¼¼°èÀÇ ÅäÅ© º¤Å͸µ ½ÃÀå
Torque Vectoring
»óǰÄÚµå : 1763316
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 07¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 93 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,233,000
PDF & Excel (Single User License) help
PDF & Excel º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÆÄÀÏ ³» ÅØ½ºÆ®ÀÇ º¹»ç ¹× ºÙ¿©³Ö±â´Â °¡´ÉÇÏÁö¸¸, Ç¥/±×·¡ÇÁ µîÀº º¹»çÇÒ ¼ö ¾ø½À´Ï´Ù. Àμâ´Â 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,701,000
PDF & Excel (Global License to Company and its Fully-owned Subsidiaries) help
PDF & Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ ¹× 100% ÀÚȸ»çÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÏ½Ç ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â 1Àδç 1ȸ °¡´ÉÇϸç, Àμ⹰ÀÇ ÀÌ¿ë¹üÀ§´Â ÆÄÀÏ ÀÌ¿ë¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ÅäÅ© º¤Å͸µ ½ÃÀåÀº 2030³â±îÁö 718¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 218¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ ÅäÅ© º¤Å͸µ ½ÃÀåÀº 2024-2030³â¿¡ CAGR 22.0%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 718¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ ÃÑ·û±¸µ¿/»ç·û±¸µ¿Àº CAGR 24.5%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á±îÁö 425¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Àü·û±¸µ¿ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ Áß CAGR 20.2%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 54¾ï ´Þ·¯, Áß±¹Àº CAGR 27.9%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹Ãø

¹Ì±¹ÀÇ ÅäÅ© º¤Å͸µ ½ÃÀåÀº 2024³â¿¡ 54¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 203¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀº 27.9%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, °¢°¢ ºÐ¼® ±â°£ Áß 15.2%¿Í 18.7%ÀÇ CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 17.0%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ÅäÅ© º¤Å͸µ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

ÅäÅ© º¤Å͸µÀ̶õ?

ÅäÅ© º¤Å͸µÀº °¢ ¹ÙÄû¿¡ µ¿·ÂÀ» µ¶¸³ÀûÀ¸·Î ¹èºÐÇÏ¿© Æ®·¢¼Ç, ¾ÈÁ¤¼º ¹× Çڵ鸵À» Çâ»ó½ÃŰ´Â ÷´Ü Â÷·® ¿ªÇÐ Á¦¾î ±â¼úÀÔ´Ï´Ù. ÀÌ ½Ã½ºÅÛÀº ³ë¸é »óÅÂ, ÁÖÇà ½ºÅ¸ÀÏ, Â÷·® ¿ªÇÐ µîÀÇ ¿äÀο¡ µû¶ó °¢ ¹ÙÄû¿¡ °ø±ÞµÇ´Â ÅäÅ©¸¦ Á¶Á¤ÇÏ¿© Â÷·®ÀÇ ¼º´ÉÀ» Çâ»ó½Ãŵ´Ï´Ù. ÅäÅ© º¤Å͸µ ½Ã½ºÅÛÀº °í¼º´É ½ºÆ÷Ã÷Ä«, SUV, Àü±âÀÚµ¿Â÷ µî ´Ù¾çÇÑ Â÷·®¿¡ žÀçµÇ°í ÀÖ½À´Ï´Ù. ÀÌ ±â¼úÀº ±â°è½Ä Â÷µ¿Àåºñ, ÀüÀÚ Á¦¾î ½Ã½ºÅÛ ¶Ç´Â ±â°è ºÎǰ°ú ÀüÀÚ ºÎǰÀ» °áÇÕÇÑ ÇÏÀ̺긮µå ½Ã½ºÅÛ µî ´Ù¾çÇÑ ¹æ½ÄÀ¸·Î ±¸ÇöÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÅäÅ© º¤Å͸µ ½Ã½ºÅÛ Á¦Á¶¿¡´Â ÷´Ü ¼¾¼­, Á¦¾î ¾Ë°í¸®Áò ¹× ±â°è ºÎǰÀ» Â÷·® ±¸µ¿°è¿¡ ÅëÇÕÇÏ´Â °ÍÀÌ Æ÷ÇԵ˴ϴÙ. ¼¾¼­´Â ÈÙ ¼Óµµ, ½º·ÎƲ °³µµ, Á¶Çâ°¢, ¿äÀ² µîÀÇ ¿ä¼Ò¸¦ ¸ð´ÏÅ͸µÇÏ¿© Â÷·®ÀÇ ÀüÀÚÁ¦¾îÀåºñ(ECU)¿¡ ½Ç½Ã°£À¸·Î µ¥ÀÌÅ͸¦ Á¦°øÇϰí, ECU´Â ÀÌ Á¤º¸¸¦ ó¸®ÇÏ¿© °¢ ÈÙ¿¡ ´ëÇÑ ÅäÅ© ¹èºÐÀ» ÀûÀýÈ÷ Á¶Á¤ÇÏ¿© ¼º´É°ú ¾ÈÁ¤¼ºÀ» ÃÖÀûÈ­ÇÕ´Ï´Ù. ÅäÅ© ¹èºÐÀ» ¹°¸®ÀûÀ¸·Î Á¦¾îÇϱâ À§ÇØ ´ÙÆÇ Ŭ·¯Ä¡³ª ¾×Ƽºê µðÆÛ·»¼È°ú °°Àº ±â°è ºÎǰÀÌ »ç¿ëµË´Ï´Ù. Á¦Á¶¾÷ü´Â ºÎµå·´°í ¹ÝÀÀ¼ºÀÌ ¶Ù¾î³­ ÁÖÇà °æÇèÀ» Á¦°øÇϱâ À§ÇØ ÀÌ·¯ÇÑ ±¸¼º ¿ä¼Ò°¡ ¿øÈ°ÇÏ°Ô ¿¬µ¿µÇµµ·Ï º¸ÀåÇØ¾ß ÇÕ´Ï´Ù.

ÃÖ±Ù ÅäÅ© º¤Å͸µ ±â¼úÀÇ ¹ßÀüÀº ½Ã½ºÅÛÀÇ ÀÀ´ä¼º Çâ»ó, ´Ù¸¥ Â÷·® ¿ªÇÐ Á¦¾î ½Ã½ºÅÛ°úÀÇ ÅëÇÕ, ¹«°Ô¿Í º¹À⼺ °¨¼Ò¿¡ ÃÊÁ¡À» ¸ÂÃß¾ú½À´Ï´Ù. ÀüÀÚ Á¦¾î ½Ã½ºÅÛ°ú ¾Ë°í¸®ÁòÀÇ °³¹ß·Î ÅäÅ© ¹èºÐÀ» º¸´Ù Á¤È®ÇÏ°í ½Å¼ÓÇÏ°Ô Á¶Á¤ÇÒ ¼ö ÀÖ°Ô µÇ¾î Àü¹ÝÀûÀÎ ¿îÀü °æÇèÀ» Çâ»ó½Ãų ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ Àü±âÀÚµ¿Â÷ ¹× ÇÏÀ̺긮µåÂ÷°¡ º¸±ÞµÊ¿¡ µû¶ó ÅäÅ© º¤Å͸µ ±â¼úÀº Àü±â ¸ðÅÍ¿¡ ´ëÀÀÇϰí ÀÖÀ¸¸ç, ÅäÅ© Àü´ÞÀ» Á¤È®ÇÏ°Ô Á¦¾îÇÏ¿© ¼º´É Çâ»óÀ» ½ÇÇöÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ °æ·® ¼ÒÀç¿Í ÄÄÆÑÆ®ÇÑ µðÀÚÀÎÀÇ Çõ½ÅÀ» ÅëÇØ º¸´Ù È¿À²ÀûÀÎ ÅäÅ© º¤Å͸µ ½Ã½ºÅÛÀ» °³¹ßÇÏ¿© ´Ù¾çÇÑ Â÷·® Ç÷§Æû¿¡ ÅëÇÕÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÅäÅ© º¤Å͸µÀÇ ÁÖ¿ä ¿ëµµ´Â?

ÅäÅ© º¤Å͸µÀº ÁÖ·Î ÀÚµ¿Â÷ »ê¾÷¿¡¼­ Â÷·®ÀÇ ¼º´É, ¾ÈÀü¼º ¹× Çڵ鸵À» Çâ»ó½Ã۱â À§ÇØ »ç¿ëµË´Ï´Ù. °í¼º´É Â÷·®¿¡¼­ ÅäÅ© º¤Å͸µ ½Ã½ºÅÛÀº Â÷·®ÀÇ ¿ªÇп¡ µû¶ó °¢ ¹ÙÄû¿¡ °ø±ÞµÇ´Â ÅäÅ©¸¦ Á¶Á¤ÇÏ¿© ¿ì¼öÇÑ Äڳʸµ ¼º´ÉÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ ±â´ÉÀ» ÅëÇØ °¡¼Ó½Ã Æ®·¢¼Ç Çâ»ó°ú ŸÀÌÆ®ÇÑ Äڳʸµ½Ã ¾ÈÁ¤¼ºÀ» Çâ»ó½ÃÄÑ ½ºÆ÷Ã÷Ä«³ª ÆÛÆ÷¸Õ½º ÁöÇâÀûÀÎ Â÷·®¿¡ ÇʼöÀûÀÎ ±â´ÉÀÔ´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀÌ µå¶óÀ̺ù °æÇè Çâ»ó¿¡ Á¡Á¡ ´õ ÁýÁßÇÔ¿¡ µû¶ó °í¼º´É Â÷·®¿¡ ÅäÅ© º¤Å͸µ ±â¼ú Àû¿ëÀÌ È®´ëµÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÅäÅ© º¤Å͸µÀº ½ºÆ÷Ã÷Ä«»Ó¸¸ ¾Æ´Ï¶ó SUV¿Í »ç·û±¸µ¿ Â÷·®¿¡µµ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. À̵é Â÷·®Àº ´«, ÁøÈë, ÀÚ°¥ µî ´Ù¾çÇÑ ³ë¸é¿¡¼­ÀÇ Æ®·¢¼ÇÀ» Çâ»ó½ÃŰ´Â ÅäÅ© º¤Å͸µ ½Ã½ºÅÛÀÇ ÀÌÁ¡À» ´©¸®°í ÀÖ½À´Ï´Ù. ÅäÅ© º¤Å͸µÀº Á¢Áö·ÂÀÌ ³ôÀº ¹ÙÄû¿¡ µ¿·ÂÀ» ¹èºÐÇÏ¿© Â÷·®ÀÇ ¿ÀÇÁ·Îµå ¼º´ÉÀ» Çâ»ó½ÃŰ°í ¾ÇõÈÄ¿¡¼­ÀÇ Çڵ鸵À» °³¼±ÇÏ´Â ±â¼úÀÔ´Ï´Ù. ÀÌ ±â¼úÀº ¸ðÇè°ú ¾Æ¿ôµµ¾î Ȱµ¿¿¡ °ü½ÉÀÌ ¸¹Àº ¼ÒºñÀÚµéÀ» ²ø¾îµéÀÌ·Á´Â Á¦Á¶¾÷üµé¿¡°Ô Áß¿äÇÑ ¼¼ÀÏÁî Æ÷ÀÎÆ®°¡ µÇ°í ÀÖ½À´Ï´Ù.

ÅäÅ© º¤Å͸µÀÇ ¶Ç ´Ù¸¥ Áß¿äÇÑ ¿ëµµ´Â Àü±âÀÚµ¿Â÷ ¹× ÇÏÀ̺긮µåÂ÷ °³¹ßÀÔ´Ï´Ù. ÅäÅ© º¤Å͸µÀÌ Å¾ÀçµÈ Àü±âÀÚµ¿Â÷´Â Àü±â ¸ðÅÍÀÇ ÅäÅ©¸¦ Áï°¢ÀûÀ¸·Î Àü´ÞÇÏ¿© Àü·Ê ¾ø´Â Á¦¾î¼º°ú ¼º´ÉÀ» ¹ßÈÖÇÕ´Ï´Ù. ÅäÅ© º¤Å͸µÀÌ Àû¿ëµÈ Àü±âÀÚµ¿Â÷´Â °¢ ¹ÙÄû¿¡ Àü´ÞµÇ´Â ÅäÅ©¸¦ µ¶¸³ÀûÀ¸·Î Á¦¾îÇÏ¿© ¶Ù¾î³­ °¡¼Ó ¹× Çڵ鸵 Ư¼ºÀ» ±¸ÇöÇϰí, ¾ÈÁ¤¼ºÀ» Çâ»ó½ÃŰ°í ¸Å·ÂÀûÀÎ ÁÖÇà °æÇèÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ±â´ÉÀº ¹ÙÄû¿¡ Á¤È®ÇÑ µ¿·ÂÀ» °ø±ÞÇÏ¿© Àü¹ÝÀûÀÎ ¼º´ÉÀ» Çâ»ó½ÃŰ´Â ÆÛÆ÷¸Õ½º Àü±âÀÚµ¿Â÷¿¡¼­ ƯÈ÷ °¡Ä¡°¡ ÀÖ½À´Ï´Ù.

¸ðÅͽºÆ÷Ã÷¿¡¼­ ÅäÅ© º¤Å͸µÀº °æÀï ¿ìÀ§¸¦ È®º¸Çϱâ À§ÇØ Á¡Á¡ ´õ ¸¹ÀÌ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ·¹ÀÌ½Ì ÆÀÀº ÷´Ü ÅäÅ© º¤Å͸µ ½Ã½ºÅÛÀ» Ȱ¿ëÇÏ¿© Â÷·® ¿ªÇÐÀ» ÃÖÀûÈ­Çϰí, Äڳʸµ ¼Óµµ¸¦ Çâ»ó½Ã۸ç, °í¼º´É Á¶°Ç¿¡¼­ °ßÀηÂÀ» °­È­ÇÏ´Â µ¥ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ½Ç½Ã°£ ¿ø°Ý ÃøÁ¤ µ¥ÀÌÅ͸¦ ±â¹ÝÀ¸·Î ÅäÅ© ¹èºÐÀ» ¹Ì¼¼ Á¶Á¤ÇÒ ¼ö ÀÖÀ¸¹Ç·Î ÆÀÀº º¯È­ÇÏ´Â ³ë¸é »óȲ¿¡ Â÷·®À» ÀûÀÀ½ÃÄÑ °æÀï»çº¸´Ù ¿ìÀ§¸¦ Á¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÅäÅ© º¤Å͸µ ±â¼úÀÇ Àû¿ëÀº ¸ðÅͽºÆ÷Ã÷¿¡¼­ ¹è¿î °ÍÀ» ÀÏ¹Ý ¼ÒºñÀÚ¿ë ÀÚµ¿Â÷ÀÇ ¹ßÀüÀ¸·Î À̾îÁ® ÀÚµ¿Â÷ ºÐ¾ßÀÇ Çõ½Å°ú ¹ßÀüÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

ÅäÅ© º¤Å͸µ¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä°¡ Áõ°¡ÇÏ´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

ÅäÅ© º¤Å͸µ ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä´Â ÀÚµ¿Â÷ ¼º´É Çâ»ó, ¾ÈÀü¼º, ÷´Ü¿îÀüÀÚº¸Á¶½Ã½ºÅÛ(ADAS)¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ¼±È£µµ Áõ°¡ µî ¿©·¯ ¿äÀο¡ ÀÇÇØ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¼ö¿äÀÇ ÁÖ¿ä ¿äÀÎ Áß Çϳª´Â ¶Ù¾î³­ Çڵ鸵°ú ¹ÝÀÀ¼ºÀ» Á¦°øÇÏ´Â °í¼º´É Â÷·®¿¡ ´ëÇÑ °ü½É Áõ°¡ÀÔ´Ï´Ù. ¼ÒºñÀÚµéÀº ¿îÀü¿¡ ´ëÇÑ ¾È¸ñÀÌ ³ô¾ÆÁü¿¡ µû¶ó ƯÈ÷ Á¼Àº Äڳʳª ¾ÇõÈÄ¿Í °°Àº °¡È¤ÇÑ Á¶°Ç¿¡¼­ ¶Ù¾î³­ ¼º´ÉÀ» ¹ßÈÖÇÏ´Â Â÷·®À» ¿øÇϰí ÀÖ½À´Ï´Ù. ÅäÅ© º¤Å͸µ ½Ã½ºÅÛÀº ½ºÆ÷Ã÷Ä« ¹× ¼º´É ÁöÇâÀûÀÎ Â÷·®¿¡ ¿ä±¸µÇ´Â ±â´ÉÀ¸·Î¼­ ¿øÇÏ´Â ¼º´É Ư¼ºÀ» Á¦°øÇÕ´Ï´Ù.

ÀÚµ¿Â÷ »ê¾÷¿¡¼­ ¾ÈÀü¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ÅäÅ© º¤Å͸µ ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀÌ ¾ÈÀü ±â´ÉÀ» °­È­ÇÏ°í ¾ÈÁ¤¼ºÀ» Çâ»ó½Ã۱â À§ÇØ ³ë·ÂÇÏ´Â °¡¿îµ¥, ÅäÅ© º¤Å͸µ ½Ã½ºÅÛÀº ¹Ì²ô·¯ÁüÀ» ¹æÁöÇÏ°í ±Þ°ÝÇÑ Á¶Ç⠽ÿ¡µµ Á¦¾î·ÂÀ» À¯ÁöÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. °¢ ¹ÙÄû¿¡ ´ëÇÑ ÅäÅ© ¹èºÐÀ» ÀÚµ¿À¸·Î Á¶Á¤ÇÏ¿© »ç°í °¡´É¼ºÀ» Å©°Ô ÁÙ¿© ¿îÀüÀÚ¿Í µ¿½ÂÀÚ¿¡°Ô º¸´Ù ¾ÈÀüÇÑ ÀÚµ¿Â÷¸¦ Á¦°øÇÕ´Ï´Ù. ¾ÈÀü ±ÔÁ¦°¡ °­È­µÇ°í ÀÚµ¿Â÷ ¾ÈÀü¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ÀνÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó ÅäÅ© º¤Å͸µ ±â¼úÀÇ ÅëÇÕÀº ¼ÒºñÀÚ¿ë Â÷·®°ú »ó¿ëÂ÷ ¸ðµÎ¿¡¼­ È®´ëµÉ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

¶ÇÇÑ Àü±âÀÚµ¿Â÷¿Í ÇÏÀ̺긮µå Â÷·®À¸·ÎÀÇ ÀüȯÀº ÅäÅ© º¤Å͸µ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä¸¦ Áõ°¡½Ã۰í ÀÖÀ¸¸ç, Àü±âÀÚµ¿Â÷ÀÇ ºÎ»ó°ú Àü±â µå¶óÀÌºê Æ®·¹ÀÎÀÇ ¼º´É¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó ÅäÅ© º¤Å͸µÀº Á¦Á¶¾÷ü¿¡°Ô µ¿·Â Àü´Þ°ú Çڵ鸵 Ư¼ºÀ» ÃÖÀûÈ­ÇÒ ¼ö ÀÖ´Â ´É·ÂÀ» Á¦°øÇÕ´Ï´Ù. Àü±â ¸ðÅͰ¡ Á¦°øÇÏ´Â Áï°¢ÀûÀÎ ÅäÅ©´Â °¢ ÈÙÀÇ Ãâ·ÂÀ» º¸´Ù Á¤¹ÐÇÏ°Ô Á¦¾îÇÒ ¼ö ÀÖÀ¸¸ç, °¡¼Ó°ú Á¶Á¾¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. Àü±âÀÚµ¿Â÷¸¦ äÅÃÇÏ´Â ¼ÒºñÀÚ°¡ ´Ã¾î³²¿¡ µû¶ó ¿îÀüÀÚµéÀº ¿ªµ¿ÀûÀÌ°í ¸Å·ÂÀûÀÎ ÁÖÇà °æÇèÀ» Ãß±¸ÇÏ°Ô µÉ °ÍÀ̸ç, ÅäÅ© º¤Å͸µ°ú °°Àº °í±Þ ¼º´É ±â´É¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

SUV¿Í »ç·û±¸µ¿ Â÷·®ÀÇ ÀαⰡ ³ô¾ÆÁö´Â °Íµµ ÅäÅ© º¤Å͸µ ½ÃÀåÀÇ ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¼ÒºñÀÚµéÀÌ ¹ü¿ë¼º°ú ¿ÀÇÁ·Îµå ¼º´ÉÀ» Á¦°øÇÏ´Â ´ëÇü Â÷·®¿¡ ¸Å·ÂÀ» ´À³¢¸é¼­ Á¦Á¶¾÷üµéÀº ´Ù¾çÇÑ ÁöÇü¿¡¼­ °ßÀη°ú ¾ÈÁ¤¼ºÀ» Çâ»ó½Ã۱â À§ÇØ ÅäÅ© º¤Å͸µ ±â¼úÀ» µµÀÔÇϰí ÀÖ½À´Ï´Ù. ÀÌ´Â ¾Æ¿ôµµ¾î Ȱµ¿À» ÇÏ´Â ¼ÒºñÀÚ³ª ¾ÇõÈÄ Áö¿ª¿¡ °ÅÁÖÇÏ´Â ¼ÒºñÀڵ鿡°Ô ƯÈ÷ Áß¿äÇÕ´Ï´Ù. SUV ºÎ¹®¿¡¼­ ÅäÅ© º¤Å͸µ ½Ã½ºÅÛÀÇ Ã¤ÅÃÀ» ÃËÁøÇÏ´Â °ÍÀº ÷´Ü Æ®·¢¼Ç Á¦¾î ¹× Çڵ鸵 ¼º´ÉÀ» °®Ãá Â÷·®¿¡ ´ëÇÑ ¼ö¿ä ¶§¹®ÀÔ´Ï´Ù.

ÅäÅ© º¤Å͸µ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

ÅäÅ© º¤Å͸µ ½ÃÀåÀÇ ¼ºÀåÀº ±â¼ú ¹ßÀü, ¼º´É ¹× ¾ÈÀü¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä Áõ°¡, Àü±â ¹× ÇÏÀ̺긮µåÂ÷ ½ÃÀå È®´ë µî ¸î °¡Áö Áß¿äÇÑ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. °¡Àå Áß¿äÇÑ ¿äÀÎ Áß Çϳª´Â Â÷·® ¿ªÇÐ Á¦¾î ½Ã½ºÅÛÀÇ ²÷ÀÓ¾ø´Â ÁøÈ­·Î ÅäÅ© º¤Å͸µ ±â¼úÀÇ È¿À²¼º, ÀÀ´ä¼º, ½Å·Ú¼ºÀÌ Çâ»óµÇ°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ÀüÀÚ Á¦¾î ½Ã½ºÅÛ, ¼¾¼­ ¹× ¾Ë°í¸®ÁòÀÇ Çõ½ÅÀ¸·Î ÅäÅ© ¹èºÐÀ» ½Ç½Ã°£À¸·Î ¸ð´ÏÅ͸µÇϰí Á¶Á¤ÇÒ ¼ö ÀÖ°Ô µÇ¾î ¿îÀüÀÚ¿¡°Ô Çâ»óµÈ Á¦¾î·Â°ú ¾ÈÁ¤¼ºÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀ¸·Î ÀÎÇØ ÅäÅ© º¤Å͸µ ½Ã½ºÅÛÀº Á¦Á¶¾÷üµéÀÌ º¸´Ù ½±°Ô »ç¿ëÇÒ ¼ö ÀÖ°Ô µÇ¾úÀ¸¸ç, ´õ ¸¹Àº Â÷·®¿¡ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù.

Çâ»óµÈ ¼º´É°ú ¾ÈÀü ±â´É¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä Áõ°¡µµ ½ÃÀå ¼ºÀåÀÇ Áß¿äÇÑ ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ¼ÒºñÀÚµéÀÌ ÀÚµ¿Â÷ ±â¼ú¿¡ ´ëÇÑ Áö½ÄÀÌ ±í¾îÁö°í ¿îÀü °æÇèÀ» Áß½ÃÇÏ°Ô µÇ¸é¼­ ¶Ù¾î³­ Çڵ鸵, ¾ÈÁ¤¼º, ÀÀ´ä¼ºÀ» Á¦°øÇÏ´Â ÀÚµ¿Â÷¸¦ ¿øÇÏ´Â °æÇâÀÌ °­ÇØÁö°í ÀÖ½À´Ï´Ù. ÅäÅ© º¤Å͸µ ½Ã½ºÅÛÀº °¡¼Ó½Ã °ßÀηÂÀ» Çâ»ó½Ã۰í, Äڳʸµ ¼º´ÉÀ» °­È­Çϸç, Àü¹ÝÀûÀÎ Â÷·® Á¦¾î¸¦ Çâ»ó½ÃÅ´À¸·Î½á ÀÌ·¯ÇÑ ¿ä±¸¿¡ ºÎÀÀÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ÒºñÀÚ ÀÎ½Ä Áõ°¡´Â ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀÌ ÅäÅ© º¤Å͸µÀ» Á¦Ç°¿¡ ÅëÇÕÇϵµ·Ï À¯µµÇÏ¿© ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

ÀÚµ¿Â÷ ºÐ¾ßÀÇ Àüµ¿È­ Àüȯµµ ÅäÅ© º¤Å͸µ ½ÃÀåÀ» ÃËÁøÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. Àü±âÀÚµ¿Â÷¿Í ÇÏÀ̺긮µåÂ÷´Â Àü±â ¸ðÅͰ¡ °¢ ¹ÙÄû¿¡ Áï°¢ÀûÀ¸·Î µ¶¸³ÀûÀÎ µ¿·ÂÀ» °ø±ÞÇÒ ¼ö ÀÖÀ¸¹Ç·Î ÅäÅ© º¤Å͸µ¿¡ µ¶Æ¯ÇÑ ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀÌ ¼º´É Áß½ÉÀÇ Àü±âÀÚµ¿Â÷ °³¹ß¿¡ ÅõÀÚÇÔ¿¡ µû¶ó ÅäÅ© º¤Å͸µÀº ¹Ù¶÷Á÷ÇÑ ÁÖÇà ¿ªÇÐÀ» ´Þ¼ºÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿ä¼Ò·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. °í¼º´É Àü±âÀÚµ¿Â÷ÀÇ ÀαⰡ ³ô¾ÆÁö°í Áö¼Ó°¡´ÉÇÑ ±³Åë¼ö´Ü¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó ÅäÅ© º¤Å͸µ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Å©°Ô Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¶ÇÇÑ ¿ÀÇÁ·Îµå ¼º´É°ú ÀüÁöÇü Â÷·®¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁø °Íµµ ½ÃÀå ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¸ðÇè°ú ¾Æ¿ôµµ¾î Ȱµ¿¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó Á¦Á¶¾÷üµéÀº ¿ÀÇÁ·Îµå ¼º´ÉÀ» Çâ»ó½Ã۱â À§ÇØ SUV¿Í Æ®·°¿¡ ÅäÅ© º¤Å͸µ ±â¼úÀ» žÀçÇϰí ÀÖ½À´Ï´Ù. ÅäÅ© º¤Å͸µÀ» ÅëÇØ ÀÌ·¯ÇÑ Â÷·®Àº µ¿·ÂÀ» È¿°úÀûÀ¸·Î ¹èºÐÇÏ¿© °í¸£Áö ¾ÊÀº ³ë¸é°ú ¾ÇõÈÄ Á¶°Ç¿¡¼­ °ßÀηÂÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ÀÌ ±â´ÉÀº ¸ðÇèÀ» Ãß±¸ÇÏ´Â ¼ÒºñÀÚ¸¦ Ÿ°ÙÀ¸·Î ÇÏ´Â Á¦Á¶¾÷üµé¿¡°Ô Áß¿äÇÑ ÆÇ¸Å Æ÷ÀÎÆ®°¡ µÇ°í ÀÖÀ¸¸ç, ÅäÅ© º¤Å͸µ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù.

°á·ÐÀûÀ¸·Î ¼¼°èÀÇ ÅäÅ© º¤Å͸µ ½ÃÀåÀº ±â¼ú ¹ßÀü, ¼º´É ¹× ¾ÈÀü¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ±â´ëÄ¡ »ó½Â, Àü±â ¹× ÇÏÀ̺긮µåÂ÷ÀÇ Ã¤Åà Áõ°¡ µîÀ¸·Î ÀÎÇØ °­·ÂÇÑ ¼ºÀåÀ» ÀÌ·ê °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀÌ Â÷·® ´ÙÀ̳»¹Í½º¸¦ Áö¼ÓÀûÀ¸·Î Çõ½ÅÇÏ°í °­È­ÇÏ´Â °¡¿îµ¥, ÅäÅ© º¤Å͸µ ½Ã½ºÅÛÀº ¿ì¼öÇÑ ÁÖÇà °æÇèÀ» Á¦°øÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀÔ´Ï´Ù. ÅäÅ© º¤Å͸µ ±â¼ú ½ÃÀåÀº Áö¼ÓÀûÀÎ ¹ßÀü°ú Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ °ü½ÉÀ¸·Î ÀÎÇØ ÇâÈÄ ¼ö³â°£ Áö¼ÓÀûÀ¸·Î È®´ëµÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ºÎ¹®

±¸µ¿ À¯Çü(ÃÑ·û±¸µ¿/»ç·û±¸µ¿, Àü·û±¸µ¿, ÈÄ·û±¸µ¿), ÃÖÁ¾ ¿ëµµ(½Â¿ëÂ÷, ¼ÒÇü »ó¿ëÂ÷)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹

AI ÅëÇÕ

Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Torque Vectoring Market to Reach US$71.8 Billion by 2030

The global market for Torque Vectoring estimated at US$21.8 Billion in the year 2024, is expected to reach US$71.8 Billion by 2030, growing at a CAGR of 22.0% over the analysis period 2024-2030. All-Wheel Drive / Four-Wheel Drive, one of the segments analyzed in the report, is expected to record a 24.5% CAGR and reach US$42.5 Billion by the end of the analysis period. Growth in the Front-Wheel Drive segment is estimated at 20.2% CAGR over the analysis period.

The U.S. Market is Estimated at US$5.4 Billion While China is Forecast to Grow at 27.9% CAGR

The Torque Vectoring market in the U.S. is estimated at US$5.4 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$20.3 Billion by the year 2030 trailing a CAGR of 27.9% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 15.2% and 18.7% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 17.0% CAGR.

Global Torque Vectoring Market - Key Trends & Drivers Summarized

What Is Torque Vectoring and How Is It Manufactured?

Torque vectoring is an advanced vehicle dynamics control technology that allows for the independent control of power distribution to individual wheels, enhancing traction, stability, and handling. This system improves a vehicle's performance by adjusting the torque delivered to each wheel based on factors such as road conditions, driving style, and vehicle dynamics. Torque vectoring systems can be found in various vehicles, including high-performance sports cars, SUVs, and electric vehicles. The technology can be implemented through various methods, including mechanical differentials, electronic control systems, or hybrid systems combining both mechanical and electronic components.

The manufacturing of torque vectoring systems involves integrating advanced sensors, control algorithms, and mechanical components into a vehicle's drivetrain. Sensors monitor factors such as wheel speed, throttle position, steering angle, and yaw rate to provide real-time data to the vehicle's electronic control unit (ECU). The ECU processes this information and adjusts the torque distribution to each wheel accordingly, optimizing performance and stability. Mechanical components, such as multi-plate clutches or active differentials, are used to physically control the torque distribution. Manufacturers must ensure that these components work seamlessly together to provide a smooth and responsive driving experience.

Recent advancements in torque vectoring technology focus on enhancing system responsiveness, integration with other vehicle dynamics control systems, and reducing weight and complexity. Developments in electronic control systems and algorithms allow for more precise and rapid adjustments to torque distribution, improving the overall driving experience. Additionally, as electric and hybrid vehicles become more prevalent, torque vectoring technology is increasingly being adapted to work with electric motors, providing enhanced performance benefits through precise control of torque delivery. Innovations in lightweight materials and compact designs are also helping manufacturers create more efficient torque vectoring systems that can be integrated into a wider range of vehicle platforms.

What Are the Primary Applications of Torque Vectoring Across Industries?

Torque vectoring is primarily applied in the automotive industry, where it is used to enhance vehicle performance, safety, and handling. In high-performance vehicles, torque vectoring systems allow for superior cornering capabilities by adjusting the torque delivered to each wheel based on the vehicle's dynamics. This capability enables better traction during acceleration and improved stability when navigating tight turns, making it an essential feature in sports cars and performance-oriented vehicles. As manufacturers increasingly focus on enhancing the driving experience, the adoption of torque vectoring technology in high-performance vehicles is expected to grow.

In addition to sports cars, torque vectoring is also finding applications in SUVs and all-wheel-drive vehicles. These vehicles benefit from torque vectoring systems that improve traction on various surfaces, including snow, mud, and gravel. By distributing power to the wheels with the most grip, torque vectoring enhances the vehicle's off-road capabilities and ensures better handling in adverse weather conditions. This technology is becoming a key selling point for manufacturers looking to attract consumers interested in adventure and outdoor activities.

Another significant application of torque vectoring is in the development of electric and hybrid vehicles. As automakers shift towards electrification, torque vectoring systems can leverage the instant torque delivery of electric motors to provide unprecedented control and performance. Electric vehicles with torque vectoring can achieve superior acceleration and handling characteristics by independently controlling the torque sent to each wheel, leading to improved stability and a more engaging driving experience. This capability is particularly valuable in performance EVs, where delivering precise power to the wheels enhances overall performance.

In motorsport, torque vectoring is increasingly being used to gain a competitive advantage. Racing teams are leveraging advanced torque vectoring systems to optimize vehicle dynamics, improve cornering speeds, and enhance traction under high-performance conditions. The ability to fine-tune torque distribution based on real-time telemetry data allows teams to adapt their vehicles to changing track conditions, giving them an edge over competitors. This application of torque vectoring technology is helping to drive innovation and development in the automotive sector, with lessons learned in motorsport often translating to advancements in consumer vehicles.

Why Is Consumer Demand for Torque Vectoring Increasing?

The demand for torque vectoring technology is increasing due to several factors, including the rising consumer preference for enhanced vehicle performance, safety, and advanced driver assistance systems (ADAS). One of the primary drivers of demand is the growing interest in high-performance vehicles that offer superior handling and responsiveness. As consumers become more discerning about their driving experience, they seek vehicles that can provide exceptional performance, especially in challenging conditions such as tight corners or adverse weather. Torque vectoring systems deliver the desired performance characteristics, making them a sought-after feature in sports cars and performance-oriented vehicles.

The increasing focus on safety in the automotive industry is another significant factor driving demand for torque vectoring technology. As vehicle manufacturers strive to enhance safety features and improve stability, torque vectoring systems play a crucial role in preventing skidding and maintaining control during sudden maneuvers. By automatically adjusting torque distribution to each wheel, these systems can significantly reduce the likelihood of accidents, making vehicles safer for drivers and passengers. As safety regulations become more stringent and consumer awareness of vehicle safety rises, the integration of torque vectoring technology is likely to grow in both consumer and commercial vehicles.

Additionally, the transition towards electric and hybrid vehicles is boosting the demand for torque vectoring systems. With the rise of EVs and the growing emphasis on performance in electric drivetrains, torque vectoring offers manufacturers the ability to optimize power delivery and handling characteristics. The instant torque provided by electric motors allows for more precise control of each wheel's power output, leading to improved acceleration and maneuverability. As more consumers adopt electric vehicles, the demand for advanced performance features like torque vectoring is expected to rise, as drivers look for a dynamic and engaging driving experience.

The increasing popularity of SUVs and all-wheel-drive vehicles is also contributing to the growth of the torque vectoring market. As consumers gravitate toward larger vehicles that offer versatility and off-road capability, manufacturers are incorporating torque vectoring technology to enhance traction and stability on various terrains. This is particularly important for consumers who engage in outdoor activities or live in regions with challenging weather conditions. The demand for vehicles equipped with advanced traction control and handling capabilities is driving the adoption of torque vectoring systems in the SUV segment.

What Factors Are Driving the Growth of the Torque Vectoring Market?

The growth of the torque vectoring market is driven by several key factors, including technological advancements, increasing consumer demand for performance and safety, and the expanding market for electric and hybrid vehicles. One of the most significant factors is the continuous evolution of vehicle dynamics control systems, which have made torque vectoring technology more efficient, responsive, and reliable. Innovations in electronic control systems, sensors, and algorithms enable real-time monitoring and adjustment of torque distribution, providing drivers with enhanced control and stability. These advancements are making torque vectoring systems more accessible to manufacturers, driving their adoption across a wider range of vehicles.

The rising consumer demand for enhanced performance and safety features is another crucial driver of market growth. As consumers become more knowledgeable about vehicle technologies and prioritize driving experiences, they increasingly seek out vehicles that offer superior handling, stability, and responsiveness. Torque vectoring systems address these demands by improving traction during acceleration, enhancing cornering capabilities, and providing better overall vehicle control. This growing consumer awareness is prompting automakers to incorporate torque vectoring into their offerings, further fueling market growth.

The transition towards electrification in the automotive sector is also playing a significant role in driving the torque vectoring market. Electric and hybrid vehicles inherently provide unique opportunities for torque vectoring due to their electric motors' ability to deliver power instantly and independently to each wheel. As automakers invest in developing performance-oriented electric vehicles, torque vectoring becomes an essential component in achieving the desired driving dynamics. The growing popularity of performance electric vehicles, combined with consumer interest in sustainable transportation, is expected to significantly boost the demand for torque vectoring systems.

Additionally, the increasing focus on off-road capabilities and all-terrain vehicles is contributing to market growth. As consumer interest in adventure and outdoor activities rises, manufacturers are integrating torque vectoring technology into SUVs and trucks to enhance their off-road performance. Torque vectoring allows these vehicles to distribute power effectively, providing improved traction on uneven surfaces and in challenging weather conditions. This feature is becoming a critical selling point for manufacturers targeting adventure-seeking consumers, further driving the demand for torque vectoring systems.

In conclusion, the global torque vectoring market is positioned for robust growth, driven by advancements in technology, rising consumer expectations for performance and safety, and the increasing adoption of electric and hybrid vehicles. As automakers continue to innovate and enhance vehicle dynamics, torque vectoring systems will play a crucial role in delivering superior driving experiences. With ongoing advancements and a focus on sustainability, the market for torque vectoring technology is expected to experience sustained expansion in the coming years.

SCOPE OF STUDY:

The report analyzes the Torque Vectoring market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Drive Type (All-Wheel Drive / Four-Wheel Drive, Front-Wheel Drive, Rear-Wheel Drive); End-Use (Passenger Cars, Light Commercial Vehicles)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 42 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â