¼¼°èÀÇ ÀÎ ¸Þ¸ð¸® µ¥ÀÌÅÍ ±×¸®µå ½ÃÀå
In-Memory Data Grids
»óǰÄÚµå : 1768706
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 282 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,195,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,585,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ÀÎ ¸Þ¸ð¸® µ¥ÀÌÅÍ ±×¸®µå ½ÃÀåÀº 2030³â±îÁö 69¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 36¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ ÀÎ ¸Þ¸ð¸® µ¥ÀÌÅÍ ±×¸®µå ½ÃÀåÀº 2024-2030³â¿¡ CAGR 11.5%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 69¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ Æ®·£Àè¼Ç 󸮴 CAGR 12.5%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 27¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ºÎÁ¤ & ¸®½ºÅ© °ü¸® ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ÀÇ CAGR·Î 11.5%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº ÃßÁ¤ 9¾ï 1,600¸¸ ´Þ·¯, Áß±¹Àº CAGR 15.4%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ÀÎ ¸Þ¸ð¸® µ¥ÀÌÅÍ ±×¸®µå ½ÃÀåÀº 2024³â¿¡ 9¾ï 1,600¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 17¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀº 15.4%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 7.5%¿Í 9.4%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 8.6%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ÀÎ ¸Þ¸ð¸® µ¥ÀÌÅÍ ±×¸®µå ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Àθ޸𸮠µ¥ÀÌÅÍ ±×¸®µå°¡ °í¼º´É ÄÄÇ»ÆÃ¿¡ ÇʼöÀûÀÎ ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

Àθ޸𸮠µ¥ÀÌÅÍ ±×¸®µå(IMDG)´Â ºÐ»ê ½Ã½ºÅÛ ÀüüÀÇ µ¥ÀÌÅÍ¿¡ °í¼Ó, ÀúÁö¿¬À¸·Î Á¢±ÙÇÒ ¼ö ÀÖ°Ô ÇÔÀ¸·Î½á µ¥ÀÌÅÍ °ü¸®¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. IMDG´Â ¿©·¯ ¼­¹öÀÇ RAM¿¡ µ¥ÀÌÅ͸¦ ÀúÀåÇÏ¿© ±ÝÀ¶, Åë½Å, E-Commerce, °ÔÀÓ°ú °°Àº »ê¾÷¿¡¼­ Áß¿äÇÑ ¿ä±¸»çÇ×ÀÎ ´ë±Ô¸ð µ¥ÀÌÅͼ¼Æ®¸¦ ½Ç½Ã°£À¸·Î ó¸®ÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ½Ç½Ã°£ ºÐ¼®, ¸Ó½Å·¯´×, Æ®·£Àè¼Ç ó¸® µî µ¥ÀÌÅÍ¿¡ ´ëÇÑ ºü¸¥ ¾×¼¼½º¸¦ ÇÊ¿ä·Î ÇÏ´Â ¿ëµµ¸¦ Áö¿øÇÏ´Â µ¥ ÇÊ¿äÇÑ È®À强°ú ¼º´ÉÀ» Á¦°øÇÕ´Ï´Ù. ±â¾÷ÀÌ Áö¼ÓÀûÀ¸·Î Áõ°¡ÇÏ´Â µ¥ÀÌÅÍ ¾ç¿¡ ´ëÀÀÇϱâ À§ÇØ IMDG¿Í °°Àº È¿À²ÀûÀÌ°í °í¼º´ÉÀÇ µ¥ÀÌÅÍ °ü¸® ½Ã½ºÅÛÀÇ Çʿ伺ÀÌ Á¡Á¡ ´õ Ä¿Áö°í ÀÖ½À´Ï´Ù.

±â¼ú ¹ßÀüÀº Àθ޸𸮠µ¥ÀÌÅÍ ±×¸®µå ½ÃÀåÀ» ¾î¶»°Ô Çü¼ºÇϰí Àִ°¡?

±â¼ú Çõ½ÅÀº Àθ޸𸮠µ¥ÀÌÅÍ ±×¸®µåÀÇ ¼ºÀå°ú ±â´ÉÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå Ç÷§Æû°úÀÇ ÅëÇÕÀÌ °­È­µÊ¿¡ µû¶ó ±â¾÷Àº ÇÏÀ̺긮µå ¶Ç´Â ¿ÏÀüÇÑ Å¬¶ó¿ìµå ±â¹Ý ȯ°æ¿¡¼­ IMDG¸¦ ±¸ÃàÇÏ¿© À¯¿¬¼º°ú È®À强À» È®º¸ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. µ¿Àû µ¥ÀÌÅÍ ÇÒ´çÀ» À§ÇÑ °èÃþÇü ½ºÅ丮Áö¿Í °°Àº ¸Þ¸ð¸® °ü¸® ±â¼úÀÇ ¹ßÀüÀ¸·Î ½Ã½ºÅÛ ¸®¼Ò½ºÀÇ È¿À²ÀûÀΠȰ¿ëÀÌ °¡´ÉÇØÁ³½À´Ï´Ù. ¸Ó½Å·¯´× ¾Ë°í¸®Áòµµ IMDG¿¡ ÅëÇÕµÇ¾î µ¥ÀÌÅÍ ºÐ»ê°ú Äõ¸® ¼º´ÉÀ» µ¿ÀûÀ¸·Î ÃÖÀûÈ­Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Çâ»óµÈ ³»°áÇÔ¼º ¹× µ¥ÀÌÅÍ º¹Á¦ ±â¼úÀ» ÅëÇØ IMDG´Â Çϵå¿þ¾î ¹× ³×Æ®¿öÅ© Àå¾Ö ¹ß»ý ½Ã¿¡µµ ³ôÀº °¡¿ë¼º°ú ¾ÈÁ¤¼ºÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸®¿¡¼­ ´Þ¼ºÇÒ ¼ö ÀÖ´Â °ÍÀÇ ÇѰ踦 ³ÐÇô°¡°í ÀÖ½À´Ï´Ù.

½ÃÀå ¼¼ºÐÈ­´Â Àθ޸𸮠µ¥ÀÌÅÍ ±×¸®µå ½ÃÀåÀÇ ¼ºÀåÀ» ¾î¶»°Ô Á¤ÀÇÇϴ°¡?

±¸Ãà À¯Çü¿¡´Â On-Premise ¹× Ŭ¶ó¿ìµå ±â¹Ý IMDG ¼Ö·ç¼ÇÀÌ ÀÖÀ¸¸ç, ÀÎÇÁ¶ó ºñ¿ëÀ» Àý°¨Çϰí È®Àå °¡´ÉÇϰí À¯¿¬ÇÑ µ¥ÀÌÅÍ °ü¸® ¼Ö·ç¼ÇÀ» ã´Â ±â¾÷ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó Ŭ¶ó¿ìµå ±â¹Ý ±¸ÃàÀÌ ºü¸£°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. Çö±Ý, ½Ç½Ã°£ ºÐ¼®, Æ®·£Àè¼Ç ó¸® µîÀÌ ÀÖÀ¸¸ç, ÀÇ»ç°áÁ¤À» À§ÇÑ ºü¸¥ ÀλçÀÌÆ®¿¡ ÀÇÁ¸ÇÏ´Â ±â¾÷ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ½Ç½Ã°£ ºÐ¼®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ÃÖÁ¾ »ç¿ë »ê¾÷À¸·Î´Â ±ÝÀ¶ ¼­ºñ½º, Åë½Å, ¼Ò¸Å, ÇコÄɾî, °ÔÀÓ µîÀÌ ÀÖÀ¸¸ç, ±ÝÀ¶ ¼­ºñ½º ºÐ¾ß´Â °íºóµµ °Å·¡¿Í ½Ç½Ã°£ ¸®½ºÅ© °ü¸®ÀÇ Çʿ伺À¸·Î ÀÎÇØ ½ÃÀåÀ» ¼±µµÇϰí ÀÖ½À´Ï´Ù. ºÏ¹Ì¿Í À¯·´ÀÌ ÁÖ¿ä ½ÃÀåÀ̸ç, ±â¼ú ÁÖµµÇü »ê¾÷¿¡¼­ ÷´Ü µ¥ÀÌÅÍ °ü¸® ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀÌ È°¹ßÇÕ´Ï´Ù.

Àθ޸𸮠µ¥ÀÌÅÍ ±×¸®µå ½ÃÀåÀÇ ¼ºÀå µ¿·ÂÀº ¹«¾ùÀΰ¡?

Àθ޸𸮠µ¥ÀÌÅÍ ±×¸®µå ½ÃÀåÀÇ ¼ºÀåÀº ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸®¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, Ŭ¶ó¿ìµå ÄÄÇ»ÆÃÀÇ ºÎ»ó, µ¥ÀÌÅÍ °ü¸® ±â¼úÀÇ ¹ßÀü µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. Á¶Á÷ÀÌ µ¥ÀÌÅÍ ¾ç Áõ°¡¿Í ½Å¼ÓÇÑ ÀÇ»ç°áÁ¤¿¡ Á÷¸éÇϸ鼭 Áß¿äÇÑ µ¥ÀÌÅÍ¿¡ °ÅÀÇ Áï°¢ÀûÀ¸·Î Á¢±ÙÇÒ ¼ö ÀÖ´Â IMDG¸¦ äÅÃÇϰí ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý ÀÎÇÁ¶ó·ÎÀÇ ÀüȯÀº ºÐ»êµÈ µ¥ÀÌÅͼ¼Æ®¸¦ È¿À²ÀûÀ¸·Î ó¸®ÇÒ ¼ö ÀÖ´Â È®Àå °¡´ÉÇÑ IMDG ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ½Ç½Ã°£ 󸮰¡ ÇÊ¿äÇÑ AI, ¸Ó½Å·¯´×, IoT ¿ëµµ Áõ°¡´Â ƯÈ÷ µ¥ÀÌÅÍ Áý¾àÀûÀÎ ¾÷¹«¸¦ ¿ì¼±½ÃÇÏ´Â ºÎ¹®¿¡¼­ ½ÃÀå¿¡ Ãß°¡ÀûÀÎ ¼ºÀå ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù.

ºÎ¹®

¿ëµµ(Æ®·£Àè¼Ç ó¸®, ºÎÁ¤¡¤¸®½ºÅ© °ü¸®, °ø±Þ¸Á ÃÖÀûÈ­, ÆÇ¸Å¡¤¸¶ÄÉÆÃ ÃÖÀûÈ­), ÃÖÁ¾ ¿ëµµ(BFSI, IT¡¤Åë½Å, Á¦Á¶, ¼ÒºñÀ硤¼Ò¸Å, ¹Ìµð¾î¡¤¿£ÅÍÅ×ÀÎ¸ÕÆ®, ±âŸ ÃÖÁ¾ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global In-Memory Data Grids Market to Reach US$6.9 Billion by 2030

The global market for In-Memory Data Grids estimated at US$3.6 Billion in the year 2024, is expected to reach US$6.9 Billion by 2030, growing at a CAGR of 11.5% over the analysis period 2024-2030. Transaction Processing, one of the segments analyzed in the report, is expected to record a 12.5% CAGR and reach US$2.7 Billion by the end of the analysis period. Growth in the Fraud & Risk Management segment is estimated at 11.5% CAGR over the analysis period.

The U.S. Market is Estimated at US$916.0 Million While China is Forecast to Grow at 15.4% CAGR

The In-Memory Data Grids market in the U.S. is estimated at US$916.0 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$1.7 Billion by the year 2030 trailing a CAGR of 15.4% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 7.5% and 9.4% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 8.6% CAGR.

Global In-Memory Data Grids Market - Key Trends and Drivers Summarized

Why Are In-Memory Data Grids Crucial for High-performance Computing?

In-memory data grids (IMDGs) are revolutionizing data management by offering high-speed, low-latency access to data across distributed systems. These grids store data in the RAM of multiple servers, allowing businesses to process large datasets in real-time, a critical requirement for industries such as finance, telecommunications, e-commerce, and gaming. IMDGs provide the scalability and performance needed to support applications requiring rapid access to data, such as real-time analytics, machine learning, and transactional processing. As organizations grapple with ever-increasing volumes of data, the need for efficient, high-performance data management systems like IMDGs is becoming more pronounced.

How Are Technological Advancements Shaping the In-Memory Data Grids Market?

Technological innovations are driving the growth and capabilities of in-memory data grids. Enhanced integration with cloud platforms allows businesses to deploy IMDGs in hybrid or fully cloud-based environments, ensuring flexibility and scalability. Advances in memory management techniques, such as tiered storage with dynamic data allocation, are enabling more efficient use of system resources. Machine learning algorithms are also being integrated into IMDGs to optimize data distribution and query performance dynamically. Furthermore, improvements in fault tolerance and data replication technologies ensure that IMDGs provide high availability and reliability, even in the event of hardware or network failures. These innovations are pushing the boundaries of what can be achieved with real-time data processing.

How Do Market Segments Define the Growth of the In-Memory Data Grids Market?

Deployment types include on-premises and cloud-based IMDG solutions, with cloud-based deployments growing rapidly as businesses seek scalable, flexible data management solutions that reduce infrastructure costs. Applications of IMDGs include caching, real-time analytics, and transactional processing, with real-time analytics being the largest segment as businesses increasingly rely on rapid insights for decision-making. End-use industries include financial services, telecommunications, retail, healthcare, and gaming, with the financial services sector leading the market due to the need for high-frequency trading and real-time risk management. North America and Europe are the key markets, driven by strong adoption of advanced data management solutions in technology-driven industries.

What Factors Are Driving the Growth in the In-Memory Data Grids Market?

The growth in the in-memory data grids market is driven by several factors, including the increasing demand for real-time data processing, the rise of cloud computing, and advancements in data management technologies. As organizations face growing volumes of data and the need for faster decision-making, IMDGs are being adopted for their ability to provide near-instantaneous access to critical data. The shift toward cloud-based infrastructures is further boosting demand for scalable IMDG solutions that can handle distributed datasets efficiently. Moreover, the rise of AI, machine learning, and IoT applications that require real-time processing is creating additional growth opportunities in the market, particularly in sectors that prioritize data-intensive operations.

SCOPE OF STUDY:

The report analyzes the In-Memory Data Grids market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Application (Transaction Processing, Fraud & Risk Management, Supply Chain Optimization, Sales & Marketing Optimization); End-Use (BFSI, IT & Telecom, Manufacturing, Consumer Goods & Retail, Media & Entertainment, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 33 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â