¼¼°èÀÇ Ç×±Õ ÆéŸÀÌµå ½ÃÀå
Antimicrobial Peptides
»óǰÄÚµå : 1752879
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 471 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,039,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,117,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Ç×±Õ ÆéŸÀÌµå ¼¼°è ½ÃÀåÀº 2030³â±îÁö 74¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 59¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â Ç×±Õ ÆéŸÀÌµå ¼¼°è ½ÃÀåÀº 2024-2030³â CAGR 3.9%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 74¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ½Ä¹° Ç×±Õ ÆéŸÀ̵å´Â CAGR 5.0%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á±îÁö 32¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼¼±Õ Ç×±Õ ÆéŸÀÌµå ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR 2.9%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 16¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 7.3%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ Ç×±Õ ÆéŸÀÌµå ½ÃÀåÀº 2024³â¿¡ 16¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 15¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 7.3%·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 1.5%¿Í 3.1%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 2.2%·Î ÃßÁ¤µË´Ï´Ù.

¼¼°èÀÇ Ç×±Õ ÆéŸÀÌµå ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Ç×±Õ ÆéŸÀ̵尡 ±âÁ¸ Ç×»ýÁ¦¸¦ ´ëüÇÒ ¼ö ÀÖ´Â ´ë¾ÈÀ¸·Î ¶°¿À¸£´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?

Ç×±Õ ÆéŸÀ̵å(AMPs)´Â ³»¼º±Õ°úÀÇ ½Î¿ò¿¡¼­ ¸Å¿ì Áß¿äÇÑ ¾à¹°·Î Àνĵǰí ÀÖÀ¸¸ç, ±âÁ¸ Ç×»ýÁ¦¸¦ ´ëüÇÒ ¼ö ÀÖ´Â À¯¸ÁÇÑ ´ë¾ÈÀ¸·Î ¶°¿À¸£°í ÀÖ½À´Ï´Ù. AMP°¡ ¿À´Ã³¯ ƯÈ÷ ÁÖ¸ñ¹Þ°í ÀÖ´Â °ÍÀº AMPÀÇ µ¶Æ¯ÇÑ ÀÛ¿ë±âÀü ¶§¹®ÀÔ´Ï´Ù. ƯÁ¤ »ýÈ­ÇÐÀû °æ·Î¸¦ Ç¥ÀûÀ¸·Î »ï´Â ±âÁ¸ Ç×»ýÁ¦¿Í ´Þ¸® AMP´Â ÀϹÝÀûÀ¸·Î ¹Ì»ý¹° ¸·À» ÆÄ±«Çϱ⠶§¹®¿¡ º´¿ø±ÕÀÌ ³»¼ºÀ» ȹµæÇÏ±â ¾î·Æ½À´Ï´Ù. AMP´Â ´ÙÁ¦³»¼º(MDR) ¹ÚÅ׸®¾Æ»Ó¸¸ ¾Æ´Ï¶ó ¹ÙÀÌ·¯½º, °õÆÎÀÌ, ÀϺΠ±â»ýÃæ¿¡ ´ëÇÑ È¿´ÉÀ» º¸¿©ÁÜÀ¸·Î½á ´ÙÁ¦³»¼º(MDR) ¹ÚÅ׸®¾Æ»Ó¸¸ ¾Æ´Ï¶ó ¹ÙÀÌ·¯½º, °õÆÎÀÌ, ½ÉÁö¾î ÀϺΠ±â»ýÃæ¿¡ ´ëÇØ¼­µµ È¿´ÉÀ» º¸À̰í ÀÖ½À´Ï´Ù. ±× ¹ü¿ë¼ºÀ¸·Î ÀÎÇØ ÇǺΠ°¨¿°, ÆÐÇ÷Áõ, È£Èí±â °¨¿°ÁõÀÇ Ä¡·áºÎÅÍ ±¹¼Ò »óó Ä¡·á ¹× ÀÓÇöõÆ® ÄÚÆÃ¿¡ À̸£±â±îÁö ±¤¹üÀ§ÇÑ ÀÓ»ó Àû¿ëÀÌ ±â´ëµÇ°í ÀÖ½À´Ï´Ù. Â÷¼¼´ë Ç×±ÕÁ¦ °³¹ßÀÌ ½Ã±ÞÇÑ »óȲ¿¡¼­ ºü¸£°Ô ÀÛ¿ëÇÏ°í ¼÷ÁÖ ¹Ì»ý¹°¿¡ ´ëÇÑ ºÎ¼öÀûÀÎ ¼Õ»óÀ» ÃÖ¼ÒÈ­ÇÒ ¼ö ÀÖ´Ù´Â Á¡¿¡¼­ Á¦¾à»ç, ¿¬±¸±â°ü, ÀÇ·á±â°üÀÇ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ AMP´Â °ú´Ù »ç¿ëÀ¸·Î ÀÎÇØ Àü ¼¼°èÀûÀ¸·Î Ç×»ýÁ¦ ³»¼º ¹®Á¦°¡ ´ëµÎµÇ°í ÀÖ´Â °¡Ãà Ç×»ýÁ¦ÀÇ ´ë¾ÈÀÌ µÉ ¼ö ÀÖ´Ù´Â Á¡¿¡¼­ ³ó¾÷ ¹× ¼öÀÇÇÐ ºÐ¾ß¿¡¼­µµ ¿¬±¸°¡ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ´Ù¹æ¸éÀÇ ÀåÁ¡°ú Æø³ÐÀº Àû¿ë °¡´É¼ºÀ» °¡Áø AMP´Â ¹Ì·¡ Ç×°¨¿°Áõ Àü·«ÀÇ ÇÙ½ÉÀ¸·Î ±ÞºÎ»óÇϰí ÀÖ½À´Ï´Ù.

AMPÀÇ °¡´É¼ºÀ» ¿­¾îÁÖ´Â °úÇбâ¼úÀÇ ¹ßÀüÀº?

Ç×±Õ ÆéŸÀÌµå ½ÃÀåÀÇ ¹ßÀüÀº »ý¸í°øÇÐ, ÇÕ¼º»ý¹°ÇÐ, ÆéŸÀÌµå °øÇÐÀÇ ´«ºÎ½Å ¹ßÀü¿¡ ÈûÀÔ¾î Ç×±Õ ÆéŸÀÌµå ºÐÀÚÀÇ ¾ÈÁ¤¼º, ¼±Åüº ¹× È¿´ÉÀ» Çâ»ó½ÃÄ×À¸¸ç, AMPÀÇ ¿ª»çÀû °úÁ¦ Áß Çϳª´Â ÇÁ·ÎÅ×¾ÆÁ¦ ºÐÇØ¿¡ Ãë¾àÇϰí Àü½Å ¼øÈ¯ ¹Ý°¨±â°¡ »ó´ëÀûÀ¸·Î ª´Ù´Â Á¡ÀÔ´Ï´Ù. ¹Ý°¨±â°¡ »ó´ëÀûÀ¸·Î ª´Ù´Â Á¡ÀÔ´Ï´Ù. ±×·¯³ª ÃÖ±Ù ÆéŸÀÌµå º¯Çü(°í¸®È­, D-¾Æ¹Ì³ë»ê ġȯ, PEGÈ­ µî)ÀÇ Ãß¼¼´Â Ä¡·áÀû »ç¿ë¿¡ ÀûÇÕÇÑ º¸´Ù ¾ÈÁ¤ÀûÀÌ°í ³»±¸¼ºÀÌ ³ôÀº AMP Á¦Á¦¸¦ ¸¸µé¾î ³Â½À´Ï´Ù. ÇöÀç, °è»ê»ý¹°ÇÐ ¹× AI¸¦ Ȱ¿ëÇÑ ¸ðµ¨¸µÀº Àΰ£ ¼¼Æ÷¿¡ ´ëÇÑ µ¶¼ºÀ» ÃÖ¼ÒÈ­Çϸ鼭 ƯÁ¤ º´¿øÃ¼¸¦ Ç¥ÀûÀ¸·Î ÇÏ´Â ÃÖÀûÈ­µÈ ±¸Á¶¸¦ °¡Áø ÇÕ¼º AMP¸¦ ¼³°èÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ¿¬±¸ÀÚµéÀº ¶ÇÇÑ ¼­·Î ´Ù¸¥ õ¿¬ AMPÀÇ ÀåÁ¡À» °áÇÕÇϰųª AMP µµ¸ÞÀΰú Ÿ°ÙÆÃ ¸®°£µå¸¦ À¶ÇÕÇÏ¿© Àü´Þ°ú È¿´ÉÀ» Çâ»ó½ÃŰ´Â ÇÏÀ̺긮µå ÆéŸÀ̵带 ޱ¸Çϰí ÀÖ½À´Ï´Ù. ³ª³ë±â¼úÀº AMP¸¦ ¸®Æ÷¼Ø, ¹Ì¼¿, ³ª³ëÀÔÀÚ¿¡ ĸ½¶È­ÇÏ¿© »ýü ÀÌ¿ë·üÀ» ³ôÀÌ°í ¹æÃâÀ» Á¶ÀýÇÒ ¼ö ÀÖµµ·Ï ÇÏ´Â µ¥ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, À¯ÀüÀÚ ÆíÁý ¹× ÀçÁ¶ÇÕ DNA ±â¼úÀÇ ¹ßÀüÀ¸·Î ¹Ì»ý¹° ¹× ½Ä¹° ±â¹Ý ½Ã½ºÅÛ¿¡¼­ AMPÀÇ È®Àå °¡´ÉÇÑ »ý»êÀÌ ¿ëÀÌÇØÁ® ºñ¿ëÀ» Àý°¨Çϰí Àϰü¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, ÇÏÀ̽º·çDz ½ºÅ©¸®´× ±â¼úÀ» ÅëÇØ °úÇÐÀÚµéÀº ¼öõ °³ÀÇ ÆéŸÀ̵å Èĺ¸¹°ÁúÀ» ½Å¼ÓÇÏ°Ô Æò°¡ÇÒ ¼ö ÀÖ°Ô µÇ¾î ÀǾàǰ °³¹ß ÆÄÀÌÇÁ¶óÀÎÀ» °¡¼ÓÈ­ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀÇ À¶ÇÕÀ¸·Î AMP´Â ¾Ï Ä¡·á, ¸é¿ª Á¶Àý, ¹é½Å º¸Á¶Á¦ µî »õ·Î¿î ÀÀ¿ë ºÐ¾ß·Î È®ÀåµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °úÇÐÀû µ¹ÆÄ±¸¸¦ Á¾ÇÕÇÏ¸é ¼ö³â°£ÀÇ ÇѰ踦 ÇØ°áÇÒ »Ó¸¸ ¾Æ´Ï¶ó Àü ¼¼°èÀûÀ¸·Î Ç×±Õ ÆéŸÀ̵åÀÇ Ä¡·á ÀáÀç·ÂÀ» ¿ÏÀüÈ÷ ¹ßÈÖÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÓ»óÀû ¿ä±¸¿Í ¾÷°è µ¿ÇâÀº AMP ½ÃÀå µµÀÔÀ» ¾î¶»°Ô ÃËÁøÇϰí Àִ°¡?

º¸´Ù ¾ÈÀüÇϰí È¿°úÀûÀÎ Ç×°¨¿°Á¦¿¡ ´ëÇÑ ÀÓ»óÀû ¿ä±¸°¡ Ç×±Õ ÆéŸÀ̵忡 ´ëÇÑ °ü½ÉÀ» ³ôÀ̰í ÀÖÀ¸¸ç, ÀǾàǰ °³¹ß ÆÄÀÌÇÁ¶óÀο¡ AMP¸¦ ÅëÇÕÇÏ´Â Á¦¾à ¹× »ý¸í°øÇÐ ±â¾÷ÀÇ ¼ö°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. °¡Àå °­·ÂÇÑ ¿øµ¿·Â Áß Çϳª´Â º´¿ø ³» °¨¿°(HAI) Áõ°¡¿Í MRSA(¸ÞƼ½Ç¸° ³»¼º Ȳ»öÆ÷µµ»ó±¸±Õ), ³ì³ó±Õ, Áø±Õ¼º ½´ÆÛ°¨¿° µî Ä¡·áÇϱ⠾î·Á¿î Áúȯ Áõ°¡ÀÔ´Ï´Ù. Ä¡·á¿¡µµ À¯¸ÁÇÑ Ä¡·áÁ¦·Î ÁÖ¸ñ¹Þ°í ÀÖ½À´Ï´Ù. Ä¡°ú¿Í ÇǺΰú¿¡¼­´Â ¹Ì»ý¹° ºÒ±ÕÇüÀ» Á¶ÀýÇϰí Ä¡À¯¸¦ µ½´Â ¿Ü¿ëÁ¦·Î AMP¸¦ ½ÃÇèÇϰí ÀÖ½À´Ï´Ù. ÇÑÆí, È­Àåǰ ¾÷°è¿¡¼­´Â ÇÕ¼º ¹æºÎÁ¦¸¦ ´ëüÇÒ ¼ö ÀÖ´Â AMPÀÇ Ãµ¿¬ Á¦Á¦ º¸Á¸ ´É·ÂÀ» ¿¬±¸ÇÏ¿© Ŭ¸° ¶óº§ Á¦Ç°À» ¿øÇÏ´Â ¼ÒºñÀÚÀÇ ¿ä±¸¿¡ ºÎÀÀÇϰí ÀÖ½À´Ï´Ù. ¼öÀÇÇÐ ºÐ¾ß¿¡¼­µµ AMP´Â °¡ÃàÀÇ Ç×»ýÁ¦ ¼ºÀå ÃËÁøÁ¦¸¦ ´ëüÇÒ ¼ö ÀÖ´Â ¾ÈÀüÇÑ ´ë¾ÈÀ¸·Î äÅõǰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÇ·á±â±â Á¦Á¶¾÷üµéÀº Ç×»ýÁ¦ ¿¹¹æ Åõ¿©¿¡ ÀÇÁ¸ÇÏÁö ¾Ê°í °¨¿° À§ÇèÀ» ÁÙÀ̱â À§ÇØ Ä«Å×ÅÍ, ÀÓÇöõÆ®, ¼ö¼ú±â±¸¿¡ AMP ÄÚÆÃÀ» Àû¿ëÇϰí ÀÖ½À´Ï´Ù. Á¦¾à¾÷°è°¡ »ý¹°ÇÐÀû Á¦Á¦ ¹× ÆéŸÀÌµå ±â¹Ý Ä¡·áÁ¦·ÎÀÇ ÀüȯÀ¸·Î AMPÀÇ ÅëÇÕÀ» ÃËÁøÇÏ´Â »ó¾÷Àû ȯ°æÀÌ Á¶¼ºµÇ°í ÀÖ½À´Ï´Ù. ƯÈ÷ ¹Ì±¹, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç¿¡¼­´Â Àü·«Àû ÆÄÆ®³Ê½Ê, ¹Î°ü Çù·Â, Á¤ºÎ ÀÚ±Ý Áö¿øÀ¸·Î AMPÀÇ ¿¬±¸¿Í »ó¿ëÈ­°¡ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÆéŸÀ̵尡 º¥Ä¡»çÀ̵忡¼­ º´»óÀ¸·Î À̵¿ÇÔ¿¡ µû¶ó, ´Ù±â´É ¹× ±¤¹üÀ§ÇÑ ½ºÆåÆ®·³À» °¡Áø »õ·Î¿î À¯ÇüÀÇ Ä¡·áÁ¦·Î¼­ÀÇ ¸Å·ÂÀº ÀÇ·á°è°¡ °¨¿° ¿¹¹æ ¹× Ç×±ÕÁ¦ °ü¸®¿¡ Á¢±ÙÇÏ´Â ¹æ½ÄÀ» À籸¼ºÇϰí ÀÖ½À´Ï´Ù.

Ç×±Õ ÆéŸÀÌµå ½ÃÀåÀÇ ¼¼°è ¼ºÀåÀ» °¡¼ÓÇÏ´Â ÁÖ¿ä ¿äÀÎÀº?

Ç×±Õ ÆéŸÀÌµå ½ÃÀåÀÇ ¼ºÀåÀº ½Ã±ÞÇÑ °øÁß º¸°Ç ¹®Á¦, Çõ½Å Áß½ÉÀÇ R&D ¸ð¸àÅÒ, À¯¸®ÇÑ ±ÔÁ¦ °æ·Î, ºÎ¹® °£ ÀÀ¿ë ºÐ¾ß Áõ°¡ µîÀÇ º¹ÇÕÀûÀÎ ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁý´Ï´Ù. ÀÌ·¯ÇÑ ¿øµ¿·Â Áß °¡Àå Áß¿äÇÑ °ÍÀº Àü ¼¼°èÀûÀ¸·Î Ç×±ÕÁ¦ ³»¼ºÀÌ Áõ°¡ÇÏ¿© ¸¹Àº 1Â÷ ¼±Åà Ç×»ýÁ¦°¡ È¿°ú°¡ ¾ø¾îÁ® »õ·Î¿î Ç×±ÕÁ¦ °è¿­¿¡ ´ëÇÑ ±ä±ÞÇÑ Çʿ伺ÀÌ ´ëµÎµÇ°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ¼¼°èº¸°Ç±â±¸(WHO), Áúº´ÅëÁ¦¿¹¹æ¼¾ÅÍ(CDC) ¹× ±âŸ ±â°üµéÀº ¾àÁ¦ ³»¼º °¨¿°À» ÅðÄ¡Çϱâ À§ÇÑ ¼¼°è ³ë·Â¿¡¼­ AMP¸¦ À¯¸ÁÇÑ È帷Π²Å°í ÀÖ½À´Ï´Ù. ¶Ç ´Ù¸¥ Áß¿äÇÑ ¿øµ¿·ÂÀº ¾Ï, ´ç´¢º´°ú °°Àº ¸¸¼º Áúȯ°ú ¸é¿ª °áÇÌÀÇ À¯º´·ü Áõ°¡À̸ç, ÀÌ·¯ÇÑ ÁúȯÀº ±âȸ °¨¿°¿¡ ´ëÇÑ °¨¼ö¼ºÀ» Áõ°¡½ÃÄÑ ´õ ¾ÈÀüÇÏ°í µ¶¼ºÀÌ ¾ø´Â Ç×±ÕÁ¦ ¼±ÅÃÀÌ ÇÊ¿äÇÕ´Ï´Ù. ÆéŸÀÌµå ±â¹Ý Ä¡·á¹ýÀÇ ¿µ¿ªÀÌ È®´ëµÇ°í, Á¦Á¶ÀÇ È®À强 ¹× Àü´Þ ±â¼úÀÌ Çâ»óµÊ¿¡ µû¶ó AMPÀÇ »ó¾÷È­¿¡ µå´Â ºñ¿ë°ú º¹À⼺ÀÌ °¨¼ÒÇϰí ÀÖ½À´Ï´Ù. Á¤ºÎ º¸Á¶±Ý, Èñ±ÍÁúȯ Ä¡·áÁ¦ ¿ì´ë, ½Å¼ÓÇÑ ½ÂÀÎ ÀýÂ÷ µî AMP ±â¹Ý ÀǾàǰ °³¹ß¿¡ À¯¸®ÇÑ ±ÔÁ¦ ȯ°æÀÌ Á¶¼ºµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, õ¿¬¹° ¹× »ý¹° À¯·¡ Á¦Ç°À» ã´Â ¼ÒºñÀÚ Æ®·»µå´Â È­Àåǰ, ½Äǰ º¸Á¸, ³ó¾÷ µîÀÇ »ê¾÷¿¡¼­ AMP¸¦ Áö¼Ó °¡´ÉÇÑ Ç×±ÕÁ¦·Î äÅÃÇϵµ·Ï À¯µµÇϰí ÀÖ½À´Ï´Ù. Çаè¿Í »ê¾÷°èÀÇ ¿¬±¸ Çù·ÂÀº ÀÌ ºÐ¾ßÀÇ Áö½ÄÀ» ´õ¿í ¹ßÀü½ÃŰ°í ±â¼ú Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, º¥Ã³ ijÇÇÅ»°ú »ý¸í°øÇÐ ±â¾÷ÀÇ ÅõÀÚ°¡ Áõ°¡Çϰí ÀÖ´Â °ÍÀº AMP°¡ ½ÇÇö °¡´ÉÇÑ »ó¾÷Àû Á¦Ç°À̶ó´Â ¹ÏÀ½ÀÌ Ä¿Áö°í ÀÖ´Ù´Â °ÍÀ» Áõ¸íÇÕ´Ï´Ù. Ç×±Õ ÆéŸÀ̵å´Â ÀÇ·áÀû ±ä±Þ¼º, °úÇÐÀû ¿ª·®, ½ÃÀå Áغñ°¡ ¸ðµÎ °®Ãß¾îÁ® ÀÖ¾î Ç×±Õ ÆéŸÀ̵å´Â Â÷¼¼´ë Ç×±Õ ¾à¹° Ä¡·áÀÇ Ãʼ®ÀÌ µÉ °ÍÀ̸ç, 21¼¼±â ÀηùÀÇ °¨¿°º´ °ü¸® ¹æ¹ýÀ» ÀçÁ¤ÀÇÇÒ ¼ö ÀÖ´Â ÀáÀç·ÂÀ» °¡Áö°í ÀÖ½À´Ï´Ù.

ºÎ¹®

Á¦Ç°(½Ä¹° Ç×±Õ ÆéŸÀ̵å, ¼¼±Õ Ç×±Õ ÆéŸÀ̵å, µ¿¹° Ç×±Õ ÆéŸÀ̵å, °ïÃæ Ç×±Õ ÆéŸÀ̵å);Áúȯ(Æó·Å, °£¿°, ¼¼±Õ °¨¿°Áõ, HIV);Åõ¿© ·çÆ®(±¹¼Ò ·çÆ®, ÇÇÇÏ ·çÆ®, Á¤¸Æ ·çÆ®);ÃÖÁ¾»ç¿ëÀÚ(Á¦¾à ¹× ÇコÄɾî ÃÖÁ¾»ç¿ëÀÚ, ³ó¾÷ ÃÖÁ¾»ç¿ëÀÚ, »ý¹° °øÇÐ ÃÖÁ¾»ç¿ëÀÚ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹(ÃÑ 36°³»ç)

AI ÅëÇÕ

¿ì¸®´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼­, ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼­ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Antimicrobial Peptides Market to Reach US$7.4 Billion by 2030

The global market for Antimicrobial Peptides estimated at US$5.9 Billion in the year 2024, is expected to reach US$7.4 Billion by 2030, growing at a CAGR of 3.9% over the analysis period 2024-2030. Plant Antimicrobial Peptides, one of the segments analyzed in the report, is expected to record a 5.0% CAGR and reach US$3.2 Billion by the end of the analysis period. Growth in the Bacterial Antimicrobial Peptides segment is estimated at 2.9% CAGR over the analysis period.

The U.S. Market is Estimated at US$1.6 Billion While China is Forecast to Grow at 7.3% CAGR

The Antimicrobial Peptides market in the U.S. is estimated at US$1.6 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$1.5 Billion by the year 2030 trailing a CAGR of 7.3% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 1.5% and 3.1% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 2.2% CAGR.

Global Antimicrobial Peptides Market - Key Trends & Drivers Summarized

Why Are Antimicrobial Peptides Emerging as Crucial Alternatives to Conventional Antibiotics?

Antimicrobial peptides (AMPs) are increasingly being recognized as pivotal agents in the fight against bacterial resistance, positioning them as highly promising alternatives to conventional antibiotics. These naturally occurring molecules, found in all forms of life including humans, animals, plants, and microbes, serve as part of the innate immune system and offer broad-spectrum antimicrobial activity. What makes AMPs particularly significant today is their unique mechanism of action. Unlike traditional antibiotics, which target specific biochemical pathways, AMPs typically disrupt microbial membranes, making it harder for pathogens to develop resistance. This attribute is especially valuable in an era of escalating antimicrobial resistance (AMR), which threatens global public health and undermines decades of medical advancement. AMPs have shown effectiveness not only against multi-drug-resistant (MDR) bacteria but also against viruses, fungi, and even some parasites. Their versatility makes them attractive for a wide range of clinical applications-from treating skin infections, sepsis, and respiratory tract infections to being used in topical wound care and implant coatings. The urgency to find next-generation antimicrobials, coupled with their ability to act swiftly and with minimal collateral damage to the host microbiota, is drawing increased attention from pharmaceutical companies, research institutions, and health organizations. Additionally, AMPs are being explored in the agricultural and veterinary sectors as potential alternatives to antibiotics in livestock, where overuse has contributed to global resistance challenges. With their multifaceted benefits and broad application potential, AMPs are fast emerging as a cornerstone of future anti-infective strategies.

What Scientific and Technological Advances Are Unlocking the Potential of AMPs?

The progress in the antimicrobial peptides market is being fueled by significant advancements in biotechnology, synthetic biology, and peptide engineering, all of which are enhancing the stability, selectivity, and efficacy of these molecules. One of the historical challenges of AMPs has been their susceptibility to degradation by proteases and their relatively short half-life in systemic circulation. However, recent developments in peptide modification-such as cyclization, D-amino acid substitution, and PEGylation-have led to more stable and durable AMP formulations suitable for therapeutic use. Computational biology and AI-driven modeling are now playing a crucial role in designing synthetic AMPs with optimized structures that target specific pathogens while minimizing toxicity to human cells. Researchers are also exploring hybrid peptides that combine the best features of different natural AMPs or fuse AMP domains with targeting ligands to improve delivery and efficacy. Nanotechnology is being employed to encapsulate AMPs in liposomes, micelles, and nanoparticles, enhancing bioavailability and enabling controlled release. Furthermore, advances in gene editing and recombinant DNA technologies are facilitating the scalable production of AMPs in microbial or plant-based systems, reducing costs and improving consistency. High-throughput screening techniques allow scientists to quickly evaluate thousands of peptide candidates, accelerating the drug development pipeline. The convergence of these technologies is expanding the reach of AMPs into new application areas, including cancer therapy, immune modulation, and vaccine adjuvants. Collectively, these scientific breakthroughs are not only solving long-standing limitations but also unlocking the full therapeutic potential of antimicrobial peptides on a global scale.

How Are Clinical Needs and Industry Trends Driving Market Adoption of AMPs?

The clinical demand for safer and more effective anti-infective agents is driving increased interest in antimicrobial peptides, with a growing number of pharmaceutical and biotech firms incorporating AMPs into their drug development pipelines. One of the strongest drivers is the rise in hospital-acquired infections (HAIs) and difficult-to-treat conditions such as MRSA (methicillin-resistant Staphylococcus aureus), Pseudomonas aeruginosa, and fungal superinfections-all of which have shown susceptibility to various AMP candidates in preclinical and clinical studies. AMPs are also showing promise in addressing chronic wound infections and diabetic ulcers, where biofilm formation often renders traditional antibiotics ineffective. In dentistry and dermatology, AMPs are being tested as topical agents to control microbial imbalances and support healing. Meanwhile, the cosmetics industry is investigating AMPs for their ability to preserve formulations naturally, replacing synthetic preservatives and aligning with consumer demand for clean-label products. The veterinary sector is also embracing AMPs as safer alternatives to antibiotic growth promoters in livestock, which are increasingly restricted by regulations due to their contribution to AMR. Furthermore, medical device manufacturers are incorporating AMP coatings into catheters, implants, and surgical tools to reduce infection risk without relying on antibiotic prophylaxis. The pharmaceutical industry’s pivot toward biologics and peptide-based therapeutics is making the commercial environment more conducive for AMP integration. Strategic partnerships, public-private collaborations, and government funding-particularly in the U.S., Europe, and Asia-Pacific-are accelerating AMP research and commercialization. As these peptides transition from bench to bedside, their appeal as a new class of multi-functional, broad-spectrum therapeutics is reshaping how the medical community approaches infection control and antimicrobial stewardship.

What Are the Primary Drivers Fueling the Global Growth of the Antimicrobial Peptides Market?

The growth in the antimicrobial peptides market is driven by a combination of urgent public health challenges, innovation-led R&D momentum, favorable regulatory pathways, and increasing cross-sector applications. Foremost among these drivers is the global rise in antimicrobial resistance, which has rendered many first-line antibiotics ineffective and created an urgent need for novel antimicrobial classes. The World Health Organization (WHO), Centers for Disease Control and Prevention (CDC), and other agencies have identified AMPs as promising candidates in the global effort to combat drug-resistant infections. Another key driver is the increased incidence of chronic and immunocompromised conditions, such as cancer and diabetes, which heighten susceptibility to opportunistic infections and necessitate safer, non-toxic antimicrobial options. The expanding field of peptide-based therapies, coupled with improved production scalability and delivery technologies, is also reducing the cost and complexity of AMP commercialization. Government grants, orphan drug incentives, and fast-track approval processes are creating a favorable regulatory environment for AMP-based drug development. Moreover, consumer trends toward natural and bio-derived products are pushing industries such as cosmetics, food preservation, and agriculture to adopt AMPs as sustainable antimicrobial agents. Academic and industrial research collaborations are further advancing knowledge and fostering innovation in the field. Additionally, rising investment from venture capital and biotechnology firms underscores the growing confidence in AMPs as viable commercial products. With the confluence of medical urgency, scientific capability, and market readiness, antimicrobial peptides are poised to become a cornerstone of next-generation antimicrobial therapies, with the potential to redefine how humanity manages infectious diseases in the 21st century.

SCOPE OF STUDY:

The report analyzes the Antimicrobial Peptides market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Product (Plant Antimicrobial Peptides, Bacterial Antimicrobial Peptides, Animal Antimicrobial Peptides, Insect Antimicrobial Peptides); Ailment (Pneumonia, Hepatitis, Bacterial infections, HIV); Administration Route (Topical Route, Subcutaneous Route, Intravenous Route); End-Use (Pharma & Healthcare End-Use, Agriculture End-Use, Biological Engineering End-Use)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 36 Featured) -

AI INTEGRATIONS

We're transforming market and competitive intelligence with validated expert content and AI tools.

Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â