¼¼°èÀÇ Ãß·Â º¤ÅÍ Á¦¾î ½ÃÀå
Thrust Vector Control
»óǰÄÚµå : 1765283
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 223 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,198,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,594,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Ãß·Â º¤ÅÍ Á¦¾î ¼¼°è ½ÃÀåÀº 2030³â±îÁö 264¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 157¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â Ãß·Â º¤ÅÍ Á¦¾î ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 9.1%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 264¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ Ç÷º½º ³ëÁñÀº CAGR 8.5%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 99¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ȸÀü ³ëÁñ ºÎ¹® ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 10.0%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 43¾ï ´Þ·¯, Áß±¹Àº CAGR 8.5%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹Ãø

¹Ì±¹ÀÇ Ãß·Â º¤ÅÍ Á¦¾î ½ÃÀåÀº 2024³â¿¡ 43¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 41¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 8.5%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 8.0%¿Í 7.8%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 7.2%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ Ãß·Â º¤ÅÍ Á¦¾î ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Ç×°ø¿ìÁÖ ¹× ±¹¹æ ºÐ¾ß¿¡¼­ Ãß·Â º¤ÅÍ Á¦¾î ½Ã½ºÅÛÀ» äÅÃÇÏ´Â ¿øµ¿·ÂÀº ¹«¾ùÀΰ¡?

Ãß·Â º¤ÅÍ Á¦¾î(TVC) ½Ã½ºÅÛÀº Ç×°ø±â, ¿ìÁÖ¼±, ¹Ì»çÀÏÀÇ ±âµ¿¼º°ú ¾ÈÁ¤¼ºÀ» ³ôÀÌ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. TVC ½Ã½ºÅÛÀº ¿£ÁøÀ̳ª ·ÎÄÏÀÇ Ãß·Â ¹æÇâÀ» º¯°æÇÔÀ¸·Î½á ºñÇà ±Ëµµ¸¦ Á¤È®ÇÏ°Ô Á¦¾îÇÒ ¼ö ÀÖ½À´Ï´Ù. ±¹¹æ ºÐ¾ß¿¡¼­ TVC ½Ã½ºÅÛÀº ÀüÅõ »óȲ¿¡¼­ ¹Îø¼º°ú Á¤È®¼ºÀ» Çâ»ó½Ã۱â À§ÇØ Ã·´Ü ÀüÅõ±â¿Í ¹Ì»çÀÏ¿¡ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¿ìÁÖ ºÐ¾ß¿¡¼­´Â ÀÌ·¯ÇÑ ½Ã½ºÅÛÀÌ ¹ß»çü¿¡ ¸Å¿ì Áß¿äÇϸç, »ó½Â Áß ±Ëµµ ¼öÁ¤ ¹× Á¶Á¤À» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ƯÈ÷ ±ØÃÊÀ½¼Ó ¹Ì»çÀϰú Àç»ç¿ë °¡´ÉÇÑ ·ÎÄÏ µî ÷´Ü ÃßÁø ±â¼ú¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ Ãß·Â º¤ÅÍ Á¦¾î ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ ºü¸£°Ô Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

Ãß·Â º¤ÅÍ Á¦¾î ½ÃÀåÀÇ ±¸Á¶´Â?

ÁÖ¿ä ±â¼ú·Î´Â Áü¹ú ±â¹Ý TVC, Á¦Æ® º£ÀÎ, À¯Ã¼ ºÐ»ç ½Ã½ºÅÛ µîÀÌ ÀÖ½À´Ï´Ù. Áü¹ú ±â¹Ý ½Ã½ºÅÛÀº Á¤È®¼º°ú ½Å·Ú¼ºÀ¸·Î ÀÎÇØ ¹Ì»çÀÏ ¹× ¿ìÁÖ¼±¿ëÀ¸·Î ³Î¸® »ç¿ëµÇ°í ÀÖÀ¸¸ç, TVC´Â ¹Ì»çÀÏ ½Ã½ºÅÛ ¹× ÀüÅõ±â¿¡¼­ ¿ìÁÖ ·ÎÄÏ ¹× ¹«ÀÎÇ×°ø±â(UAV)¿¡ À̸£±â±îÁö ´Ù¾çÇÑ ¿ëµµ·Î »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¹æÀ§ »ê¾÷°ú Ç×°ø¿ìÁÖ »ê¾÷ÀÌ ÁÖ¿ä ÃÖÁ¾»ç¿ëÀÚÀ̸ç, À§¼º ¹ß»ç ¹× ¿ìÁÖ Å½»ç ¼ö¿ä Áõ°¡¿¡ µû¶ó »ó¾÷¿ë ¿ìÁÖ º¥Ã³±â¾÷¿¡¼­ äÅÃÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±ØÃÊÀ½¼Ó ¹Ì»çÀϰú Àç»ç¿ë °¡´ÉÇÑ ·ÎÄÏÀÇ °³¹ß·Î ÷´Ü Ãß·Â º¤ÅÍ Á¦¾î ½Ã½ºÅÛ ½ÃÀåÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù.

¾î¶² ±â¼ú ¹ßÀüÀÌ Ãß·Â º¤ÅÍ Á¦¾î¸¦ Çü¼ºÇϰí Àִ°¡?

±â¼úÀÇ ¹ßÀüÀ¸·Î Ãß·Â º¤ÅÍ Á¦¾î ½Ã½ºÅÛÀÇ ´É·ÂÀº ƯÈ÷ Á¤È®¼º, °æ·®È­ ¹× ÀÚµ¿È­ ºÐ¾ß¿¡¼­ Å©°Ô Çâ»óµÇ¾ú½À´Ï´Ù. Àü±â ÃßÁø ½Ã½ºÅÛ ¹× ÇÏÀ̺긮µå ÃßÁø ½Ã½ºÅÛÀÇ °³¹ßÀº TVC ±â¼úÀÇ Çõ½ÅÀ» ÃËÁøÇÏ¿© ±º¿ë ¹× ¹Î°£¿ëÀ» ¸··ÐÇÏ°í º¸´Ù È¿À²ÀûÀ̰í ģȯ°æÀûÀÎ ¼Ö·ç¼ÇÀ» °¡´ÉÇÏ°Ô Çϰí ÀÖÀ¸¸ç, TVC ½Ã½ºÅÛÀÇ °æ·®È­¸¦ À§ÇØ Åº¼Ò º¹ÇÕÀç¿Í °°Àº ÷´Ü ¼ÒÀç°¡ »ç¿ëµÇ¾î Àü¹ÝÀûÀÎ ¼º´É°ú ¿¬·á È¿À²À» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, AI¿Í ¸Ó½Å·¯´×ÀÇ ÅëÇÕÀ¸·Î ºñÇà ±Ëµµ¸¦ ½Ç½Ã°£À¸·Î Á¶Á¤ÇÒ ¼ö ÀÖ°Ô µÇ¾î ¿ªµ¿ÀûÀΠȯ°æ¿¡¼­ TVC ½Ã½ºÅÛÀÇ Á¤È®¼º°ú ½Å·Ú¼ºÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀ¸·Î Ãß·Â º¤ÅÍ Á¦¾îÀÇ Àû¿ë ¹üÀ§°¡ È®´ëµÇ°í ÀÖÀ¸¸ç, ƯÈ÷ ±ØÃÊÀ½¼Ó ¹× ¿ìÁÖ Å½»ç ºÐ¾ß°¡ ¼ºÀåÇϰí ÀÖ½À´Ï´Ù.

Ãß·Â º¤ÅÍ Á¦¾î ½ÃÀåÀÇ ¼ºÀå ¿øµ¿·ÂÀº ¹«¾ùÀΰ¡?

Ãß·Â º¤ÅÍ Á¦¾î ½ÃÀåÀÇ ¼ºÀåÀº ÷´Ü ¹Ì»çÀÏ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ¿ìÁÖ Å½»ç È®´ë, ±ØÃÊÀ½¼Ó ±â¼ú ¹× Àç»ç¿ë °¡´ÉÇÑ ·ÎÄÏ ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡ µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. Àü ¼¼°è ±º´ë°¡ ¹Ì»çÀÏ ¹× Ç×°ø±â ½Ã½ºÅÛÀÇ ±âµ¿¼º°ú Á¤È®¼ºÀ» Çâ»ó½Ã۱â À§ÇØ ³ë·ÂÇÔ¿¡ µû¶ó ±¹¹æ ÁöÃâÀÌ Áß¿äÇÑ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¹Î°£ ¿ìÁÖ ºÐ¾ßµµ ½ÃÀå ¼ºÀå¿¡ ±â¿©Çϰí ÀÖÀ¸¸ç, ¹Î°£ ±â¾÷µéÀº ¿ìÁÖ ¹ß»çÀÇ È¿À²¼º°ú ¾ÈÀü¼ºÀ» Çâ»ó½Ã۱â À§ÇØ TVC ±â¼ú¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÃßÁø ±â¼úÀÇ ¹ßÀü°ú AI¸¦ ºñÇà Á¦¾î ½Ã½ºÅÛ¿¡ ÅëÇÕÇÔÀ¸·Î½á ±¹¹æ ¹× Ç×°ø¿ìÁÖ ¾ÖÇø®ÄÉÀÌ¼Ç ¸ðµÎ¿¡¼­ Ãß·Â º¤ÅÍ Á¦¾îÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

±â¼ú(Ç÷º½º ³ëÁñ, ȸÀü ³ëÁñ, ½º·¯½ºÅÍ, Áü¹ú ³ëÁñ, ±âŸ ±â¼ú), ½Ã½ºÅÛ(¾×Ãß¿¡À̼Ç, ºÐ»ç, ½º·¯½ºÅÍ), ¿ëµµ(ÀüÅõ±â, ÀΰøÀ§¼º, ¹Ì»çÀÏ, ¹ß»çü)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê

AI ÅëÇÕ

Global Industry Analysts´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ÀÇ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Thrust Vector Control Market to Reach US$26.4 Billion by 2030

The global market for Thrust Vector Control estimated at US$15.7 Billion in the year 2024, is expected to reach US$26.4 Billion by 2030, growing at a CAGR of 9.1% over the analysis period 2024-2030. Flex Nozzle, one of the segments analyzed in the report, is expected to record a 8.5% CAGR and reach US$9.9 Billion by the end of the analysis period. Growth in the Rotating Nozzle segment is estimated at 10.0% CAGR over the analysis period.

The U.S. Market is Estimated at US$4.3 Billion While China is Forecast to Grow at 8.5% CAGR

The Thrust Vector Control market in the U.S. is estimated at US$4.3 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$4.1 Billion by the year 2030 trailing a CAGR of 8.5% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 8.0% and 7.8% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 7.2% CAGR.

Global Thrust Vector Control Market - Key Trends and Drivers Summarized

What Is Driving the Adoption of Thrust Vector Control Systems in Aerospace and Defense?

Thrust vector control (TVC) systems are critical for enhancing the maneuverability and stability of aircraft, spacecraft, and missiles. By altering the direction of thrust from the engine or rocket, TVC systems allow for precise control of flight trajectory, which is essential in both military and space exploration applications. In defense, TVC systems are used in advanced fighter jets and missiles to improve agility and accuracy in combat situations. In the space sector, these systems are crucial for launch vehicles, enabling course corrections and adjustments during ascent. With the growing focus on advanced propulsion technologies, particularly in hypersonic missiles and reusable rockets, the demand for thrust vector control systems is rapidly increasing.

How Is the Thrust Vector Control Market Structured?

Key technologies include gimbal-based TVC, jet vanes, and fluid injection systems. Gimbal-based systems are widely used in missile and spacecraft applications for their precision and reliability. Applications of TVC range from missile systems and fighter aircraft to space launch vehicles and unmanned aerial vehicles (UAVs). The defense and aerospace industries are the primary end-users, with growing adoption in commercial space ventures driven by the increasing demand for satellite launches and space exploration. Additionally, the development of hypersonic missiles and reusable rockets is expanding the market for advanced thrust vector control systems.

What Technological Advancements Are Shaping Thrust Vector Control?

Technological advancements are significantly enhancing the capabilities of thrust vector control systems, particularly in the areas of precision, weight reduction, and automation. The development of electric and hybrid propulsion systems is driving innovation in TVC technologies, enabling more efficient and environmentally friendly solutions for both military and civilian applications. Advanced materials, such as carbon composites, are being used to reduce the weight of TVC systems, improving overall performance and fuel efficiency. Furthermore, the integration of AI and machine learning is enabling real-time adjustments to flight trajectories, improving the accuracy and reliability of TVC systems in dynamic environments. These advancements are expanding the range of applications for thrust vector control, particularly in the growing fields of hypersonics and space exploration.

What Is Driving Growth in the Thrust Vector Control Market?

The growth in the thrust vector control market is driven by several factors, including the increasing demand for advanced missile systems, the expansion of space exploration, and the growing investment in hypersonic and reusable rocket technologies. Defense spending is a significant driver, as military forces around the world seek to enhance the maneuverability and accuracy of their missile and aircraft systems. The commercial space sector is also contributing to market growth, with private companies investing in TVC technologies to improve the efficiency and safety of space launches. Additionally, advancements in propulsion technologies and the integration of AI in flight control systems are driving the adoption of thrust vector control in both defense and aerospace applications.

SCOPE OF STUDY:

The report analyzes the Thrust Vector Control market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Technology (Flex Nozzle, Rotating Nozzle, Thrusters, Gimbal Nozzle, Other Technologies); System (Actuation, Injection, Thruster); Application (Fighter Aircraft, Satellites, Missiles, Launch Vehicles)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 41 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â