¼¼°èÀÇ °íÀ¯ÀüÀ² Àç·á ½ÃÀå
High-K Dielectric Materials
»óǰÄÚµå : 1747783
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 288 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,020,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,062,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

°íÀ¯ÀüÀ² Àç·á ¼¼°è ½ÃÀåÀº 2030³â±îÁö 2¾ï 6,240¸¸ ´Þ·¯¿¡ À̸¦ Àü¸Á

2024³â¿¡ 1¾ï 7,740¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â °íÀ¯ÀüÀ² Àç·á ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 6.7%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 2¾ï 6,240¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ÀÌ»êȭƼŸ´½Àº CAGR 5.1%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 1¾ï 870¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹»óµÇ°í ÀÖ½À´Ï´Ù. ¿À»êÈ­ źŻ·ë ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR 8.9%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 4,830¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 10.3%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ °íÀ¯ÀüÀ² Àç·á ½ÃÀåÀº 2024³â¿¡ 4,830¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 5,370¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 10.3%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î¼­´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 3.5%¿Í 6.5%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 4.4%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù.

¼¼°èÀÇ °íÀ¯ÀüÀ² Àç·á ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

°íÀ¯ÀüÀ² Àç·á°¡ ÷´Ü ¹ÝµµÃ¼ ¹Ì¼¼È­¿¡ ÇʼöÀûÀÎ ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

°íÀ¯ÀüÀ² Àç·á´Â ´õ ÀÛÀº ³ëµå ¸ð¾çÀ¸·Î ´©¼³ Àü·ù¸¦ ÁÙÀ̸鼭 Ä¿ÆÐ½ÃÅϽº¸¦ À¯ÁöÇÏ´Â ¶Ù¾î³­ ´É·ÂÀ¸·Î ÀÎÇØ ÷´Ü ¹ÝµµÃ¼ Á¦Á¶¿¡ ÇʼöÀûÀÎ ¿ä¼ÒÀÔ´Ï´Ù. Æ®·£Áö½ºÅͰ¡ 10nm ÀÌÇÏ·Î ¹Ì¼¼È­µÇ°í °ÔÀÌÆ® »êÈ­¸·ÀÌ ¾ã¾ÆÁü¿¡ µû¶ó ±âÁ¸ÀÇ ÀÌ»êÈ­±Ô¼Ò Àý¿¬¸·Àº ¾çÀÚ ÅͳΠȿ°ú¸¦ ¹æÁöÇÒ ¼ö ¾øÀ¸¸ç, SiO2º¸´Ù ÈξÀ ³ôÀº À¯ÀüÀ²À» °¡Áø High-K ¼ÒÀç´Â Àü·Â ¼Òºñ¿Í ¹ß¿­À» ÃÖ¼ÒÈ­Çϸ鼭 MOSFETÀÇ °ÔÀÌÆ® Á¦¾î¸¦ °­È­ÇÒ ¼ö ÀÖ½À´Ï´Ù. Á¦¾î¸¦ °­È­ÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÇÏÇÁ´½ »êÈ­¹°(HfO2), »êÈ­Áö¸£ÄÚ´½(ZrO2) ¹× ´Ù¾çÇÑ Æä·Îºê½ºÄ«ÀÌÆ® È­ÇÕ¹°À» Æ÷ÇÔÇÑ ÀÌ·¯ÇÑ Àç·á´Â ¼º´É, ¿¡³ÊÁö È¿À² ¹× ¼ÒÇüÈ­°¡ ÃÖ¿ì¼± °úÁ¦ÀÎ ·ÎÁ÷ ¹× ¸Þ¸ð¸® ÀåÄ¡¿¡ äÅõǰí ÀÖ½À´Ï´Ù. ¿Ö°î ½Ç¸®ÄÜ, °Ô¸£¸¶´½, III-VÁ· ¹ÝµµÃ¼¿Í °°Àº °íÀ̵¿µµ ä³Î Àç·á¿¡¼­ Æä·Îºê½ºÄ«ÀÌÆ® È­ÇÕ¹°ÀÇ ¿ªÇÒÀº °ÔÀÌÆ® ´©¼³ Áõ°¡ ¾øÀÌ ÀÓ°è Àü¾ÐÀ» À¯ÁöÇÒ ¼ö Àֱ⠶§¹®¿¡ µð¹ÙÀ̽º ¿£Áö´Ï¾î¿¡°Ô ¸Å¿ì Áß¿äÇÕ´Ï´Ù. NVM) ¿ëµµ¿¡¼­ °íÀ¯ÀüÀ² K À¯Àüü´Â ¼¿ Ä¿ÆÐ½ÃÅϽº¸¦ Çâ»ó½Ã۰í, ¸®ÅÙ¼ÇÀ» °³¼±Çϸç, Àü·ù ÇѰ踦 ³Ñ¾î¼­´Â ½ºÄÉÀϸµÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

¼º´É ¿ä±¸ »çÇ×À» ÃæÁ·½Ã۱â À§ÇØ ¼º¸· ±â¼ú ¹× Àç·á ÅëÇÕÀº ¾î¶»°Ô ÁøÈ­Çϰí Àִ°¡?

¹ÝµµÃ¼ °øÁ¤¿¡ °íÀ¯ÀüÀ² À¯Àüü¸¦ ÅëÇÕÇÏ´Â °ÍÀº ¸Å¿ì º¹ÀâÇϸç, °íµµÀÇ ÁõÂø ¹æ¹ý°ú ¾ö°ÝÇÑ °è¸é Á¦¾î°¡ ÇÊ¿äÇÕ´Ï´Ù. ¿øÀÚÃþ ÁõÂø¹ý(ALD)Àº ¿øÀÚ ¼öÁØÀÇ Á¤¹Ðµµ·Î Ãʹڸ· ÄÁÆ÷¸Ö °íÀ¯Àüü Çʸ§À» ÁõÂøÇÏ´Â µ¥ ÀûÇÕÇÑ ¹æ¹ýÀ̸ç, ALD´Â È­Çз®·Ð, Çʸ§ µÎ²²ÀÇ ±ÕÀϼº, °è¸éÃþ Çü¼ºÀ» Á¦¾îÇÒ ¼ö ÀÖ¾î ¿øÇÏ´Â Àü±âÀû Ư¼ºÀ» ´Þ¼ºÇÏ°í ±Ý¼Ó °ÔÀÌÆ® ½ºÅðúÀÇ È£È¯¼ºÀ» º¸ÀåÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. Áß¿äÇÕ´Ï´Ù.

°øÁ¤ Çõ½ÅÀº ÇöÀç °áÇÔ ¹Ðµµ¸¦ ÃÖ¼ÒÈ­ÇÏ°í ¿­ ¾ÈÁ¤¼ºÀ» Çâ»ó½ÃŰ´Â µ¥ ÃÊÁ¡À» ¸ÂÃß¾ú½À´Ï´Ù. À庮Ãþ°ú °è¸é °øÇÐÀº ƯÈ÷ ³ôÀº K/¹ÝµµÃ¼ °è¸é¿¡¼­ °íÁ¤ ÀüÇÏ ÃàÀû°ú Æ®·¦ ¹Ðµµ¸¦ ¾ïÁ¦Çϱâ À§ÇØ »ç¿ëµË´Ï´Ù. ¶ÇÇÑ, TiN, TaN, Ru¿Í °°Àº ±Ý¼Ó °ÔÀÌÆ® Àü±Ø°úÀÇ ÅëÇÕÀº nMOS ¹× pMOS ¼ÒÀÚ ¸ðµÎ¿¡¼­ ÀÏÇÔ¼ö Æ©´×À» Áö¿øÇϵµ·Ï ÁøÈ­Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº ½Å·ÚÇÒ ¼ö ÀÖ´Â ¼ÒÀÚÀÇ ¹Ì¼¼È­¸¦ °¡´ÉÇÏ°Ô Çϰí ÃÖ÷´Ü ¹ÝµµÃ¼ °øÀåÀÇ ¼öÀ²À» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù.

High-K ¼ÒÀçÀÇ Ã¤ÅÃÀÌ ±âÁ¸ ·ÎÁ÷ µð¹ÙÀ̽º¸¦ ³Ñ¾î ¾îµð±îÁö È®´ëµÇ°í Àִ°¡?

CMOS ·ÎÁ÷ÀÇ ½ºÄÉÀϸµÀÌ ÀüÅëÀûÀ¸·Î °íÀ¯ÀüÀ² À¯Àüü °³¹ßÀÇ ¿øµ¿·ÂÀ̾úÁö¸¸, ´Ù¸¥ ¹ÝµµÃ¼ ¹× ±¤ÀüÀÚ ºÐ¾ß·Î ºü¸£°Ô È®»êµÇ°í ÀÖÀ¸¸ç, DRAM Á¦Á¶¾÷üµéÀº ´õ ³ªÀº ´©¼³ Á¦¾î¿Í ¸Þ¸ð¸® ¹Ðµµ Çâ»óÀ» À§ÇØ °íÁ¾È¾ºñ Ä¿ÆÐ½ÃÅ͸¦ »ý»êÇϱâ À§ÇØ °íÀ¯ÀüÀ² Àç·á¿¡ Á¡Á¡ ´õ ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. °íÀ¯ÀüÀ² ¼ÒÀç¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ Á¡Á¡ ´õ ³ôÀ̰í ÀÖ½À´Ï´Ù. Ç÷¡½Ã ¸Þ¸ð¸® °³¹ßÀÚµéÀº ƯÈ÷ µð¹ÙÀ̽ºÀÇ ¼öÁ÷¼ºÀÌ »õ·Î¿î À¯Àüü ¹®Á¦¸¦ ¾ß±âÇÏ´Â 3D NAND ¾ÆÅ°ÅØÃ³¿¡¼­ ³»±¸¼º°ú ¼Óµµ¸¦ Çâ»ó½Ã۱â À§ÇØ High-K/±Ý¼Ó °ÔÀÌÆ® ½ºÅÃÀ» ÅëÇÕÇϰí ÀÖ½À´Ï´Ù.

ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º¿¡¼­´Â GaN ¹× SiC¿Í °°Àº ±¤´ë¿ª °¸ ¹ÝµµÃ¼ ¼ÒÀÚ°¡ °íK À¯Àüü¿Í °áÇÕµÇ¾î °íÀü¾Ð ¹× °íÁÖÆÄ µ¿ÀÛ¿¡¼­ °ÔÀÌÆ® Àý¿¬À» °ü¸®Çϰí ÀÖ½À´Ï´Ù. »õ·Î¿î ÀÀ¿ë ºÐ¾ß·Î´Â °­À¯Àüü Àü°èÈ¿°ú Æ®·£Áö½ºÅÍ(FeFET)°¡ ÀÖÀ¸¸ç, µµÇÎµÈ °íK Àç·á´Â ·ÎÁ÷ ÀÎ ¸Þ¸ð¸® ¼ÒÀÚ¿¡ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °íÀ¯ÀüÀ² À¯Àüü´Â ³·Àº ´©¼³, ³ôÀº ³»Àü¾Ð, Å©±â ÃÖÀûÈ­°¡ ÇÙ½ÉÀÎ RF ºÎǰ, MEMS ¾×Ãß¿¡ÀÌÅÍ, ¼¾¼­¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¾ß Àü¹ÝÀÇ Ã¤ÅÃÀÌ Àü±âÀû, ±â°èÀû Ư¼ºÀ» Á¶Á¤ÇÑ Â÷¼¼´ë À¯Àüü Àç·á¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

°íÀ¯ÀüÀ² Àç·á ½ÃÀåÀÇ ¼ºÀåÀº ¸î °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù.

ÁÖ·Î ¹ÝµµÃ¼ Á¦Á¶ÀÇ Áö¼ÓÀûÀÎ ³ëµå ¹Ì¼¼È­¿Í 7nm ÀÌÇÏÀÇ Áö¿À¸ÞÆ®¸®¿¡¼­ ¿ì¼öÇÑ °ÔÀÌÆ® Á¦¾îÀÇ Çʿ伺¿¡ ÀÇÇØ ÃËÁøµÇ°í ÀÖÀ¸¸ç, FinFET ¹× °ÔÀÌÆ® ¿Ã ¾î¶ó¿îµå(GAA) Æ®·£Áö½ºÅÍ¿Í °°Àº 3D µð¹ÙÀ̽º ¾ÆÅ°ÅØÃ³·ÎÀÇ ÀüȯÀº ÄÁÆ÷¸ÖÇÏ°í °áÇÔÀÌ ¾ø´Â °íK Çʸ§ÀÇ Çʿ伺À» Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. °áÇÔ ¾ø´Â °íK ¹Ú¸·ÀÇ Çʿ伺ÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ·ÎÁ÷ ¹× ¸Þ¸ð¸® µð¹ÙÀ̽º ¸ðµÎ¿¡¼­ HKMG(High-K/Metal Gate) ½ºÅÃÀÌ ³Î¸® äÅõǰí ÀÖÀ¸¸ç, ÷´Ü ÆÄ¿îµå¸® °øÀå¿¡¼­ÀÇ ¿þÀÌÆÛ ½ÃÀÛÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ½ÃÀå ¼ºÀåÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù.

AI, ¿§Áö ÄÄÇ»ÆÃ, ¸ð¹ÙÀÏ Ç÷§ÆûÀÇ °í¼º´É, ÀúÀü·Â ¼Òºñ µð¹ÙÀ̽º¿¡ ´ëÇÑ ¼ö¿ä´Â ¿ÍÆ®´ç ¼º´ÉÀ» Çâ»ó½Ã۱â À§ÇØ °íÀ¯ÀüÀ² Àç·áÀÇ »ç¿ëÀ» °­È­Çϰí ÀÖ½À´Ï´Ù. µ¿½Ã¿¡, DRAM°ú NANDÀÇ ¿ë·® È®´ë·Î ÀÎÇÑ ´ë·® »ý»êÀÇ Çʿ伺°ú ¼ÒÇü, °íÀü¾Ð ½ºÀ§Ä¡¸¦ ÁöÇâÇÏ´Â ÆÄ¿ö ¹ÝµµÃ¼ÀÇ Ãß¼¼´Â ±âÁ¸ÀÇ ÇÏÇÁ´½ È­ÇÕ¹° ÀÌ¿ÜÀÇ Àç·á¿¡ ´ëÇÑ Å½»öÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î, ALD Åø¸µ, ÀÎÅÍÆäÀ̽º ¿£Áö´Ï¾î¸µ, ÀÛ¾÷ ±â´É Æ©´×ÀÇ ¹ßÀüÀº ÅëÇÕ À庮À» ³·Ãß°í Â÷¼¼´ë ÀüÀÚ ºÎǰ¿¡ °íÀ¯ÀüÀ² À¯Àüü ¼Ö·ç¼ÇÀÇ ±¤¹üÀ§ÇÑ Ã¤ÅÃÀ» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

À¯Çü(ÀÌ»êȭƼŸ´½, ¿À»êȭźŻ·ë, »êÈ­¾Ë·ç¹Ì´½, ±âŸ À¯Çü), ¿ëµµ(°ÔÀÌÆ® Àý¿¬¸·, Ä¿ÆÐ½ÃÅÍ Àý¿¬¸·, ±¤Àü ±âÈ­ÇÐ ¼¿, ¿¡ÇÇÅØ¼È Àý¿¬¸·, ±âŸ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹(ÃÑ 42°³»ç)

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ÀÎÀ§ÀûÀÎ ¼öÀÍ¿ø°¡ Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

Global Industry Analysts´Â ¼¼°è ÁÖ¿ä ¼ö¼® ÀÌÄÚ³ë¹Ì½ºÆ®(1,4,949¸í), ½ÌÅ©ÅÊÅ©(62°³ ±â°ü), ¹«¿ª ¹× »ê¾÷ ´Üü(171°³ ±â°ü)ÀÇ Àü¹®°¡µéÀÇ ÀǰßÀ» ¸é¹ÐÈ÷ °ËÅäÇÏ¿© »ýŰ迡 ¹ÌÄ¡´Â ¿µÇâÀ» Æò°¡ÇÏ°í »õ·Î¿î ½ÃÀå Çö½Ç¿¡ ´ëÀÀÇϰí ÀÖ½À´Ï´Ù. ¸ðµç ÁÖ¿ä ±¹°¡ÀÇ Àü¹®°¡¿Í °æÁ¦ÇÐÀÚµéÀÌ °ü¼¼¿Í ±×°ÍÀÌ ÀÚ±¹¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ ´ëÇÑ ÀǰßÀ» ÃßÀû Á¶»çÇß½À´Ï´Ù.

Global Industry Analysts´Â ÀÌ·¯ÇÑ È¥¶õÀÌ ÇâÈÄ 2-3°³¿ù ³»¿¡ ¸¶¹«¸®µÇ°í »õ·Î¿î ¼¼°è Áú¼­°¡ º¸´Ù ¸íÈ®ÇÏ°Ô È®¸³µÉ °ÍÀ¸·Î ¿¹»óÇϰí ÀÖÀ¸¸ç, Global Industry Analysts´Â ÀÌ·¯ÇÑ »óȲÀ» ½Ç½Ã°£À¸·Î ÃßÀûÇϰí ÀÖ½À´Ï´Ù.

2025³â 4¿ù: Çù»ó ´Ü°è

À̹ø 4¿ù º¸°í¼­¿¡¼­´Â °ü¼¼°¡ ¼¼°è ½ÃÀå Àüü¿¡ ¹ÌÄ¡´Â ¿µÇâ°ú Áö¿ªº° ½ÃÀå Á¶Á¤¿¡ ´ëÇØ ¼Ò°³ÇÕ´Ï´Ù. ´ç»çÀÇ ¿¹ÃøÀº °ú°Å µ¥ÀÌÅÍ¿Í ÁøÈ­ÇÏ´Â ½ÃÀå ¿µÇâ¿äÀÎÀ» ±â¹ÝÀ¸·Î ÇÕ´Ï´Ù.

2025³â 7¿ù: ÃÖÁ¾ °ü¼¼ Àç¼³Á¤

°í°´´Ôµé²²´Â °¢ ±¹°¡º° ÃÖÁ¾ ¸®¼ÂÀÌ ¹ßÇ¥µÈ ÈÄ 7¿ù¿¡ ¹«·á ¾÷µ¥ÀÌÆ® ¹öÀüÀ» Á¦°øÇØ µå¸³´Ï´Ù. ÃÖÁ¾ ¾÷µ¥ÀÌÆ® ¹öÀü¿¡´Â ¸íÈ®ÇÏ°Ô Á¤ÀÇµÈ °ü¼¼ ¿µÇ⠺м®ÀÌ Æ÷ÇԵǾî ÀÖ½À´Ï´Ù.

»óÈ£ ¹× ¾çÀÚ °£ ¹«¿ª°ú °ü¼¼ÀÇ ¿µÇ⠺м® :

¹Ì±¹ <>& Áß±¹ <>& ¸ß½ÃÄÚ <>& ij³ª´Ù <>&EU <>& ÀϺ» <>& Àεµ <>& ±âŸ 176°³±¹

¾÷°è ÃÖ°íÀÇ ÀÌÄÚ³ë¹Ì½ºÆ®: Global Industry AnalystsÀÇ Áö½Ä ±â¹ÝÀº ±¹°¡, ½ÌÅ©ÅÊÅ©, ¹«¿ª ¹× »ê¾÷ ´Üü, ´ë±â¾÷, ±×¸®°í ¼¼°è °è·®°æÁ¦ »óȲ¿¡¼­ ÀÌ Àü·Ê ¾ø´Â ÆÐ·¯´ÙÀÓ ÀüȯÀÇ ¿µÇâÀ» °øÀ¯ÇÏ´Â ºÐ¾ßº° Àü¹®°¡ µî °¡Àå ¿µÇâ·Â ÀÖ´Â ¼ö¼® ÀÌÄÚ³ë¹Ì½ºÆ® ±×·ìÀ» Æ÷ÇÔÇÑ 14,949¸íÀÇ ÀÌÄÚ³ë¹Ì½ºÆ®¸¦ ÃßÀûÇϰí ÀÖ½À´Ï´Ù. 16,491°³ ÀÌ»óÀÇ º¸°í¼­ ´ëºÎºÐ¿¡ ¸¶ÀϽºÅæ¿¡ ±â¹ÝÇÑ 2´Ü°è Ãâ½Ã ÀÏÁ¤ÀÌ Àû¿ëµÇ¾î ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global High-K Dielectric Materials Market to Reach US$262.4 Million by 2030

The global market for High-K Dielectric Materials estimated at US$177.4 Million in the year 2024, is expected to reach US$262.4 Million by 2030, growing at a CAGR of 6.7% over the analysis period 2024-2030. Titanium Dioxide, one of the segments analyzed in the report, is expected to record a 5.1% CAGR and reach US$108.7 Million by the end of the analysis period. Growth in the Tantalum Pentoxide segment is estimated at 8.9% CAGR over the analysis period.

The U.S. Market is Estimated at US$48.3 Million While China is Forecast to Grow at 10.3% CAGR

The High-K Dielectric Materials market in the U.S. is estimated at US$48.3 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$53.7 Million by the year 2030 trailing a CAGR of 10.3% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 3.5% and 6.5% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 4.4% CAGR.

Global High-K Dielectric Materials Market - Key Trends & Drivers Summarized

Why Are High-K Dielectric Materials Essential to Advanced Semiconductor Scaling?

High-K dielectric materials have become indispensable in advanced semiconductor manufacturing due to their superior ability to maintain capacitance while reducing leakage current at smaller node geometries. As transistors shrink below 10nm and gate oxides become thinner, traditional silicon dioxide insulators are no longer sufficient to prevent quantum tunneling effects. High-K materials, with dielectric constants significantly higher than SiO2, enable enhanced gate control in MOSFETs while minimizing power consumption and heat generation.

These materials, including hafnium oxide (HfO2), zirconium oxide (ZrO2), and various perovskite compounds, are being deployed in logic and memory devices, where performance, energy efficiency, and miniaturization are top priorities. Their role in high-mobility channel materials like strained silicon, germanium, and III-V semiconductors is crucial, as they allow device engineers to maintain threshold voltage without increasing gate leakage. In DRAM and non-volatile memory (NVM) applications, high-K dielectrics enhance cell capacitance, improve retention, and enable scaling beyond current limits.

How Are Deposition Techniques and Material Integration Evolving to Meet Performance Demands?

High-K dielectric integration into semiconductor processes is highly complex, requiring advanced deposition methods and strict interface control. Atomic Layer Deposition (ALD) remains the preferred method for applying ultra-thin, conformal high-K films with atomic-level precision. ALD allows control over stoichiometry, thickness uniformity, and interfacial layer formation, which are all critical in achieving desired electrical properties and ensuring compatibility with metal gate stacks.

Process innovation is now focused on minimizing defect density and enhancing thermal stability, as high-K layers must withstand high-temperature annealing without degrading electrical performance. Barrier layers and interface engineering are used to suppress fixed charge accumulation and trap density, especially at the high-K/semiconductor interface. Moreover, integration with metal gate electrodes such as TiN, TaN, and Ru is evolving to support work function tuning in both nMOS and pMOS devices. These innovations are enabling reliable device scaling and enhancing yield in cutting-edge semiconductor fabs.

Where Is High-K Material Adoption Expanding Beyond Traditional Logic Devices?

While CMOS logic scaling has traditionally driven high-K dielectric development, adoption is rapidly expanding into other semiconductor and optoelectronic domains. DRAM manufacturers are increasingly relying on high-K materials to fabricate high aspect ratio capacitors with better leakage control and increased storage density. Flash memory developers are integrating high-K/metal gate stacks to improve endurance and speed, particularly in 3D NAND architectures where device verticality introduces new dielectric challenges.

In power electronics, wide bandgap semiconductor devices such as GaN and SiC are being paired with high-K dielectrics to manage gate insulation under high voltage and high frequency operation. Emerging applications include ferroelectric field-effect transistors (FeFETs), where doped high-K materials are being used for logic-in-memory devices. Additionally, high-K dielectrics are playing a role in RF components, MEMS actuators, and sensors where low leakage, high breakdown strength, and size optimization are key. This cross-sector adoption is fueling demand for next-generation dielectric materials with tailored electrical and mechanical properties.

The Growth in the High-K Dielectric Materials Market Is Driven by Several Factors…

It is primarily fueled by continued node scaling in semiconductor manufacturing and the need for superior gate control at sub-7nm geometries. The migration toward 3D device architectures-such as FinFETs and gate-all-around (GAA) transistors-is amplifying the need for conformal, defect-free high-K films. The widespread adoption of high-K/metal gate (HKMG) stacks in both logic and memory devices is also accelerating market growth, supported by increasing wafer starts in advanced foundries.

Demand for high-performance, low-power devices across AI, edge computing, and mobile platforms is reinforcing the use of high-K materials to improve performance-per-watt. At the same time, the expansion of DRAM and NAND capacities is driving volume requirements, while power semiconductor trends toward compact, high-voltage switches are encouraging material exploration beyond conventional hafnium-based compounds. Finally, advancements in ALD tooling, interface engineering, and work function tuning are reducing integration barriers, enabling wider industry adoption of high-K dielectric solutions across next-generation electronic components.

SCOPE OF STUDY:

The report analyzes the High-K Dielectric Materials market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (Titanium Dioxide, Tantalum Pentoxide, Aluminum Oxide, Other Types); Application (Gate Dielectrics, Capacitor Dielectrics, Photoelectrochemical Cells, Epitaxial Dielectrics, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 42 Featured) -

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by artificially increasing the COGS, reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

We are diligently following expert opinions of leading Chief Economists (14,949), Think Tanks (62), Trade & Industry bodies (171) worldwide, as they assess impact and address new market realities for their ecosystems. Experts and economists from every major country are tracked for their opinions on tariffs and how they will impact their countries.

We expect this chaos to play out over the next 2-3 months and a new world order is established with more clarity. We are tracking these developments on a real time basis.

As we release this report, U.S. Trade Representatives are pushing their counterparts in 183 countries for an early closure to bilateral tariff negotiations. Most of the major trading partners also have initiated trade agreements with other key trading nations, outside of those in the works with the United States. We are tracking such secondary fallouts as supply chains shift.

To our valued clients, we say, we have your back. We will present a simplified market reassessment by incorporating these changes!

APRIL 2025: NEGOTIATION PHASE

Our April release addresses the impact of tariffs on the overall global market and presents market adjustments by geography. Our trajectories are based on historic data and evolving market impacting factors.

JULY 2025 FINAL TARIFF RESET

Complimentary Update: Our clients will also receive a complimentary update in July after a final reset is announced between nations. The final updated version incorporates clearly defined Tariff Impact Analyses.

Reciprocal and Bilateral Trade & Tariff Impact Analyses:

USA <> CHINA <> MEXICO <> CANADA <> EU <> JAPAN <> INDIA <> 176 OTHER COUNTRIES.

Leading Economists - Our knowledge base tracks 14,949 economists including a select group of most influential Chief Economists of nations, think tanks, trade and industry bodies, big enterprises, and domain experts who are sharing views on the fallout of this unprecedented paradigm shift in the global econometric landscape. Most of our 16,491+ reports have incorporated this two-stage release schedule based on milestones.

COMPLIMENTARY PREVIEW

Contact your sales agent to request an online 300+ page complimentary preview of this research project. Our preview will present full stack sources, and validated domain expert data transcripts. Deep dive into our interactive data-driven online platform.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â