¼¼°èÀÇ ÇÁ·Î±×·¡¸Óºí ½Ç¸®ÄÜ ½ÃÀå
Programmable Silicon
»óǰÄÚµå : 1757824
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 294 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,222,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,666,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

ÇÁ·Î±×·¡¸Óºí ½Ç¸®ÄÜ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 2¾ï 1,390¸¸ ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 1¾ï 30¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ÇÁ·Î±×·¡¸Óºí ½Ç¸®ÄÜ ¼¼°è ½ÃÀåÀº 2030³â¿¡´Â 2¾ï 1,390¸¸ ´Þ·¯¿¡ À̸£°í, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 13.4%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ Çʵå ÇÁ·Î±×·¡¸Óºí °ÔÀÌÆ® ¾î·¹ÀÌ(FPGA)´Â CAGR 15.2%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 1¾ï 4,340¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÇÁ·Î±×·¡¸Óºí ·ÎÁ÷ µð¹ÙÀ̽º ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR 10.4%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 2,730¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR18.3%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ÇÁ·Î±×·¡¸Óºí ½Ç¸®ÄÜ ½ÃÀåÀº 2024³â¿¡ 2,730¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 4,610¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 18.3%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 9.7%¿Í 12.1%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 10.7%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ ÇÁ·Î±×·¡¸Óºí ½Ç¸®ÄÜ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

ÇÁ·Î±×·¡¸Óºí ½Ç¸®ÄÜÀÌ Çö´ë ÀüÀÚÁ¦Ç°°ú ÄÄÇ»ÆÃ ¾ÆÅ°ÅØÃ³¸¦ ÀçÁ¤ÀÇÇÏ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?

ÇÁ·Î±×·¡¸Óºí ½Ç¸®ÄÜÀ̶õ FPGA(Field-Programmable Gate Arrays), CPLD(Complex Programmable Logic Devices), ±âŸ À籸¼º °¡´ÉÇÑ ÁýÀûȸ·Î µî Á¦Á¶ ÈÄ µ¿ÀûÀ¸·Î ÀçÇÁ·Î±×·¡¹ÖÀÌ °¡´ÉÇÑ ¹ÝµµÃ¼ ¼ÒÀÚ¸¦ ¸»ÇÕ´Ï´Ù. µð¹ÙÀ̽º¸¦ ¸»ÇÕ´Ï´Ù. °íÁ¤µÈ ±â´ÉÀÇ ASIC(Application Specific Integrated Circuit)°ú ´Þ¸® ÇÁ·Î±×·¡¸Óºí ½Ç¸®ÄÜÀº ¼³°èÀÚ¿¡°Ô Çϵå¿þ¾î ·ÎÁ÷À» ¹èÆ÷ ÈÄ º¯°æÇÒ ¼ö ÀÖ´Â À¯¿¬¼ºÀ» Á¦°øÇÏ¿© ÁøÈ­ÇÏ´Â ¿ëµµ ȯ°æ¿¡¼­ ½Å¼ÓÇÑ ÇÁ·ÎÅäŸÀÌÇÎ, Ä¿½ºÅ͸¶ÀÌ¡ ¹× ¾÷±×·¹À̵带 °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

¼ÒÇÁÆ®¿þ¾î Ãß»óÈ­¸¦ ÅëÇØ Çϵå¿þ¾îÀÇ µ¿ÀÛÀ» Á¶Á¤ÇÏ´Â ÀÌ ´É·ÂÀº µ¥ÀÌÅͼ¾ÅÍ, 5G ÀÎÇÁ¶ó, ÀÚÀ² ½Ã½ºÅÛ, Ç×°ø¿ìÁÖ, ±¹¹æ µîÀÇ ºÐ¾ß¿¡¼­ Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. ÀúÁö¿¬ °è»ê, º´·Ä ó¸®, °áÁ¤·ÐÀû ¼º´ÉÀ» ÇÊ¿ä·Î ÇÏ´Â ¿ëµµ´Â ¹ü¿ë CPU¿Í ¿ÏÀü ¸ÂÃãÇü ½Ç¸®ÄÜÀÇ °£±ØÀ» ¸Þ¿ì±â À§ÇØ ÇÁ·Î±×·¡¸Óºí ½Ç¸®ÄÜ¿¡ ÁÖ¸ñÇϰí ÀÖ½À´Ï´Ù. ¿öÅ©·Îµå°¡ AI Áß½ÉÀÌ µÇ°í ½Ã°£ Á¦¾àÀÌ ½ÉÇØÁü¿¡ µû¶ó ÇÁ·Î±×·¡¸Óºí ·ÎÁ÷ °íÀ¯ÀÇ ÀûÀÀ¼ºÀÌ Àü·«ÀûÀ¸·Î ´õ¿í Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù.

¾ÆÅ°ÅØÃ³¿Í ÇÁ·Î¼¼½º Çõ½ÅÀº ½Ç¸®ÄÜÀÇ À¯¿¬¼º°ú È¿À²¼ºÀ» ¾î¶»°Ô È®ÀåÇϰí Àִ°¡?

ÁÖ¿ä º¥´õµéÀº FPGA ÆÐºê¸¯°ú ÇϵåÈ­µÈ ÇÁ·Î¼¼¼­ ÄÚ¾î, AI ¿£Áø, °í´ë¿ªÆø ¸Þ¸ð¸®(HBM)¸¦ ÅëÇÕÇÑ ÇÏÀ̺긮µå ¾ÆÅ°ÅØÃ³¿¡ ¸¹Àº ÅõÀÚ¸¦ ÅëÇØ ÄÄÇ»ÆÃ ¹Ðµµ¿Í Àü·Â È¿À²À» ³ôÀ̰í ÀÖ½À´Ï´Ù. XilinxÀÇ VersalÀ̳ª ÀÎÅÚÀÇ Agilex¿Í °°Àº µð¹ÙÀ̽º´Â ARM ÄÚ¾î, DSP ºí·Ï, PCIe ¶Ç´Â ÀÌ´õ³Ý ÀÎÅÍÆäÀ̽º¿Í ÇÔ²² ±ä¹ÐÇÏ°Ô °áÇÕµÈ ÇÁ·Î±×·¡¸Óºí ·ÎÁ÷À» Á¦°øÇÏ¿© ·±Å¸ÀÓ À籸¼ºÀÌ °¡´ÉÇÑ ½Ã½ºÅÛ¿ÂĨ(SoC) °æÇèÀ» Á¦°øÇÕ´Ï´Ù. SoC(System-on-a-Chip) °æÇèÀ» Á¦°øÇÕ´Ï´Ù.

28nm¿¡¼­ 7nm ÀÌÈÄ °øÁ¤ ³ëµåÀÇ ¹ßÀüÀ¸·Î ·ÎÁ÷ÀÇ °í¹ÐµµÈ­, ½ºÀ§Äª ¼ÓµµÀÇ °í¼ÓÈ­, Àü·Â ¼ÒºñÀÇ °¨¼Ò°¡ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ÀÎÅÍÄ¿³ØÆ® º´¸ñÇö»óÀ» ±Øº¹Çϰí È®À强À» Çâ»ó½Ã۱â À§ÇØ Àθ޸𸮠ÄÄÇ»ÆÃ°ú Ĩ·¿ ±â¹Ý ÆÐŰ¡ÀÌ °í·ÁµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °í±Þ ÇÕ¼º(HLS) Åø, Python ¹× C/C++ ÇÁ·Î±×·¡¹Ö ȯ°æ Áö¿ø, RISC-V¿Í °°Àº °³¹æÇü Çϵå¿þ¾î »ýŰè´Â ÇÁ·Î±×·¡¸Óºí ½Ç¸®ÄÜ °³¹ß¿¡ ´ëÇÑ Á¢±ÙÀ» ¹ÎÁÖÈ­Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È­´Â ÇнÀ °î¼±À» ´ÜÃàÇϰí, ºñ¿ëÀ» ³·Ã߸ç, ÇÁ·Î±×·¡¸Óºí Ç÷§ÆûÀ» »ç¿ëÇÒ ¼ö ÀÖ´Â °³¹ßÀÚ Ç®À» È®´ëÇÏ´Â µ¥ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

»ê¾÷º°, ÄÄǻƮ ¿ëµµº°·Î µµÀÔÀÌ ÁøÇàµÇ°í ÀÖ´Â °ÍÀº?

µ¥ÀÌÅͼ¾ÅÍ ¾÷°è´Â ÇÁ·Î±×·¡¸Óºí ½Ç¸®ÄÜÀÇ °¡Àå Å« ¼ö¿äó Áß ÇϳªÀ̸ç, FPGA´Â °Ë»ö, ¾ÐÃà, ¾Ïȣȭ, AI Ãß·Ð ¿öÅ©·Îµå¸¦ °¡¼ÓÈ­ÇÏ´Â µ¥ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. °¡»óÈ­ ȯ°æ¿¡¼­ ÄÄÇ»ÆÃ ÆÄÀÌÇÁ¶óÀÎÀ» Ä¿½ºÅ͸¶ÀÌ¡ÇÒ ¼ö ÀÖ´Â FPGA-as-a-Service(FaaS) ¸ðµ¨À» Á¦°øÇÕ´Ï´Ù.

Â÷·®¿ë ½Ã½ºÅÛ¿¡¼­ ÇÁ·Î±×·¡¸Óºí ½Ç¸®ÄÜÀº ÷´Ü¿îÀüÀÚº¸Á¶½Ã½ºÅÛ(ADAS), ¼¾¼­ À¶ÇÕ, ½Ç½Ã°£ ÀÇ»ç°áÁ¤ µî È®Á¤ÀûÀΠŸÀְ̹ú Çϵå¿þ¾îÀÇ ÀÌÁßÈ­°¡ ÇʼöÀûÀÎ »óȲ¿¡¼­ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. Ç×°ø¿ìÁÖ ¹× ¹æÀ§ »ê¾÷Àº ½ÅÈ£ ó¸®, ·¹ÀÌ´õ, º¸¾È Åë½Å ½Ã½ºÅÛ¿¡ ÇÁ·Î±×·¡¸Óºí ĨÀÇ À籸¼º °¡´É¼º°ú ¹æ»ç¼± °æÈ­ÇüÀ» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. »ê¾÷ ÀÚµ¿È­, ÀÇ·á¿ë ¿µ»ó ó¸®, ·Îº¿ °øÇÐ, Åë½Å(ƯÈ÷ 5G ¹«¼± ÀåÄ¡)Àº ÇÁ·Î±×·¡¸Óºí ·ÎÁ÷À» ÅëÇÕÇÏ¿© ±Þ¼ÓÇÑ Ç¥ÁØ Ç¥ÁØÀÇ ¹ßÀü°ú ´ÙÁß ÇÁ·ÎÅäÄÝ Áö¿ø¿¡ ´ëÀÀÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÃÖ¼ÒÇÑÀÇ Áö¿¬½Ã°£À¸·Î AI ¹× ºñµð¿À °¡¼ÓÀ» ÇÊ¿ä·Î ÇÏ´Â °¡ÀüÁ¦Ç° ¹× ¿§Áö µð¹ÙÀ̽º ½ÃÀåµµ È®´ëµÇ°í ÀÖ½À´Ï´Ù.

ÇÁ·Î±×·¡¸Óºí ½Ç¸®ÄÜ ½ÃÀåÀÇ ¼¼°è ¼ºÀå ¿øµ¿·ÂÀº?

¼¼°è ÇÁ·Î±×·¡¸Óºí ½Ç¸®ÄÜ ½ÃÀåÀÇ ¼ºÀåÀº ¿ªµ¿ÀûÀÎ ÄÄÇ»ÆÃ ¿ä±¸»çÇ׿¡ Á÷¸éÇÑ Çϵå¿þ¾î ¼öÁØÀÇ ÀûÀÀ¼º, À̱âÁ¾ ÄÄÇ»ÆÃ ¾ÆÅ°ÅØÃ³·ÎÀÇ Àüȯ, AI, 5G, ÀÓº£µðµå ½Ã½ºÅÛ¿¡¼­ÀÇ Çõ½Å °¡¼ÓÈ­¿¡ µû¸¥ °ÍÀÔ´Ï´Ù. ½ÃÀå Ãâ½Ã¿¡ ´ëÇÑ ¾Ð¹ÚÀÌ °¡ÁßµÇ°í ¿ëµµÀÇ ¼ö¸íÁֱⰡ ´ÜÃàµÇ´Â °¡¿îµ¥, ÇÁ·Î±×·¡¸Óºí ½Ç¸®ÄÜÀº Æß¿þ¾î ±â¹Ý ¾÷µ¥ÀÌÆ®¿Í µµÀÔ ÈÄ ±â´É È®ÀåÀ» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á ¹Ì·¡ÁöÇâÀûÀÎ ¼³°è¸¦ À§ÇÑ ±æÀ» Á¦°øÇÕ´Ï´Ù.

±¹°¡ ¾Èº¸, ¿ìÁÖ ÇÁ·Î±×·¥, »ê¾÷ Çö´ëÈ­ÀÇ Àü·«Àû ÀÌ´Ï¼ÅÆ¼ºê´Â ¿Âµð¹ÙÀ̽º Á¦¾î ¹× º¸¾È ±â´ÉÀ» °®Ãá ½Å·ÚÇÒ ¼ö ÀÖ´Â ¸ÂÃãÇü ½Ç¸®ÄÜ¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Ĩ·¿ »ýŰè¿Í ¿ÀǼҽº Çϵå¿þ¾î ÀÌ´Ï¼ÅÆ¼ºêÀÇ ºÎ»óÀº Çù¾÷À» ÃËÁøÇÏ°í ¿¬±¸ °³¹ßÀÇ À庮À» ³·Ã߸ç, AI Ã߷аú AI ±â¹Ý Çϵå¿þ¾îÀÇ ¹ßÀüÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, AI Ãß·Ð ¿öÅ©·Îµå°¡ ´õ¿í ºÐ»êµÇ°í ÄÄÇ»ÆÃ¿¡ ¹­¿© ÀÖ´Â °¡¿îµ¥, ÇÁ·Î±×·¡¸Óºí ½Ç¸®ÄÜÀº Â÷¼¼´ë Áö´ÉÇü ½Ã½ºÅÛÀ» À§ÇÑ Àü·Â È¿À²ÀûÀ̰í ÀûÀÀ·ÂÀÌ ¶Ù¾î³­ ±âÆÇÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼·Î ÀÎÇØ ÇÁ·Î±×·¡¸Óºí ½Ç¸®ÄÜÀº Æ÷½ºÆ® ¹«¾îÀÇ ¹ýÄ¢ ½Ã´ë¿¡ ¹ü¿ë À¯¿¬¼º°ú ¿ëµµº° ÃÖÀûÈ­¸¦ ¸ðµÎ ½ÇÇöÇÏ´Â Áß¿äÇÑ ±â¼ú·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

µð¹ÙÀ̽º À¯Çü(Çʵå ÇÁ·Î±×·¡¸Óºí °ÔÀÌÆ® ¾î·¹ÀÌ(FPGA), ÇÁ·Î±×·¡¸Óºí ·ÎÁ÷ µð¹ÙÀ̽º), ¿ëµµ(Åë½Å, ÀÚµ¿Â÷ ÀÏ·ºÆ®·Î´Ð½º, »ê¾÷ ÀÚµ¿È­, ÄÁ½´¸Ó(consumer) ÀÏ·ºÆ®·Î´Ð½º, µ¥ÀÌÅͼ¾ÅÍ, Ç×°ø¿ìÁÖ ¹× ¹æÀ§, ±âŸ ¿ëµµ), ÃÖÁ¾ ¿ëµµ(Åë½Å ¹× ³×Æ®¿öÅ·, ÀÚµ¿Â÷, »ê¾÷ ÀÚµ¿È­£¦Á¦Á¶, ÄÁ½´¸Ó ÀÏ·ºÆ®·Î´Ð½º, µ¥ÀÌÅͼ¾ÅÍ£¦Å¬¶ó¿ìµå ÄÄÇ»ÆÃ, Ç×°ø¿ìÁÖ ¹× ¹æÀ§, ÇコÄɾî, ¿¡³ÊÁö ¹× À¯Æ¿¸®Æ¼, ¿¬±¸°³¹ß, ±âŸ ÃÖÁ¾ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹(ÃÑ 48°³»ç)

AI ÅëÇÕ

¿ì¸®´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼­, ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Programmable Silicon Market to Reach US$213.9 Million by 2030

The global market for Programmable Silicon estimated at US$100.3 Million in the year 2024, is expected to reach US$213.9 Million by 2030, growing at a CAGR of 13.4% over the analysis period 2024-2030. Field-Programmable Gate Arrays, one of the segments analyzed in the report, is expected to record a 15.2% CAGR and reach US$143.4 Million by the end of the analysis period. Growth in the Programmable Logic Devices segment is estimated at 10.4% CAGR over the analysis period.

The U.S. Market is Estimated at US$27.3 Million While China is Forecast to Grow at 18.3% CAGR

The Programmable Silicon market in the U.S. is estimated at US$27.3 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$46.1 Million by the year 2030 trailing a CAGR of 18.3% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 9.7% and 12.1% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 10.7% CAGR.

Global Programmable Silicon Market - Key Trends & Drivers Summarized

Why Is Programmable Silicon Redefining Modern Electronics and Compute Architectures?

Programmable silicon refers to semiconductor devices-such as FPGAs (Field-Programmable Gate Arrays), CPLDs (Complex Programmable Logic Devices), and other reconfigurable integrated circuits-that can be dynamically reprogrammed after manufacturing. Unlike fixed-function ASICs (Application-Specific Integrated Circuits), programmable silicon offers designers the flexibility to modify hardware logic post-deployment, enabling rapid prototyping, customization, and upgradeability in evolving application environments.

This ability to tailor hardware behavior through software abstraction is increasingly crucial across sectors such as data centers, 5G infrastructure, autonomous systems, aerospace, and defense. Applications requiring low-latency computation, parallel processing, and deterministic performance are turning to programmable silicon to bridge the gap between general-purpose CPUs and fully custom silicon. As workloads become more AI-driven and time-sensitive, the inherent adaptability of programmable logic is gaining strategic importance.

How Are Architecture and Process Innovations Expanding Silicon Flexibility and Efficiency?

Leading vendors are investing heavily in hybrid architectures that integrate FPGA fabrics with hardened processor cores, AI engines, and high-bandwidth memory (HBM) to boost computational density and power efficiency. Devices like Xilinx Versal or Intel Agilex offer tightly coupled programmable logic alongside ARM cores, DSP blocks, and PCIe or Ethernet interfaces-delivering a system-on-chip (SoC) experience with runtime reconfigurability.

Advancements in process nodes-from 28nm down to 7nm and beyond-are enabling higher logic density, faster switching speeds, and reduced power consumption. In-memory compute and chiplet-based packaging are being explored to overcome interconnect bottlenecks and improve scalability. Moreover, high-level synthesis (HLS) tools, support for Python and C/C++ programming environments, and open hardware ecosystems like RISC-V are democratizing access to programmable silicon development. These shifts are reducing the learning curve, lowering costs, and expanding the pool of developers using programmable platforms.

Where Is Adoption Rising Across Industry Verticals and Compute Applications?

The data center industry is one of the largest consumers of programmable silicon, where FPGAs are used for acceleration of search, compression, encryption, and AI inference workloads. Cloud providers like Microsoft Azure and AWS have incorporated programmable silicon into their infrastructure to offer FPGA-as-a-Service (FaaS) models that allow users to tailor computational pipelines in virtualized environments.

In automotive systems, programmable silicon is used in ADAS (Advanced Driver-Assistance Systems), sensor fusion, and real-time decision-making where deterministic timing and hardware redundancy are essential. Aerospace and defense leverage the reconfigurability and radiation-hardened variants of programmable chips for signal processing, radar, and secure communication systems. Industrial automation, medical imaging, robotics, and telecommunications-especially 5G radio units-are integrating programmable logic to accommodate rapid standards evolution and multi-protocol support. The market is also expanding in consumer electronics and edge devices requiring AI and video acceleration with minimal latency.

What’s Driving the Global Growth of the Programmable Silicon Market?

The growth in the global programmable silicon market is driven by the need for hardware-level adaptability in the face of dynamic computing demands, the shift toward heterogeneous compute architectures, and accelerated innovation in AI, 5G, and embedded systems. As time-to-market pressures intensify and application lifecycles shorten, programmable silicon provides a future-proof design path by enabling firmware-based updates and feature enhancements post-deployment.

Strategic initiatives in national security, space programs, and industrial modernization are fueling demand for trusted, customizable silicon with on-device control and security features. The rise of chiplet ecosystems and open-source hardware initiatives is fostering collaboration and reducing R&D barriers. Furthermore, as AI inference workloads become more distributed and compute-bound, programmable silicon provides a power-efficient, adaptable substrate for next-gen intelligent systems. These trends position programmable silicon as a critical enabler of both general-purpose flexibility and application-specific optimization in the post-Moore’s Law era.

SCOPE OF STUDY:

The report analyzes the Programmable Silicon market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Device Type (Field-Programmable Gate Arrays, Programmable Logic Devices); Application (Telecommunications, Automotive Electronics, Industrial Automation, Consumer Electronics, Data Centers, Aerospace & Defense, Other Applications); End-Use (Telecommunications & Networking, Automotive, Industrial Automation & Manufacturing, Consumer Electronics, Data Centers & Cloud Computing, Aerospace & Defense, Healthcare, Energy & Utilities, Research & Development, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 48 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â