇϰí ÀÖ½À´Ï´Ù.

°ËÃâ ±â¼úÀÇ ¹ßÀüµµ Áß¼ºÀÚ °ËÃâ±â ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. Àç·á °úÇаú ¼¾¼­ ±â¼úÀÇ Çõ½ÅÀ¸·Î º¸´Ù ¹Î°¨Çϰí Á¤È®ÇÑ Áß¼ºÀÚ °ËÃâ±âÀÇ °³¹ßÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ÷´Ü ÀüÀÚ°øÇÐ, µ¥ÀÌÅÍ Ã³¸® ±â´É, ¹«¼± Åë½Å ±â´ÉÀÇ ÅëÇÕÀº Áß¼ºÀÚ °ËÃ⠽ýºÅÛÀÇ ¼º´É°ú »ç¿ë ÆíÀǼºÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀÇ ¹ßÀüÀ¸·Î Áß¼ºÀÚ °ËÃâ±â´Â ¿øÀÚ·Â ½Ã¼³¿¡¼­ ±¹°¡ ¾Èº¸ ´ëÃ¥¿¡ À̸£±â±îÁö ´Ù¾çÇÑ ¿ëµµ·Î Ȱ¿ëµÉ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

¿¬±¸°³¹ß¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϰí ÀÖ´Â °Íµµ ½ÃÀå ¼ºÀåÀÇ Áß¿äÇÑ ¿äÀÎÀÔ´Ï´Ù. Á¤ºÎ ¹× ¹Î°£ ±â°üÀº Áß¼ºÀÚ °ËÃâ ±â¼úÀ» ¹ßÀü½ÃŰ°í ¼º´É Ư¼ºÀ» °³¼±Çϱâ À§ÇØ ÀÚ¿øÀ» ÅõÀÔÇϰí ÀÖ½À´Ï´Ù. ¿¬±¸ ±â°üµéÀÌ Áß¼ºÀÚ °ËÃâÀÇ ±âÃÊÀûÀÎ °úÇÐÀû ¹®Á¦¸¦ ޱ¸ÇÏ°í »õ·Î¿î ¾ÖÇø®ÄÉÀ̼ÇÀ» °³¹ßÇϱâ À§ÇØ ³ë·ÂÇϰí Àֱ⠶§¹®¿¡ °íǰÁú °ËÃâ±â¿¡ ´ëÇÑ ¼ö¿ä´Â ¾ÕÀ¸·Îµµ °è¼Ó Áõ°¡ÇÒ °ÍÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ½ÃÀåÀÇ ±â¼ú Çõ½ÅÀ» ÃËÁøÇϰí Â÷¼¼´ë Áß¼ºÀÚ °ËÃ⠽ýºÅÛ °³¹ßÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¶ÇÇÑ, ±¹°¡ ¾Èº¸ À§Çù¿¡ ´ëÇÑ Àü ¼¼°èÀÇ ÀνÄÀÌ ³ô¾ÆÁö¸é¼­ Áß¼ºÀÚ °ËÃâ±â ½ÃÀåÀÇ ¼ºÀå¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. °¢±¹ÀÌ ÇÙÈ®»ê°ú ÀáÀçÀû Å×·¯ Ȱµ¿À¸·Î ÀÎÇÑ ¹®Á¦¸¦ ÇØ°áÇϱâ À§ÇØ ³ë·ÂÇϸ鼭 È¿°úÀûÀΠŽÁö ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Áß¼ºÀÚ °ËÃâ±â´Â ¿øÀÚ·ÂÀÇ ¾ÈÀü°ú º¸¾ÈÀ» º¸ÀåÇϱâ À§ÇÑ ÇʼöÀûÀÎ µµ±¸·Î Àνĵǰí ÀÖÀ¸¸ç, °ËÃâ ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±¹°¡ ¾Èº¸¿¡ ´ëÇÑ °ü½ÉÀÇ Áõ°¡´Â Áß¼ºÀÚ °ËÃâ±â ½ÃÀåÀÇ Áö¼ÓÀûÀÎ È®´ë¸¦ µÞ¹ÞħÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

°á·ÐÀûÀ¸·Î, Áß¼ºÀÚ °ËÃâ±â ¼¼°è ½ÃÀåÀº ¿øÀÚ·Â ¾ÈÀü ¹× ±ÔÁ¦¿¡ ´ëÇÑ °ü½É Áõ°¡, °ËÃâ ±â¼úÀÇ ¹ßÀü, ¿¬±¸°³¹ß ÅõÀÚ Áõ°¡·Î ÀÎÇØ Å©°Ô ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. »ê¾÷°è¿Í Á¤ºÎ°¡ È¿°úÀûÀÎ ¸ð´ÏÅ͸µ°ú ÇÙ À§ÇùÀ¸·ÎºÎÅÍÀÇ º¸È£¸¦ ¿ì¼±½ÃÇÏ´Â °¡¿îµ¥, Áß¼ºÀÚ °ËÃâ±â´Â ¾ÈÀü°ú ±ÔÁ¤ Áؼö¸¦ º¸ÀåÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀÔ´Ï´Ù. Áö¼ÓÀûÀÎ ±â¼ú Çõ½Å°ú ¾÷°èÀÇ °úÁ¦¿¡ ´ëÇÑ ³ë·ÂÀ¸·Î Áß¼ºÀÚ °ËÃâ±â ½ÃÀåÀº ÇâÈÄ ¸î ³â µ¿¾È Áö¼ÓÀûÀ¸·Î È®´ëµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ºÎ¹®

¿ëµµ(ÇコÄɾî, »ê¾÷¡¤Á¦Á¶, ¹æÀ§, ±âŸ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ÀÇ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Neutron Detectors Market to Reach US$2.7 Billion by 2030

The global market for Neutron Detectors estimated at US$1.5 Billion in the year 2024, is expected to reach US$2.7 Billion by 2030, growing at a CAGR of 10.6% over the analysis period 2024-2030. Healthcare, one of the segments analyzed in the report, is expected to record a 12.2% CAGR and reach US$1.5 Billion by the end of the analysis period. Growth in the Industry & Manufacturing segment is estimated at 9.9% CAGR over the analysis period.

The U.S. Market is Estimated at US$374.5 Million While China is Forecast to Grow at 14.3% CAGR

The Neutron Detectors market in the U.S. is estimated at US$374.5 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$635.9 Million by the year 2030 trailing a CAGR of 14.3% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 6.8% and 8.7% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 7.8% CAGR.

Global Neutron Detectors Market - Key Trends & Drivers Summarized

What Are Neutron Detectors and How Are They Manufactured?

Neutron detectors are specialized instruments designed to detect and measure neutron radiation, which is a type of ionizing radiation emitted during nuclear reactions and radioactive decay. These detectors play a crucial role in various applications, including nuclear security, radiation protection, nuclear power generation, and scientific research. Neutron detectors are essential for monitoring and controlling neutron emissions in nuclear facilities, ensuring safety and compliance with regulatory standards. They operate based on different principles, including gas ionization, scintillation, and semiconductor detection.

The manufacturing of neutron detectors involves several stages, starting with the selection of appropriate materials that can effectively interact with neutrons. Common materials used in neutron detectors include lithium-6, boron, and organic scintillators, each of which has unique properties that affect the detector's performance. The production process typically begins with the fabrication of detector components, such as the detection medium and sensing elements. These components are assembled into a complete detector unit, followed by calibration and quality assurance measures to ensure accurate and reliable performance.

Recent advancements in the production of neutron detectors focus on enhancing sensitivity, improving response times, and increasing portability. Innovations in detector materials, such as the development of new scintillation crystals and advanced gas mixtures, are leading to the creation of more sensitive detectors capable of detecting lower neutron flux levels. Additionally, advancements in electronic components and data acquisition systems are enabling the development of portable and user-friendly neutron detectors, making them suitable for various field applications.

What Are the Primary Applications of Neutron Detectors Across Industries?

Neutron detectors have a wide range of applications across several industries, with their primary uses in nuclear energy, national security, healthcare, and scientific research. In the nuclear energy sector, neutron detectors are essential for monitoring neutron flux levels in nuclear reactors. They help ensure safe and efficient reactor operation by providing critical data on fission reactions and controlling the nuclear chain reaction. Accurate neutron detection is vital for maintaining the balance of the reactor and preventing potential accidents, making these detectors indispensable in nuclear power plants.

In national security, neutron detectors are employed for nuclear threat detection and monitoring. They play a crucial role in identifying illicit nuclear materials, detecting radiation levels at border crossings, and ensuring the security of nuclear facilities. Governments and agencies utilize neutron detectors as part of their security measures to prevent nuclear proliferation and safeguard against potential terrorist threats. The ability to quickly and accurately detect neutron radiation enhances national security efforts, making neutron detectors essential in counterterrorism operations.

In the healthcare industry, neutron detectors find applications in radiation therapy and diagnostic imaging. They are used to monitor neutron radiation in cancer treatment facilities, ensuring patient safety and effective treatment delivery. The accurate detection of neutrons is critical for optimizing radiation doses and minimizing exposure to healthy tissues during therapy. Additionally, neutron detectors are utilized in research laboratories for various applications, including neutron radiography, neutron activation analysis, and material characterization.

Furthermore, neutron detectors are employed in scientific research settings, particularly in nuclear physics and material science. Researchers utilize neutron detectors to study fundamental interactions, investigate material properties, and conduct experiments in neutron scattering. These detectors enable scientists to gain valuable insights into atomic and subatomic phenomena, contributing to advancements in various scientific fields.

Why Is Consumer Demand for Neutron Detectors Increasing?

The demand for neutron detectors is increasing due to several key factors, including the growing emphasis on nuclear safety, advancements in nuclear energy technologies, and rising concerns about national security. One of the primary drivers of demand is the increasing focus on safety and regulatory compliance in the nuclear energy sector. As nuclear power generation continues to play a vital role in the global energy landscape, the need for accurate and reliable neutron detection systems is becoming more critical. Regulatory agencies require stringent monitoring of neutron emissions to ensure the safe operation of nuclear facilities, driving the adoption of advanced neutron detectors.

Advancements in nuclear energy technologies, such as next-generation reactors and innovative fuel cycles, are also contributing to the rising demand for neutron detectors. As the industry evolves, there is a growing need for detectors that can effectively monitor neutron behavior under varying operational conditions. The development of more sensitive and versatile neutron detection technologies is essential for optimizing reactor performance and safety. This trend is prompting investments in research and development to create next-generation detectors that meet the evolving needs of the nuclear energy sector.

The increasing concerns about national security and the need for effective nuclear threat detection are further driving the demand for neutron detectors. Governments and security agencies are investing in advanced detection systems to enhance their capabilities in identifying illicit nuclear materials and monitoring radiation levels. The ability to quickly detect neutron radiation is crucial for preventing nuclear proliferation and addressing potential terrorist threats. As global security dynamics change, the importance of neutron detectors in safeguarding national security is expected to grow.

Moreover, the rising interest in scientific research and development in nuclear physics and materials science is influencing the demand for neutron detectors. As research institutions and laboratories seek to explore fundamental interactions and advance knowledge in various scientific fields, the need for precise neutron detection becomes increasingly important. This trend is driving investments in neutron detection technologies to support a wide range of scientific endeavors, contributing to market growth.

What Factors Are Driving the Growth of the Neutron Detectors Market?

The growth of the neutron detectors market is driven by several key factors, including the increasing focus on nuclear safety and regulation, advancements in detection technologies, and rising investments in research and development. One of the most significant factors influencing market growth is the ongoing emphasis on safety and compliance in the nuclear energy sector. As countries continue to prioritize nuclear power as a sustainable energy source, the demand for reliable neutron detection systems is rising. Regulatory agencies are enforcing stringent standards for monitoring neutron emissions, creating a strong market for advanced neutron detectors.

Advancements in detection technologies are also playing a crucial role in driving the growth of the neutron detectors market. Innovations in materials science and sensor technology are leading to the development of more sensitive and accurate neutron detectors. The integration of advanced electronics, data processing capabilities, and wireless communication features is enhancing the performance and usability of neutron detection systems. These technological advancements are making neutron detectors more appealing to a wide range of applications, from nuclear facilities to national security measures.

The increasing investments in research and development are another important factor contributing to market growth. Governments and private organizations are allocating resources to advance neutron detection technologies and improve their performance characteristics. As research institutions seek to explore fundamental scientific questions and develop new applications for neutron detection, the demand for high-quality detectors will continue to grow. This trend is fostering innovation in the market and driving the development of next-generation neutron detection systems.

Additionally, the rising global awareness of national security threats is influencing the growth of the neutron detectors market. As nations grapple with the challenges posed by nuclear proliferation and potential terrorist activities, there is a heightened demand for effective detection systems. Neutron detectors are increasingly recognized as essential tools for ensuring nuclear safety and security, driving investments in detection technologies. This growing focus on national security is expected to support the sustained expansion of the neutron detectors market.

In conclusion, the global neutron detectors market is poised for significant growth, driven by the increasing focus on nuclear safety and regulation, advancements in detection technologies, and rising investments in research and development. As industries and governments prioritize effective monitoring and protection against nuclear threats, neutron detectors will play a vital role in ensuring safety and compliance. With ongoing innovations and a commitment to meeting industry challenges, the market for neutron detectors is expected to experience sustained expansion in the coming years.

SCOPE OF STUDY:

The report analyzes the Neutron Detectors market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Application (Healthcare, Industry & Manufacturing, Defense, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 36 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â