¼¼°èÀÇ ³ª³ë ¹æ»ç¼± ¼¾¼­ ½ÃÀå
Nano Radiation Sensors
»óǰÄÚµå : 1739357
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 06¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 150 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,163,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,489,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

³ª³ë ¹æ»ç¼± ¼¾¼­ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 4¾ï 5,630¸¸ ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 3¾ï 2,880¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ³ª³ë ¹æ»ç¼± ¼¾¼­ ¼¼°è ½ÃÀåÀº 2030³â¿¡´Â 4¾ï 5,630¸¸ ´Þ·¯¿¡ ´ÞÇϰí, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 5.6%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ½ÅÆ¿·¹ÀÌ¼Ç °ËÃâ±â´Â CAGR 6.0%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 2¾ï 9,220¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. °íü °ËÃâ±â ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 4.3%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 8,640¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 5.5%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ³ª³ë ¹æ»ç¼± ¼¾¼­ ½ÃÀåÀº 2024³â¿¡ 8,640¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 7,350¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 5.5%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 5.3%¿Í 4.7%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 4.5%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ³ª³ë ¹æ»ç¼± ¼¾¼­ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

³ª³ë ¹æ»ç¼± ¼¾¼­°¡ ÇコÄɾî, º¸¾È, ¿ìÁÖ ±â¼ú ÀÀ¿ë ºÐ¾ß¿¡¼­ Àα⸦ ²ø°í ÀÖ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?

³ª³ë ¹æ»ç¼± ¼¾¼­´Â Â÷¼¼´ë ¹æ»ç¼± °ËÃâ ±â¼úÀÇ ÃÖÀü¼±¿¡ ÀÖÀ¸¸ç, Àü·Ê ¾ø´Â ¹Î°¨µµ, ¼ÒÇüÈ­ ¹× ÅëÇÕ °¡´É¼ºÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ¼¾¼­´Â ź¼Ò³ª³ëÆ©ºê, ¾çÀÚÁ¡, ±×·¡ÇÉ, ³ª³ë¿ÍÀÌ¾î µîÀÇ ³ª³ë¼ÒÀ縦 ÀÌ¿ëÇÏ¿© ÀÌ¿ÂÈ­ ¹æ»ç¼±(¾ËÆÄ¼±, º£Å¸¼±, °¨¸¶¼±, X¼±)À» °íÁ¤¹Ð, °í¼Ó, °ø°£ ºÐÇØ´ÉÀ¸·Î °¨ÁöÇÕ´Ï´Ù. ÃʼÒÇüÀÌ°í ¿¡³ÊÁö ÀÓ°è°ªÀÌ ³·¾Æ ¼ÒÇü ¿þ¾î·¯ºí ±â±â³ª ÀÓº£µðµå ±â±â¿¡ žÀçÇÒ ¼ö ÀÖ¾î °í°¨µµ ȯ°æ¿¡¼­ ½Ç½Ã°£ ¸ð´ÏÅ͸µÀÌ °¡´ÉÇÕ´Ï´Ù.

±âÁ¸ÀÇ ¹æ»ç¼± °ËÃâ ±â¼úÀº ºÎÇǰ¡ Å« ½ÅÆ¿·¹ÀÌÅͳª °¡À̰йķ¯ Æ©ºê¿¡ ÀÇÁ¸ÇÏ´Â °æ¿ì°¡ ¸¹¾Æ ¿¡³ÊÁö º¯º°, ÀÀ´ä ½Ã°£, È޴뼺¿¡ ÇѰ谡 ÀÖ¾ú½À´Ï´Ù. ³ª³ë ¹æ»ç¼± ¼¾¼­´Â Á¶Á¤ °¡´ÉÇÑ Àç·á Ư¼º°ú ¾çÀÚ Æ÷ȹ È¿°ú·Î ÀÌ·¯ÇÑ ¹®Á¦¸¦ ±Øº¹Çϰí S/Nºñ¸¦ Çâ»ó½Ãŵ´Ï´Ù. ¿øÀڷ¹ßÀü, Á¾¾çÇÐ, Ç×°ø¿ìÁÖ, ±¹Åä¾Èº¸, ±¹¹æ µîÀÇ »ê¾÷¿¡¼­ ÀÛ°í È¿À²ÀûÀÎ ¹æ»ç¼± ¸ð´ÏÅ͸µ µµ±¸°¡ ÇÊ¿äÇÔ¿¡ µû¶ó ³ª³ë ±â¹Ý ¼¾¼­´Â ÷´Ü ŽÁö ½Ã½ºÅÛ¿¡¼­ ÇʼöÀûÀÎ ±¸¼º¿ä¼Ò·Î ºü¸£°Ô ºÎ»óÇϰí ÀÖ½À´Ï´Ù.

³ª³ë¼ÒÀç¿Í ¼¾¼­ÀÇ ÅëÇÕ Ç÷§ÆûÀº ¾î¶»°Ô ¼º´É°ú ¿ëµµÀÇ ´Ù¾ç¼ºÀ» ³ôÀ̰í Àִ°¡?

³ª³ë Àç·á ÇÕ¼º ¹× ¼¾¼­ ÅëÇÕ ±â¼úÀÇ ¹ßÀüÀº ³ª³ë ¹æ»ç¼± ¼¾¼­ÀÇ ´É·ÂÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ±×·¡ÇÉ ±â¹Ý Àü°è È¿°ú Æ®·£Áö½ºÅÍ(FET), ź¼Ò³ª³ëÆ©ºê ¾î·¹ÀÌ, »êÈ­¾Æ¿¬ ³ª³ë¿ÍÀ̾î´Â ÀÌ¿ÂÈ­ ÀÔÀÚ¿ÍÀÇ µ¶Æ¯ÇÑ »óÈ£ ÀÛ¿ëÀ» ÅëÇØ Á÷Á¢ÀûÀÎ ÀüÇÏ »ý¼º, ±¤ÇÐ ÆÇµ¶, ±¤Àüµµ ¹ÝÀÀÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ³ª³ë ±¸Á¶´Â ³ôÀº °ø°£ ÇØ»óµµ, ½Ç½Ã°£ µ¥ÀÌÅÍ ¼öÁý, ³·Àº °ËÃâ ÇѰè, Á¶±â °æº¸ ½Ã½ºÅÛ, °³º°È­ ¼±·® ÃøÁ¤, Ç¥ÀûÈ­ ¹æ»ç¼± Ä¡·á¿¡ ÇʼöÀûÀÔ´Ï´Ù.

MEMS(¸¶ÀÌÅ©·Î Àü±â ±â°è ½Ã½ºÅÛ), ¹«¼± ¿ø°Ý ÃøÁ¤, ¿¡³ÊÁö ¼öÈ® ¸ðµâ°úÀÇ ÅëÇÕÀ¸·Î ¿þ¾î·¯ºí ¹èÁö, µå·Ð, ÀΰøÀ§¼º, À̽ÄÇü ¸ð´ÏÅÍ¿¡ ÀÌ·¯ÇÑ ¼¾¼­ÀÇ Àû¿ëÀÌ ´õ¿í °­È­µÇ°í ÀÖ½À´Ï´Ù. ±â°è ÇнÀ ¾Ë°í¸®ÁòÀº ³ª³ë ¼¾¼­ÀÇ ¹æ»ç¼± ½ÅÈ£ ÆÐÅÏÀ» ±â¹ÝÀ¸·Î ÈÆ·ÃµÇ¾î ´Ù¾çÇÑ ¹æ»ç¼± Á¾·ù¿Í ¹ß»ý¿øÀ» ´õ Àß ½Äº°ÇÒ ¼ö ÀÖµµ·Ï ÈÆ·ÃµÇ°í ÀÖ½À´Ï´Ù. À¯¿¬ÇÑ ±âÆÇ, Åõ¸í ¼¾¼­, 3D ÇÁ¸°ÆÃÀÌ °¡´ÉÇÑ ³ª³ë¼¾¼­ ¾î·¹ÀÌ´Â ¼³°è ¹üÀ§¸¦ È®ÀåÇÏ¿© °î¸é, Âø¿ë °¡´ÉÇÑ ¿þ¾î·¯ºí, ¿øÀÚ·Î ÄÚ¾î ¹× ½É¿ìÁÖ ÀÓ¹«¿Í °°Àº °í¹æ»ç¼± ȯ°æ¿¡¼­ÀÇ »ç¿ëÀ» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù.

³ª³ë ¹æ»ç¼± ¼¾¼­ÀÇ »ó¿ëÈ­¸¦ ÃßÁøÇϰí ÀÖ´Â ºÐ¾ß¿Í Àü·«ÀûÀÎ ¿ëµµ´Â?

³ª³ë ¹æ»ç¼± ¼¾¼­´Â ¹æ»ç¼± Ä¡·á¸¦ ¹Þ´Â ¾ÏȯÀÚÀÇ Á¤¹ÐÇÑ ¼±·® ÃøÁ¤ÀÌ °¡´ÉÇÕ´Ï´Ù. ³ª³ë ¹æ»ç¼± ¼¾¼­´Â ¹æ»ç¼± Ä¡·á¸¦ ¹Þ´Â ¾Ï ȯÀÚÀÇ Á¤¹ÐÇÑ ¼±·® ÃøÁ¤À» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ ¼¾¼­´Â ¼±·® ºÐÆ÷¸¦ ½Ç½Ã°£À¸·Î ¸ð´ÏÅ͸µÇÏ¿© Á¶Á÷ ¼Õ»óÀ» ÃÖ¼ÒÈ­Çϰí Ä¡·á È¿°ú¸¦ Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ÇÙÀÇÇÐ ¹× Áø´ÜÇп¡¼­ ³ª³ë ´ëÀÀ °ËÃâ±â´Â À̹ÌÁö ǰÁúÀ» Çâ»ó½Ã۰í ÇÇÆø À§ÇèÀ» ÁÙÀÔ´Ï´Ù. ȯ°æ ¸ð´ÏÅ͸µ, ƯÈ÷ ¿øÀÚ·Â ½Ã¼³, Æó±â¹° ÀúÀå¼Ò, ±¤»ê ÀÛ¾÷ ÁÖº¯¿¡¼­ ³ª³ë±â¼ú·Î °¡´ÉÇØÁø °í°¨µµ ¹æ»ç¼± °¨Áö´Â ȯ°æ ¸ð´ÏÅ͸µ¿¡ Áö¼ÓÀûÀ¸·Î µµ¿òÀÌ µÇ°í ÀÖ½À´Ï´Ù.

±¹¹æ ¹× ¾Èº¸ ±â°ü¿¡¼­´Â ÈÞ´ë¿ë °ËÃâ±â, È­¹° °Ë»ç, ±¹°æ °¨½Ã ½Ã½ºÅÛ µî¿¡ ³ª³ë ¹æ»ç¼± ¼¾¼­¸¦ »ç¿ëÇÏ¿© ¹æ»ç¼± À§ÇùÀ» °¨ÁöÇϰí ÀÖ½À´Ï´Ù. ¿ìÁÖ°³¹ß¿¡¼­´Â ¼ÒÇüÈ­µÈ ¹æ»ç¼± °¨Áö±â°¡ ¿ìÁÖ ºñÇà»çÀÇ ¾ÈÀü, ¿ìÁÖ¼± °è±â, ¹æ»ç¼± ¼öÁØÀÌ ±Øµµ·Î ³ôÀº Ç༺ Ž»ç¿¡ ÇʼöÀûÀÔ´Ï´Ù. ¿øÀÚ·Â ºÐ¾ß¿¡¼­´Â °íÀå °¨Áö, ÀÛ¾÷ÀÚ º¸È£, ¾ÈÀü ÀÚµ¿È­¸¦ À§ÇØ ³ª³ë ¼¾¼­°¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Çмú ¿¬±¸±â°ü ¹× »ê¾÷ ¿¬±¸±â°ü¿¡¼­´Â ¼±·® ±³Á¤, ¹æ»ç¼± È­ÇÐ ¿¬±¸, ³ª³ë µ¶¼ºÇÐ Æò°¡¿¡ ³ª³ë¼¾¼­¸¦ »ç¿ëÇϰí ÀÖ½À´Ï´Ù.

³ª³ë ¹æ»ç¼± ¼¾¼­ ½ÃÀåÀÇ Àå±âÀûÀÎ ¼ºÀå°ú Á¶»ç ¿øµ¿·ÂÀº ¹«¾ùÀΰ¡?

³ª³ë ¹æ»ç¼± ¼¾¼­ ½ÃÀå ¼ºÀåÀÇ ¿øµ¿·ÂÀº Àü ¼¼°èÀûÀ¸·Î ¹æ»ç¼± ¾ÈÀü¿¡ ´ëÇÑ Á߿伺 Áõ°¡, Á¤È®ÇÑ ¹æ»ç¼± Ä¡·á¸¦ ÇÊ¿ä·Î ÇÏ´Â ¾Ï ¹ßº´·ü Áõ°¡, ÈÞ´ë¿ë Áö´ÉÇü ÀúÀü·Â ¹æ»ç¼± °ËÃâ ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡ÀÔ´Ï´Ù. ÇÙ ¾Èº¸, ½É¿ìÁÖ ¹Ì¼Ç, ½º¸¶Æ® º´¿ø ÀÎÇÁ¶ó µîÀÇ Á¤ºÎ ÀÚ±ÝÀÌ ³ª³ë ¼¾¼­ Ç÷§ÆûÀÇ ¿¬±¸°³¹ßÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. µ¿½Ã¿¡, ³ª³ë Á¦Á¶, ³ª³ë ¼ÒÀçÀÇ À×Å©Á¬ Àμâ, ÇÏÀ̺긮µå ¼¾¼­ ¼³°èÀÇ ±â¼ú Çõ½ÅÀº Á¦Á¶ À庮À» ³·Ãß°í ´õ ±¤¹üÀ§ÇÑ »ó¾÷Àû Ȱ¿ëÀ» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù.

Â÷¼¼´ë ÀüÀÚÁ¦Ç°, ÀÚÀ² ½Ã½ºÅÛ, ¿þ¾î·¯ºí Áø´ÜÀÌ ÃʼÒÇü Áö´ÉÇü ¼¾½Ì ºÎǰÀ» ¿ä±¸ÇÏ´Â °¡¿îµ¥, ³ª³ë ¹æ»ç¼± ¼¾¼­´Â º¹ÀâÇÑ ½Ã½ºÅÛ¿¡ ÅëÇÕÇϱ⿡ ÀûÇÕÇÑ À§Ä¡¿¡ ÀÖ½À´Ï´Ù. ÁöÀû Àç»ê±Ç °³¹ß, ºÐ¾ß °£ ÆÄÆ®³Ê½Ê, ¾ÖÇø®ÄÉÀ̼ǿ¡ ƯȭµÈ ÀåÄ¡(¿¹ : Á¾¾ç °£È£»ç ¹× Àç³­ ´ëÀÀÀÚ¸¦ À§ÇÑ ¹æ»ç¼± °¨Áö ¿þ¾î·¯ºí)ÀÇ ÆÄÀÏ·µ »ý»êÀÌ »ó¿ëÈ­¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Àå±âÀûÀ¸·Î AI, IoT, ÷´Ü ¼ÒÀç¿ÍÀÇ À¶ÇÕÀ» ÅëÇØ ³ª³ë ¹æ»ç¼± ¼¾¼­´Â ¹æ»ç¼±¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö´Â Àü ¼¼°è ¹æ»ç¼± À§Çè °ü¸®ÀÇ ½Å°æ°è ¿ªÇÒÀ» ÇÒ ¼ö ÀÖÀ» °ÍÀÔ´Ï´Ù.

ºÎ¹®

Á¾·ù(½ÅÆ¿·¹ÀÌ¼Ç °ËÃâ±â, °íü °ËÃâ±â, °¡½º ÃæÀü °ËÃâ±â), ¿ëµµ(ÇコÄɾî, °¡Àü, º¸¾È¡¤¹æÀ§, ¼®À¯ ¹× °¡½º, ¹ßÀü¼Ò, ±âŸ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê(ÃÑ 44°³»ç)

°ü¼¼ ¿µÇâ °è¼ö

Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È­¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ÀÎÀ§ÀûÀÎ ¸ÅÃâ¿ø°¡ Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼­µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Global Industry Analysts´Â ¼¼°è ÁÖ¿ä ¼ö¼® ÀÌÄÚ³ë¹Ì½ºÆ®(1,4,949¸í), ½ÌÅ©ÅÊÅ©(62°³ ±â°ü), ¹«¿ª ¹× »ê¾÷ ´Üü(171°³ ±â°ü)ÀÇ Àü¹®°¡µéÀÇ ÀǰßÀ» ¸é¹ÐÈ÷ °ËÅäÇÏ¿© »ýŰ迡 ¹ÌÄ¡´Â ¿µÇâÀ» Æò°¡ÇÏ°í »õ·Î¿î ½ÃÀå Çö½Ç¿¡ ´ëÀÀÇϰí ÀÖ½À´Ï´Ù. ¸ðµç ÁÖ¿ä ±¹°¡ÀÇ Àü¹®°¡¿Í °æÁ¦ÇÐÀÚµéÀÌ °ü¼¼¿Í ±×°ÍÀÌ ÀÚ±¹¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ ´ëÇÑ ÀǰßÀ» ÃßÀû Á¶»çÇϰí ÀÖ½À´Ï´Ù.

Global Industry Analysts´Â ÀÌ·¯ÇÑ È¥¶õÀÌ ÇâÈÄ 2-3°³¿ù ³»¿¡ ¸¶¹«¸®µÇ°í »õ·Î¿î ¼¼°è Áú¼­°¡ º¸´Ù ¸íÈ®ÇÏ°Ô È®¸³µÉ °ÍÀ¸·Î ¿¹»óÇϰí ÀÖÀ¸¸ç, Global Industry Analysts´Â ÀÌ·¯ÇÑ »óȲÀ» ½Ç½Ã°£À¸·Î ÃßÀûÇϰí ÀÖ½À´Ï´Ù.

2025³â 4¿ù : Çù»ó ´Ü°è

À̹ø 4¿ù º¸°í¼­¿¡¼­´Â °ü¼¼°¡ ¼¼°è ½ÃÀå Àüü¿¡ ¹ÌÄ¡´Â ¿µÇâ°ú Áö¿ªº° ½ÃÀå Á¶Á¤¿¡ ´ëÇØ ¼Ò°³ÇÕ´Ï´Ù. ´ç»çÀÇ ¿¹ÃøÀº °ú°Å µ¥ÀÌÅÍ¿Í ÁøÈ­ÇÏ´Â ½ÃÀå ¿µÇâ¿äÀÎÀ» ±â¹ÝÀ¸·Î ÇÕ´Ï´Ù.

2025³â 7¿ù : ÃÖÁ¾ °ü¼¼ Àç¼³Á¤

°í°´´Ôµé²²´Â °¢ ±¹°¡º° ÃÖÁ¾ ¸®¼ÂÀÌ ¹ßÇ¥µÈ ÈÄ 7¿ù¿¡ ¹«·á ¾÷µ¥ÀÌÆ® ¹öÀüÀ» Á¦°øÇØ µå¸³´Ï´Ù. ÃÖÁ¾ ¾÷µ¥ÀÌÆ® ¹öÀü¿¡´Â ¸íÈ®ÇÏ°Ô Á¤ÀÇµÈ °ü¼¼ ¿µÇ⠺м®ÀÌ Æ÷ÇԵǾî ÀÖ½À´Ï´Ù.

»óÈ£ ¹× ¾çÀÚ °£ ¹«¿ª°ú °ü¼¼ÀÇ ¿µÇ⠺м®:

¹Ì±¹ <> Áß±¹ <> ¸ß½ÃÄÚ <> ij³ª´Ù <> EU <> ÀϺ» <> Àεµ <> ±âŸ 176°³±¹

¾÷°è ÃÖ°íÀÇ ÀÌÄÚ³ë¹Ì½ºÆ® : Global Industry AnalystsÀÇ Áö½Ä ±â¹ÝÀº ±¹°¡, ½ÌÅ©ÅÊÅ©, ¹«¿ª ¹× »ê¾÷ ´Üü, ´ë±â¾÷, ±×¸®°í ¼¼°è °è·® °æÁ¦ »óȲÀÇ Àü·Ê ¾ø´Â ÆÐ·¯´ÙÀÓ ÀüȯÀÇ ¿µÇâÀ» °øÀ¯ÇÏ´Â ºÐ¾ßº° Àü¹®°¡ µî °¡Àå ¿µÇâ·Â ÀÖ´Â ¼ö¼® ÀÌÄÚ³ë¹Ì½ºÆ®¸¦ Æ÷ÇÔÇÑ 14,949¸íÀÇ ÀÌÄÚ³ë¹Ì½ºÆ®¸¦ ÃßÀûÇϰí ÀÖ½À´Ï´Ù. 16,491°³ ÀÌ»óÀÇ º¸°í¼­ ´ëºÎºÐ¿¡ ¸¶ÀϽºÅæ¿¡ ±â¹ÝÇÑ 2´Ü°è Ãâ½Ã ÀÏÁ¤ÀÌ Àû¿ëµÇ¾î ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSM
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Nano Radiation Sensors Market to Reach US$456.3 Million by 2030

The global market for Nano Radiation Sensors estimated at US$328.8 Million in the year 2024, is expected to reach US$456.3 Million by 2030, growing at a CAGR of 5.6% over the analysis period 2024-2030. Scintillation Detectors, one of the segments analyzed in the report, is expected to record a 6.0% CAGR and reach US$292.2 Million by the end of the analysis period. Growth in the Solid-State Detectors segment is estimated at 4.3% CAGR over the analysis period.

The U.S. Market is Estimated at US$86.4 Million While China is Forecast to Grow at 5.5% CAGR

The Nano Radiation Sensors market in the U.S. is estimated at US$86.4 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$73.5 Million by the year 2030 trailing a CAGR of 5.5% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 5.3% and 4.7% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 4.5% CAGR.

Global Nano Radiation Sensors Market - Key Trends & Drivers Summarized

Why Are Nano Radiation Sensors Gaining Traction Across Healthcare, Security, and Space Technology Applications?

Nano radiation sensors are at the forefront of next-generation radiation detection technologies, offering unprecedented sensitivity, miniaturization, and integration potential. These sensors utilize nanomaterials-such as carbon nanotubes, quantum dots, graphene, and nanowires-to detect ionizing radiation (alpha, beta, gamma, and X-rays) with high precision, speed, and spatial resolution. Their ultra-small form factor and low energy threshold enable deployment in compact, wearable, and implantable devices for real-time monitoring in highly sensitive environments.

Traditional radiation detection technologies often rely on bulky scintillators or Geiger-Muller tubes with limitations in energy discrimination, response time, and portability. Nano radiation sensors overcome these challenges through tunable material properties and quantum confinement effects that enhance signal-to-noise ratios. As industries such as nuclear power, oncology, aerospace, homeland security, and defense require compact and efficient radiation monitoring tools, nano-based sensors are rapidly emerging as indispensable components in advanced detection systems.

How Are Nanomaterials and Sensor Integration Platforms Enhancing Performance and Use Versatility?

The advancement of nanomaterial synthesis and sensor integration techniques is propelling the capabilities of nano radiation sensors. Graphene-based field-effect transistors (FETs), carbon nanotube arrays, and zinc oxide nanowires exhibit unique interactions with ionizing particles, allowing for direct charge generation, optical readouts, and photoconductive responses. These nanostructures enable high spatial resolution, real-time data acquisition, and low detection limits-essential for early warning systems, personalized dosimetry, and targeted radiotherapy.

Integration with MEMS (Micro-Electro-Mechanical Systems), wireless telemetry, and energy-harvesting modules is further enhancing the deployment of these sensors in wearable badges, drones, satellites, and implantable monitors. Machine learning algorithms are being trained on radiation signal patterns from nano sensors to improve discrimination between different radiation types and sources. Flexible substrates, transparent sensors, and 3D-printable nanosensor arrays are expanding the design scope and enabling use in curved surfaces, conformable wearables, and high-radiation environments such as reactor cores and deep space missions.

Which Sectors and Strategic Applications Are Driving Commercialization of Nano Radiation Sensors?

The healthcare sector is a key driver, with nano radiation sensors enabling precision dosimetry for cancer patients undergoing radiation therapy. These sensors allow real-time monitoring of dose distribution, minimizing tissue damage and improving therapeutic efficacy. In nuclear medicine and diagnostics, nano-enabled detectors improve imaging quality and reduce exposure risk. Environmental monitoring, particularly around nuclear facilities, waste storage sites, and mining operations, benefits from continuous, sensitive radiation sensing made possible by nano technology.

Defense and security agencies use nano radiation sensors in portable detectors, cargo screening, and border surveillance systems to detect radiological threats. In space exploration, miniaturized radiation detectors are critical for astronaut safety, spacecraft instrumentation, and planetary exploration where radiation levels can be extreme. The nuclear energy sector utilizes nano sensors for fault detection, worker protection, and safety automation. Academic and industrial research labs also use nano radiation sensors for dosimetry calibration, radiation chemistry studies, and nanotoxicology assessments.

What Is Driving Long-Term Growth and Research Momentum in the Nano Radiation Sensors Market?

The growth in the nano radiation sensors market is fueled by increasing global emphasis on radiation safety, rising cancer incidence requiring precise radiotherapy, and the demand for portable, intelligent, and low-power radiation detection technologies. Government funding in nuclear security, deep-space missions, and smart hospital infrastructure is catalyzing R&D in nanosensor platforms. Simultaneously, innovations in nanofabrication, inkjet printing of nanomaterials, and hybrid sensor design are lowering manufacturing barriers and enabling broader commercial uptake.

As next-generation electronics, autonomous systems, and wearable diagnostics demand ultra-small, intelligent sensing components, nano radiation sensors are well positioned to integrate into complex systems. Intellectual property development, cross-sector partnerships, and pilot production of application-specific devices (e.g., radiation-detecting wearables for oncology nurses or disaster responders) are driving commercialization. In the long term, convergence with AI, IoT, and advanced materials will enable nano radiation sensors to serve as the nervous system of radiological risk management across an increasingly radiation-aware world.

SCOPE OF STUDY:

The report analyzes the Nano Radiation Sensors market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Type (Scintillation Detectors, Solid-State Detectors, Gas-Filled Detectors); Application (Healthcare, Consumer Electronics, Security & Defense, Oil & Gas, Power Plants, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 44 Featured) -

TARIFF IMPACT FACTOR

Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by artificially increasing the COGS, reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.

We are diligently following expert opinions of leading Chief Economists (14,949), Think Tanks (62), Trade & Industry bodies (171) worldwide, as they assess impact and address new market realities for their ecosystems. Experts and economists from every major country are tracked for their opinions on tariffs and how they will impact their countries.

We expect this chaos to play out over the next 2-3 months and a new world order is established with more clarity. We are tracking these developments on a real time basis.

As we release this report, U.S. Trade Representatives are pushing their counterparts in 183 countries for an early closure to bilateral tariff negotiations. Most of the major trading partners also have initiated trade agreements with other key trading nations, outside of those in the works with the United States. We are tracking such secondary fallouts as supply chains shift.

To our valued clients, we say, we have your back. We will present a simplified market reassessment by incorporating these changes!

APRIL 2025: NEGOTIATION PHASE

Our April release addresses the impact of tariffs on the overall global market and presents market adjustments by geography. Our trajectories are based on historic data and evolving market impacting factors.

JULY 2025 FINAL TARIFF RESET

Complimentary Update: Our clients will also receive a complimentary update in July after a final reset is announced between nations. The final updated version incorporates clearly defined Tariff Impact Analyses.

Reciprocal and Bilateral Trade & Tariff Impact Analyses:

USA <> CHINA <> MEXICO <> CANADA <> EU <> JAPAN <> INDIA <> 176 OTHER COUNTRIES.

Leading Economists - Our knowledge base tracks 14,949 economists including a select group of most influential Chief Economists of nations, think tanks, trade and industry bodies, big enterprises, and domain experts who are sharing views on the fallout of this unprecedented paradigm shift in the global econometric landscape. Most of our 16,491+ reports have incorporated this two-stage release schedule based on milestones.

COMPLIMENTARY PREVIEW

Contact your sales agent to request an online 300+ page complimentary preview of this research project. Our preview will present full stack sources, and validated domain expert data transcripts. Deep dive into our interactive data-driven online platform.

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â