¼¼°èÀÇ GaN ¹ÝµµÃ¼ ¼ÒÀÚ ½ÃÀå
GaN Semiconductor Devices
»óǰÄÚµå : 1650983
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 02¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 213 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,464,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 25,393,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

GaN ¹ÝµµÃ¼ ¼ÒÀÚ ¼¼°è ½ÃÀå ±Ô¸ð´Â 2030³â±îÁö 177¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 57¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â GaN ¹ÝµµÃ¼ ¼ÒÀÚ ¼¼°è ½ÃÀåÀº 2024-2030³â µ¿¾È ¿¬Æò±Õ 20.9%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 177¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ±¤¹ÝµµÃ¼´Â CAGR 19.4%¸¦ ±â·ÏÇÏ¿© ºÐ¼® ±â°£ Á¾·á ½ÃÁ¡¿¡ 67¾ï ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Àü·Â ¹ÝµµÃ¼ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 21.1%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 16¾ï ´Þ·¯, Áß±¹Àº CAGR 20.4%·Î ¼ºÀå Àü¸Á

¹Ì±¹ÀÇ GaN ¹ÝµµÃ¼ ¼ÒÀÚ ½ÃÀå ±Ô¸ð´Â 2024³â 16¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 28¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2024-2030³â ºÐ¼® ±â°£ µ¿¾È 20.4%ÀÇ CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ª ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ µ¿¾È °¢°¢ 18.1%¿Í 17.5%ÀÇ CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 14.6%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼¼°è GaN ¹ÝµµÃ¼ ¼ÒÀÚ ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ Á¤¸®

GaN ¹ÝµµÃ¼ ¼ÒÀÚ´Â ÀüÀÚ ¹× Àü·Â »ê¾÷¿¡ ¾î¶² Çõ¸íÀ» °¡Á®¿Ã °ÍÀΰ¡?

ÁúÈ­°¥·ý(GaN) ¹ÝµµÃ¼ ¼ÒÀÚ´Â ±âÁ¸ ½Ç¸®ÄÜ ±â¹Ý ¹ÝµµÃ¼¿¡ ºñÇØ Å« ÀÌÁ¡À» Á¦°øÇÔÀ¸·Î½á ÀüÀÚ ¹× Àü·Â »ê¾÷À» º¯È­½Ã۰í ÀÖ½À´Ï´Ù. ³ÐÀº ¹êµå°¸ Àç·áÀÎ GaNÀº ´õ ³ôÀº È¿À², ´õ ºü¸¥ ½ºÀ§Äª ¼Óµµ, ´õ ³ôÀº Àü·Â ¹Ðµµ¸¦ °¡´ÉÇÏ°Ô ÇÏ¿© ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º, RF(¹«¼± Á֯ļö) ÀåÄ¡, Åë½Å°ú °°Àº ¾ÖÇø®ÄÉÀ̼ǿ¡ ÀÌ»óÀûÀÔ´Ï´Ù. Æ®·£Áö½ºÅÍ, ´ÙÀÌ¿Àµå, ¾ÚÇÁ¿Í °°Àº GaN ¼ÒÀÚ´Â ½Ç¸®Äܺ¸´Ù ³ôÀº Àü¾Ð°ú ¿Âµµ¿¡¼­ ÀÛµ¿Çϱ⠶§¹®¿¡ ¼º´ÉÀÌ Çâ»óµÇ°í ¿¡³ÊÁö ¼Õ½ÇÀÌ °¨¼ÒÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Æ¯¼ºÀº Àü±âÀÚµ¿Â÷(EV), 5G ÀÎÇÁ¶ó, Àç»ý¿¡³ÊÁö ½Ã½ºÅÛ µî È¿À²¼º, ¼ÒÇüÈ­, Àü·Â °ü¸®°¡ Áß¿äÇÑ ºÐ¾ß¿¡¼­ ƯÈ÷ °¡Ä¡°¡ ÀÖ½À´Ï´Ù.

GaN ¹ÝµµÃ¼ ¼ÒÀÚÀÇ °¡Àå ¿µÇâ·Â ÀÖ´Â ÀÀ¿ë ºÐ¾ß Áß Çϳª´Â Àü·Â º¯È¯ ½Ã½ºÅÛÀ¸·Î, ½Ç¸®ÄÜ ±â¹Ý ºÎǰ¿¡ ´ëÇÑ º¸´Ù È¿À²ÀûÀÎ ´ë¾ÈÀ» Á¦°øÇÕ´Ï´Ù. ¿¹¸¦ µé¾î, GaN Æ®·£Áö½ºÅÍ´Â ÈξÀ ´õ ³ôÀº Á֯ļö¿¡¼­ ½ºÀ§ÄªÇÒ ¼ö Àֱ⠶§¹®¿¡ ´õ ÀÛ°í, °¡º±°í, °íÈ¿À²ÀÇ Àü¿ø °ø±ÞÀåÄ¡¸¦ ¸¸µé ¼ö ÀÖ½À´Ï´Ù. GaN µð¹ÙÀ̽º´Â µ¥ÀÌÅͼ¾ÅÍ ¹× Åë½Å°ú °°Àº °í¼º´É ¾ÖÇø®ÄÉÀ̼ǿ¡µµ Àû¿ëµÇ¾î ´õ ºü¸¥ µ¥ÀÌÅÍ Àü¼Û°ú ³·Àº Àü·Â ¼Òºñ¸¦ °¡´ÉÇÏ°Ô ÇÏ¿© ¿î¿µ ºñ¿ë°ú ȯ°æ ¿À¿°À» ÁÙÀ̰í, ´õ ÀÛÀº Å©±â, ´õ °¡º­¿î ¹«°Ô, ´õ ³ôÀº È¿À²ÀÇ Àü¿ø °ø±ÞÀ» °¡´ÉÄÉ ÇÕ´Ï´Ù. ¿î¿µ ºñ¿ë°ú ȯ°æ ¿µÇâ °¨¼Ò¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. Àü ¼¼°è°¡ ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº ±â¼ú·Î ÀüȯÇÏ´Â °¡¿îµ¥, GaN ¹ÝµµÃ¼ ¼ÒÀÚ´Â ÀüÀÚ ¹× Àü·Â ½Ã½ºÅÛÀÇ ¹Ì·¡¸¦ ÁÖµµÇÏ´Â Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ Áغñ°¡ µÇ¾î ÀÖ½À´Ï´Ù.

GaN ¹ÝµµÃ¼ ¼ÒÀÚÀÇ ¼º´ÉÀ» Çâ»ó½ÃŰ´Â ±â¼ú ¹ßÀüÀº ¹«¾ùÀΰ¡?

¸î °¡Áö ±â¼ú ¹ßÀüÀ¸·Î GaN ¹ÝµµÃ¼ ¼ÒÀÚÀÇ ¼º´É°ú È®À强ÀÌ Å©°Ô Çâ»óµÇ¾î ´Ù¾çÇÑ Ã·´Ü ±â¼ú ÀÀ¿ë ºÐ¾ß¿¡¼­ »ç¿ëÀÌ ´õ¿í Çö½ÇÈ­µÇ¾ú½À´Ï´Ù. ÁÖ¿ä ¹ßÀü Áß Çϳª´Â GaN-on-Si(GaN-on-Si) ±â¼úÀÇ °³¹ß·Î, Ç¥ÁØ ½Ç¸®ÄÜ ±âÆÇÀ» »ç¿ëÇÏ¿© GaN ¼ÒÀÚ¸¦ Á¦Á¶ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. GaN-on-Si ±â¼úÀº ±âÁ¸ ½Ç¸®ÄÜ ±â¹Ý ½Ã½ºÅÛ°úÀÇ ÅëÇÕÀ» ¿ëÀÌÇÏ°Ô ÇÏ¿© »ê¾÷°è°¡ Á¦Á¶ °øÁ¤À» Å©°Ô º¯°æÇÏÁö ¾Ê°íµµ GaN µð¹ÙÀ̽º¸¦ ½±°Ô äÅÃÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ½±°Ô äÅÃÇÒ ¼ö ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Å« ¹ßÀüÀº GaN µð¹ÙÀ̽ºÀÇ ¿­ °ü¸® ±â¼úÀÇ °³¼±À¸·Î, GaNÀº ½Ç¸®Äܺ¸´Ù ³ôÀº ¿Âµµ¿Í Àü·Â ¹Ðµµ¿¡¼­ ÀÛµ¿Çϱ⠶§¹®¿¡ È¿°úÀûÀÎ ¿­ ¹æÃâÀº µð¹ÙÀ̽ºÀÇ ½Å·Ú¼º°ú ¼º´ÉÀ» À¯ÁöÇÏ´Â µ¥ ÇʼöÀûÀ̸ç, GaN µð¹ÙÀ̽ºÀÇ ¿­ Àüµµµµ¸¦ °³¼±ÇÏ¿© °ú¿­ ¾øÀÌ ³ôÀº Àü·Â ºÎÇϸ¦ ó¸®ÇÒ ¼ö ÀÖµµ·Ï »õ·Î¿î ÆÐŰ¡ ±â¼ú°ú Àç·á°¡ °³¹ßµÇ°í ÀÖ½À´Ï´Ù. °ú¿­ ¾øÀÌ ³ôÀº Àü·ÂºÎÇÏ¿¡ ´ëÀÀÇÒ ¼ö ÀÖµµ·Ï »õ·Î¿î ÆÐŰ¡ ±â¼ú ¹× Àç·á°¡ °³¹ßµÇ°í ÀÖ½À´Ï´Ù. ÀÌ´Â GaN ¼ÒÀÚ°¡ ¿­¾ÇÇÑ È¯°æ¿¡¼­ »ç¿ëµÇ´Â Àü±âÀÚµ¿Â÷, Ç×°ø¿ìÁÖ, »ê¾÷ ÀÚµ¿È­¿Í °°Àº °íÀü·Â ¾ÖÇø®ÄÉÀ̼ǿ¡¼­ ƯÈ÷ Áß¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀ¸·Î GaN ¹ÝµµÃ¼ ¼ÒÀÚÀÇ ÀÀ¿ë ¹üÀ§°¡ È®´ëµÇ¾î °¡ÀüÁ¦Ç°¿¡¼­ Áß°ø¾÷ Àåºñ¿¡ À̸£±â±îÁö ¸ðµç ÀÀ¿ë ºÐ¾ß¿¡ ÀûÇÕÇÏ°Ô µÇ¾ú½À´Ï´Ù.

¶ÇÇÑ, Á¦Á¶ °øÁ¤ÀÇ ¹ßÀüÀ¸·Î ´õ ÀÛ°í È¿À²ÀûÀÎ GaN Æ®·£Áö½ºÅÍ, ´ÙÀÌ¿Àµå, ¾ÚÇÁÀÇ Á¦Á¶°¡ °¡´ÉÇØÁ³½À´Ï´Ù. ¿¹¸¦ µé¾î, GaN ±â¼ú ±â¹ÝÀÇ °íÀüÀÚ À̵¿µµ Æ®·£Áö½ºÅÍ(HEMT)´Â ÇöÀç 100GHz ÀÌ»óÀÇ Á֯ļö¿¡¼­ ÀÛµ¿ÀÌ °¡´ÉÇÏ¿© 5G ³×Æ®¿öÅ© ¹× À§¼ºÅë½ÅÀ» Æ÷ÇÔÇÑ Â÷¼¼´ë Åë½Å ½Ã½ºÅÛ¿¡ ÀûÇÕÇÕ´Ï´Ù. °í¼º´ÉÀ» À¯ÁöÇϸ鼭 GaN ¼ÒÀÚ¸¦ ¼ÒÇüÈ­ÇÒ ¼ö ÀÖ°Ô µÊ¿¡ µû¶ó ÄÄÆÑÆ®ÇÏ°í °íÈ¿À²ÀûÀÎ ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º ¹× RF ½Ã½ºÅÛ¿¡ »õ·Î¿î °¡´É¼ºÀ» ¿­¾î ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ Çõ½ÅÀÌ ÀϾ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú ¹ßÀüÀ¸·Î GaN ¹ÝµµÃ¼ ¼ÒÀÚ´Â ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº °í¼º´É ÀüÀÚÁ¦Ç°À» ¼±µµÇϰí ÀÖ½À´Ï´Ù.

GaN ¹ÝµµÃ¼ ¼ÒÀÚ´Â Àü±âÀÚµ¿Â÷, 5G, Àç»ý¿¡³ÊÁöÀÇ ¼ºÀåÀ» ¾î¶»°Ô Áö¿øÇϰí Àִ°¡?

GaN ¹ÝµµÃ¼ ¼ÒÀÚ´Â Àü±âÀÚµ¿Â÷(EV), 5G ÀÎÇÁ¶ó ¹× Àç»ý¿¡³ÊÁö ±â¼úÀÇ ¼ºÀåÀ» Áö¿øÇϱâ À§ÇØ ºü¸£°Ô ¹ßÀüÇÏ´Â ÀÌ ºÐ¾ß¿¡ ÇÊ¿äÇÑ °íÈ¿À², Àü·Â ¹Ðµµ ¹× ¼º´ÉÀ» Á¦°øÇÔÀ¸·Î½á Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÀιöÅÍ, Àü·Â °ü¸® ½Ã½ºÅÛ¿¡¼­ º¸´Ù È¿À²ÀûÀÎ Àü·Â º¯È¯À» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. ±âÁ¸ ½Ç¸®ÄÜ ºÎǰ¿¡ ºñÇØ ½ºÀ§Äª ¼Óµµ°¡ ºü¸£°í ¿¡³ÊÁö ¼Õ½ÇÀÌ Àû¾î ¿¡³ÊÁö È¿À²ÀÌ Çâ»óµÇ°í, ´õ °¡º±°í ÄÄÆÑÆ®ÇÑ ½Ã½ºÅÛÀ» ±¸ÇöÇÒ ¼ö ÀÖ¾î ÁÖÇà°Å¸® ¿¬Àå ¹× ÃæÀü ½Ã°£ ´ÜÃàÀ¸·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. ÀüÀÚÀåÄ¡ÀÇ ¼ÒÇüÈ­ ¹× °æ·®È­¿¡ ±â¿©ÇÏ¿© Â÷·® ÀüüÀÇ È¿À²°ú ¼º´É Çâ»ó¿¡ ±â¿©Çϰí, EV ½Ã½ºÅÛÀÇ ºñ¿ë°ú º¹À⼺À» °¨¼Ò½Ã۰í ÀÖ½À´Ï´Ù.

Åë½Å ºÐ¾ß¿¡¼­ GaN ¹ÝµµÃ¼ ¼ÒÀÚ´Â °íÁÖÆÄ ¹× °íÃâ·Â RF ºÎǰÀÌ ÇÊ¿äÇÑ 5G ³×Æ®¿öÅ© ±¸Ãà¿¡ ÇʼöÀûÀÔ´Ï´Ù. ¹Ð¸®¹ÌÅÍÆÄ Á֯ļö(30-300GHz)¿¡¼­ ³ôÀº Àü·Â È¿À²·Î ÀÛµ¿ÇÏ´Â GaNÀÇ ´É·ÂÀº 5G ±âÁö±¹, RF ÁõÆø±â, ½º¸ô¼¿ ³×Æ®¿öÅ©¿¡ ÀûÇÕÇÕ´Ï´Ù. GaN ±â¼úÀº 5G Åë½ÅÀÇ °í¼Ó, ÀúÁö¿¬ ¿ä±¸»çÇ׿¡ ÇʼöÀûÀÎ °í¼Ó µ¥ÀÌÅÍ Àü¼Û, ÀúÁö¿¬, ´ë¿ªÆø È®´ë¸¦ Áö¿øÇϸç, GaN ±â¼úÀº 5G ³×Æ®¿öÅ©°¡ Àü ¼¼°èÀûÀ¸·Î È®´ëµÇ´Â °úÁ¤¿¡¼­ Áß¿äÇÑ ¿ä¼ÒÀÎ Åë½Å ÀÎÇÁ¶óÀÇ ¿¡³ÊÁö ¼Òºñ °¨¼Ò¿¡µµ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¿¡µµ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

Àç»ý¿¡³ÊÁö ½Ã½ºÅÛ¿¡¼­ GaN µð¹ÙÀ̽º´Â Àü·Â º¯È¯±â ¹× ÀιöÅÍÀÇ È¿À²À» Çâ»ó½ÃŰ´Â µ¥ »ç¿ëµÇ¸ç, žçÀüÁö ÆÐ³Î ¹× dz·Â Åͺó°ú °°Àº ¿¡³ÊÁö ¿ø¿¡¼­ »ç¿ë °¡´ÉÇÑ Àü·ÂÀ¸·Î º¯È¯ÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ³¶ºñ¸¦ ÁÙÀ̰í Àüü Àç»ý¿¡³ÊÁö ½Ã½ºÅÛÀÇ Ãâ·ÂÀ» Áõ°¡½Ãŵ´Ï´Ù. µû¶ó¼­ GaN ¹ÝµµÃ¼ ¼ÒÀڴ ž籤 ÀιöÅÍ, dz·Â¹ßÀü ÄÁ¹öÅÍ, ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛÀÇ ¼º´ÉÀ» ÃÖÀûÈ­ÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ¼¼°è°¡ ģȯ°æ ¿¡³ÊÁö¿øÀ¸·Î ÀüȯÇÏ´Â °¡¿îµ¥, GaN ±â¼úÀº Àç»ý¿¡³ÊÁö ÀÎÇÁ¶óÀÇ È¿À²¼º°ú ½Å·Ú¼ºÀ» ±Ø´ëÈ­ÇÏ´Â µ¥ µµ¿òÀ» ÁÖ°í ÀÖ½À´Ï´Ù.

GaN ¹ÝµµÃ¼ ¼ÒÀÚ ½ÃÀåÀÇ ¼ºÀå ¿øµ¿·ÂÀº?

¿¡³ÊÁö È¿À² ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, Àü±âÀÚµ¿Â÷ÀÇ È®´ë, 5G ³×Æ®¿öÅ© ±¸Ãà µî ¿©·¯ °¡Áö ¿äÀÎÀÌ GaN ¹ÝµµÃ¼ ¼ÒÀÚ ½ÃÀåÀÇ ±Þ°ÝÇÑ ¼ºÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä ÃËÁø¿äÀÎ Áß Çϳª´Â ¿¡³ÊÁö È¿À²°ú Áö¼Ó°¡´É¼ºÀ» ÇâÇÑ Àü ¼¼°èÀûÀÎ ÃßÁø·ÂÀÔ´Ï´Ù. »ê¾÷°è, Á¤ºÎ ¹× ¼ÒºñÀÚ°¡ ¿¡³ÊÁö ¼Òºñ¸¦ ÁÙÀ̰í ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈ­Çϱâ À§ÇØ ³ë·ÂÇÏ´Â °¡¿îµ¥, GaN ¼ÒÀÚ´Â ±âÁ¸ ½Ç¸®ÄÜ ºÎǰº¸´Ù È¿À²ÀÌ ³ô°í Àü·Â ¼Õ½ÇÀÌ Àû±â ¶§¹®¿¡ Áß¿äÇÑ ¼Ö·ç¼ÇÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. °¡Àü, ÀÚµ¿Â÷, Åë½Å µîÀÇ ºÐ¾ß¿¡¼­´Â º¸´Ù ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº Àü·Â º¯È¯ ½Ã½ºÅÛÀÌ ¿ä±¸µÇ°í ÀÖÀ¸¸ç, GaN µð¹ÙÀ̽ºÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

Àü±âÀÚµ¿Â÷(EV)ÀÇ ºÎ»óµµ GaN ½ÃÀå ¼ºÀå¿¡ ±â¿©ÇÏ´Â ÁÖ¿ä ¿äÀÎ Áß ÇϳªÀÔ´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀÌ EV °³¹ß ¹× ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ¸¦ Áö¼ÓÇÔ¿¡ µû¶ó º¸´Ù È¿À²ÀûÀÎ ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, GaN ¼ÒÀÚ´Â Å©±â, ¹«°Ô, ¿¡³ÊÁö È¿À²¼º Ãø¸é¿¡¼­ ½Ç¸®ÄÜÀ» Å©°Ô ´É°¡ÇÏ´Â ÀåÁ¡À» °¡Áö°í ÀÖ¾î EVÀÇ ÆÄ¿öÆ®·¹ÀÎ, ÃæÀü ½Ã½ºÅÛ, Àü·Â °ü¸®¿¡ ÀÌ»óÀûÀÎ ¼±ÅÃÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ»óÀûÀÎ ¼±ÅÃÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¼¼°è °¢±¹ Á¤ºÎ°¡ Àü±âÀÚµ¿Â÷ º¸±Þ¿¡ ´ëÇÑ ¾ß½ÉÂù ¸ñÇ¥¸¦ ¼³Á¤ÇÔ¿¡ µû¶ó GaN ±â¹Ý ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º¿¡ ´ëÇÑ ¼ö¿ä´Â ÇâÈÄ ¸î ³â µ¿¾È ±ÞÁõÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

5G ³×Æ®¿öÅ©ÀÇ ¼¼°è È®»êµµ GaN ¹ÝµµÃ¼ ¼ÒÀÚ ½ÃÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎÀÔ´Ï´Ù. Åë½Å »ç¾÷ÀÚµéÀÌ 5GÀÇ ´õ ³ôÀº Á֯ļö¿Í ´õ ºü¸¥ µ¥ÀÌÅÍ ¼Óµµ¸¦ Áö¿øÇÏ´Â µ¥ ÇÊ¿äÇÑ ÀÎÇÁ¶ó¸¦ ±¸ÃàÇÔ¿¡ µû¶ó, RF ¾ÖÇø®ÄÉÀ̼ǿ¡¼­ ¿ì¼öÇÑ ¼º´ÉÀ» °¡Áø GaN µð¹ÙÀ̽º°¡ ³Î¸® äÅõǰí ÀÖ½À´Ï´Ù. Àü·Â ¼Õ½ÇÀ» ÃÖ¼ÒÈ­Çϸ鼭 °íÁÖÆÄ¿¡¼­ ÀÛµ¿ÇÏ´Â GaNÀÇ ´É·ÂÀº 5G ±âÁö±¹, ¾ÈÅ׳ª, RF ÁõÆø±â¿¡ ÇʼöÀûÀÎ ºÎǰÀÌ µÇ°í ÀÖÀ¸¸ç, 5GÀÇ È®´ë´Â Åë½Å »ç¾÷ÀÚµéÀÌ Â÷¼¼´ë ¹«¼± Åë½Å ³×Æ®¿öÅ©¸¦ Áö¼ÓÀûÀ¸·Î ±¸ÃàÇÔ¿¡ µû¶ó GaN ¹ÝµµÃ¼ ¼ÒÀÚ¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ¼ö¿ä¸¦ ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

GaN ¹ÝµµÃ¼ ¼ÒÀÚ °³¹ßÀ» Á¿ìÇÒ ÇâÈÄ µ¿ÇâÀº?

GaN°ú ½Ç¸®ÄÜÀÇ ÅëÇÕ ¹ßÀü, ÆÐŰ¡ ±â¼úÀÇ ¹ßÀü, ¼ÒºñÀÚ ÀüÀÚÁ¦Ç°¿¡¼­ÀÇ GaNÀÇ ºÎ»ó µî ¸î °¡Áö »õ·Î¿î Æ®·»µå°¡ GaN ¹ÝµµÃ¼ ¼ÒÀÚÀÇ ¹Ì·¡ ¹ßÀüÀ» Çü¼ºÇϰí ÀÖ½À´Ï´Ù. °¡Àå ÁÖ¸ñÇÒ ¸¸ÇÑ Æ®·»µå Áß Çϳª´Â ½Ç¸®ÄÜÀÇ ºñ¿ë È¿À²¼º°ú È®À强°ú GaNÀÇ ¿ì¼öÇÑ ¼º´ÉÀ» °áÇÕÇÑ GaN-on-Si(GaN-on-Si) ±â¼úÀÇ È°¿ëÀÌ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ÇÏÀ̺긮µå Á¢±Ù ¹æ½ÄÀº GaN µð¹ÙÀ̽ºÀÇ °¡°ÝÀ» ³·Ãß°í ±âÁ¸ ½Ç¸®ÄÜ ±â¹Ý ½Ã½ºÅÛ¿¡ ½±°Ô ÅëÇÕÇÒ ¼ö ÀÖµµ·ÏÇÔÀ¸·Î½á »ê¾÷ Àü¹Ý¿¡ °ÉÃÄ Æø³ÐÀº äÅÃÀ» ÃËÁøÇϰí ÀÖÀ¸¸ç, GaN-on-Si ±â¼úÀº ºñ¿ë°ú ¼º´ÉÀÇ ±ÕÇüÀ» ½ÅÁßÇÏ°Ô °í·ÁÇØ¾ß ÇÏ´Â °¡ÀüÁ¦Ç°°ú °°Àº ´ë·® »ý»ê ½ÃÀå¿¡¼­ ƯÈ÷ ¸Å·ÂÀûÀÔ´Ï´Ù. ´ë·® »ý»ê ½ÃÀå¿¡¼­ ƯÈ÷ ¸Å·ÂÀûÀÔ´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ Æ®·»µå´Â GaN µð¹ÙÀ̽ºÀÇ Ã·´Ü ÆÐŰ¡ ±â¼ú·Î, GaNÀº ½Ç¸®Äܺ¸´Ù ³ôÀº Àü·Â ¹Ðµµ¿Í ¿Âµµ¿¡¼­ ÀÛµ¿Çϱ⠶§¹®¿¡ ½Å·Ú¼º°ú ¼º´ÉÀ» À¯ÁöÇϱâ À§Çؼ­´Â È¿°úÀûÀÎ ¿­ °ü¸®¿Í ÆÐŰ¡ÀÌ ÇʼöÀûÀÔ´Ï´Ù. Ĩ ½ºÄÉÀÏ ÆÐŰ¡(CSP) ¹× ÷´Ü ¿­ ¼ÒÀç¿Í °°Àº ÆÐŰ¡ Çõ½ÅÀ» ÅëÇØ GaN µð¹ÙÀ̽º´Â Å©±â¿Í ¹«°Ô¸¦ ÁÙÀ̸鼭 ´õ ³ôÀº Àü·Â ºÎÇϸ¦ ó¸®ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº °ø°£ ¹× ¿­ Á¦¾àÀÌ Áß¿äÇÑ Àü±âÀÚµ¿Â÷, Ç×°ø¿ìÁÖ, »ê¾÷ ÀÚµ¿È­ µîÀÇ ¾ÖÇø®ÄÉÀ̼ǿ¡ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ÆÐŰ¡ ¼Ö·ç¼ÇÀÇ °³¼±À¸·Î ±î´Ù·Î¿î ȯ°æ¿¡¼­ GaN µð¹ÙÀ̽ºÀÇ »ç¿ëÀº ´õ¿í È®´ëµÉ °ÍÀÔ´Ï´Ù.

¼ÒºñÀÚ ÀüÀÚ±â±â¿¡¼­ GaNÀÇ »ç¿ë Áõ°¡´Â ÀÌ ½ÃÀåÀÇ ¹Ì·¡¸¦ Çü¼ºÇÏ´Â ¶Ç ´Ù¸¥ Ãß¼¼ÀÔ´Ï´Ù. ¿¹¸¦ µé¾î, GaN ±â¹Ý Àü¿ø ¾î´ðÅÍ¿Í ÃæÀü±â´Â ÄÄÆÑÆ®ÇÑ Å©±â¿Í ³ôÀº È¿À²·Î ÀÎÇØ ³Î¸® º¸±ÞµÇ°í ÀÖÀ¸¸ç, GaN Æ®·£Áö½ºÅÍ´Â ³ëÆ®ºÏ, ½º¸¶Æ®Æù ¹× ±âŸ ÈÞ´ë¿ë ±â±â¿¡ ÀûÇÕÇÑ °í¼Ó, Àú¿Â, ¼ÒÇü Àü¿ø °ø±ÞÀ» °¡´ÉÄÉ ÇÕ´Ï´Ù. ¼ÒºñÀÚµéÀÌ ´õ ÀÛ°í È¿À²ÀûÀÎ ÀüÀÚ±â±â¸¦ ã´Â °¡¿îµ¥, GaN ±â¼úÀº ¼ÒºñÀÚ ÀüÀÚ±â±â ½ÃÀåÀÇ Ç¥ÁØÀÌ µÉ Áغñ°¡ µÇ¾î ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼¿¡ µû¶ó GaN ¹ÝµµÃ¼ ¼ÒÀÚ´Â ±¤¹üÀ§ÇÑ »ê¾÷ÀÇ Çõ½Å°ú È¿À²À» ÃËÁøÇÏ´Â µ¥ ÀÖ¾î Á¡Á¡ ´õ Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ°Ô µÉ °ÍÀÔ´Ï´Ù.

ºÎ¹®

ºÎ¹®(±¤¹ÝµµÃ¼, Àü·Â¹ÝµµÃ¼, GaN °íÁÖÆÄ µð¹ÙÀ̽º), ÃÖÁ¾»ç¿ëÀÚ(ÀÚµ¿Â÷, °¡Àü, Ç×°ø¿ìÁÖ/¹æÀ§ »ê¾÷, ÇコÄɾî, Á¤º¸Åë½Å±â¼ú, ±âŸ ÃÖÁ¾»ç¿ëÀÚ)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê(ÁÖ¸ñ 17°³»ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global GaN Semiconductor Devices Market to Reach US$17.7 Billion by 2030

The global market for GaN Semiconductor Devices estimated at US$5.7 Billion in the year 2024, is expected to reach US$17.7 Billion by 2030, growing at a CAGR of 20.9% over the analysis period 2024-2030. Opto-Semiconductors, one of the segments analyzed in the report, is expected to record a 19.4% CAGR and reach US$6.7 Billion by the end of the analysis period. Growth in the Power Semiconductors segment is estimated at 21.1% CAGR over the analysis period.

The U.S. Market is Estimated at US$1.6 Billion While China is Forecast to Grow at 20.4% CAGR

The GaN Semiconductor Devices market in the U.S. is estimated at US$1.6 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$2.8 Billion by the year 2030 trailing a CAGR of 20.4% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 18.1% and 17.5% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 14.6% CAGR.

Global GaN Semiconductor Devices Market - Key Trends and Drivers Summarized

How Are GaN Semiconductor Devices Revolutionizing the Electronics and Power Industry?

Gallium Nitride (GaN) semiconductor devices are transforming the electronics and power industry by offering significant advantages over traditional silicon-based semiconductors. GaN, a wide bandgap material, allows for higher efficiency, faster switching speeds, and greater power density, making it ideal for applications in power electronics, RF (radio frequency) devices, and telecommunications. GaN devices, such as transistors, diodes, and amplifiers, operate at higher voltages and temperatures than silicon, which leads to enhanced performance and reduced energy losses. These qualities are particularly valuable in sectors where efficiency, miniaturization, and power management are critical, such as electric vehicles (EVs), 5G infrastructure, and renewable energy systems.

One of the most impactful uses of GaN semiconductor devices is in power conversion systems, where they offer a more efficient alternative to silicon-based components. GaN transistors, for instance, can switch at much higher frequencies, allowing for smaller, lighter, and more efficient power supplies. This is especially beneficial in industries like consumer electronics, where the demand for more compact, energy-efficient devices is constantly growing. GaN devices are also being adopted in high-performance applications, such as data centers and telecommunications, where they enable faster data transmission and lower power consumption, contributing to reduced operational costs and environmental impact. As the world shifts towards more energy-efficient technologies, GaN semiconductor devices are poised to play a key role in driving the future of electronics and power systems.

What Technological Advancements Are Enhancing the Performance of GaN Semiconductor Devices?

Several technological advancements are significantly enhancing the performance and scalability of GaN semiconductor devices, making them more viable for widespread use in various high-tech applications. One of the key advancements is the development of GaN-on-silicon (GaN-on-Si) technology, which allows GaN devices to be manufactured using standard silicon substrates. This innovation reduces production costs while maintaining the high-performance characteristics of GaN, enabling mass production of GaN devices at a lower price point. GaN-on-Si technology also facilitates integration with existing silicon-based systems, making it easier for industries to adopt GaN devices without significant changes to their manufacturing processes.

Another major advancement is the improvement in thermal management techniques for GaN devices. Since GaN operates at higher temperatures and power densities than silicon, effective heat dissipation is critical to maintaining device reliability and performance. New packaging technologies and materials are being developed to improve the thermal conductivity of GaN devices, allowing them to handle higher power loads without overheating. This is particularly important in high-power applications such as electric vehicles, aerospace, and industrial automation, where GaN devices are used in demanding environments. These advancements are helping to expand the range of applications for GaN semiconductor devices, making them suitable for everything from consumer electronics to heavy industrial equipment.

Additionally, advancements in fabrication processes are enabling the production of smaller and more efficient GaN transistors, diodes, and amplifiers. High-electron-mobility transistors (HEMTs) based on GaN technology, for example, are now capable of operating at frequencies beyond 100 GHz, making them ideal for next-generation telecommunications systems, including 5G networks and satellite communications. The ability to miniaturize GaN devices while maintaining high performance is opening up new possibilities for compact, high-efficiency power electronics and RF systems, driving innovation across multiple industries. These technological advancements are ensuring that GaN semiconductor devices continue to lead the way in energy-efficient, high-performance electronics.

How Are GaN Semiconductor Devices Supporting the Growth of Electric Vehicles, 5G, and Renewable Energy?

GaN semiconductor devices are playing a crucial role in supporting the growth of electric vehicles (EVs), 5G infrastructure, and renewable energy technologies by offering the high efficiency, power density, and performance needed for these rapidly evolving sectors. In the EV industry, GaN devices are enabling more efficient power conversion in onboard chargers, inverters, and power management systems. Their higher switching speeds and lower energy losses compared to traditional silicon components allow for lighter, more compact systems with improved energy efficiency, which in turn leads to longer driving ranges and faster charging times. GaN technology is helping automakers reduce the size and weight of power electronics in EVs, contributing to overall vehicle efficiency and performance, while also reducing the cost and complexity of EV systems.

In the telecommunications sector, GaN semiconductor devices are integral to the rollout of 5G networks, which require higher-frequency, higher-power RF components. GaN’s ability to operate at millimeter-wave frequencies (30-300 GHz) with high power efficiency makes it a perfect fit for 5G base stations, RF amplifiers, and small cell networks. These devices support faster data transmission, lower latency, and increased bandwidth, all of which are critical for the high-speed, low-latency requirements of 5G communication. GaN technology is also helping to reduce energy consumption in telecom infrastructure, a key factor as 5G networks expand globally.

In renewable energy systems, GaN devices are used to improve the efficiency of power converters and inverters, which are essential for converting energy from sources like solar panels and wind turbines into usable electricity. GaN’s high efficiency and low power loss enable more effective energy conversion, reducing waste and increasing the overall output of renewable energy systems. This makes GaN semiconductor devices crucial for optimizing the performance of solar inverters, wind power converters, and energy storage systems. As the world continues to transition to greener energy sources, GaN technology is helping to maximize the efficiency and reliability of renewable energy infrastructure.

What’s Driving the Growth of the GaN Semiconductor Device Market?

Several factors are driving the rapid growth of the GaN semiconductor device market, including the increasing demand for energy-efficient technologies, the expansion of electric vehicles, and the rollout of 5G networks. One of the primary drivers is the global push towards energy efficiency and sustainability. As industries, governments, and consumers seek to reduce energy consumption and minimize environmental impact, GaN devices are emerging as a key solution due to their ability to operate with higher efficiency and lower power losses than traditional silicon components. In sectors such as consumer electronics, automotive, and telecommunications, the demand for more energy-efficient power conversion systems is fueling the adoption of GaN semiconductor devices.

The rise of electric vehicles (EVs) is another major factor contributing to the growth of the GaN market. As automakers continue to invest in EV development and infrastructure, the need for more efficient power electronics is increasing. GaN devices offer significant advantages over silicon in terms of size, weight, and energy efficiency, making them an ideal choice for EV powertrains, charging systems, and power management. With governments worldwide setting ambitious targets for the adoption of electric vehicles, the demand for GaN-based power electronics is expected to surge in the coming years.

The global rollout of 5G networks is also a key driver of the GaN semiconductor device market. As telecom providers build out the infrastructure needed to support 5G’s higher frequencies and faster data rates, GaN devices are being widely adopted for their superior performance in RF applications. GaN’s ability to operate at high frequencies with minimal power loss makes it a vital component in 5G base stations, antennas, and RF amplifiers. The expansion of 5G is expected to drive sustained demand for GaN semiconductor devices as telecom operators continue to deploy the next generation of wireless communication networks.

What Future Trends Are Shaping the Development of GaN Semiconductor Devices?

Several emerging trends are shaping the future development of GaN semiconductor devices, including the growing integration of GaN with silicon, advancements in packaging technologies, and the rise of GaN in consumer electronics. One of the most notable trends is the increasing use of GaN-on-silicon (GaN-on-Si) technology, which combines the cost-effectiveness and scalability of silicon with the superior performance of GaN. This hybrid approach is making GaN devices more affordable and easier to integrate into existing silicon-based systems, driving broader adoption across industries. GaN-on-Si technology is particularly attractive in high-volume markets such as consumer electronics, where cost and performance need to be carefully balanced.

Another key trend is the advancement in packaging technologies for GaN devices. As GaN operates at higher power densities and temperatures than silicon, effective thermal management and packaging are essential for maintaining reliability and performance. Innovations in packaging, such as chip-scale packaging (CSP) and advanced thermal materials, are allowing GaN devices to handle higher power loads while reducing size and weight. These advancements are crucial for applications in electric vehicles, aerospace, and industrial automation, where space and thermal constraints are critical. Improved packaging solutions will further expand the use of GaN devices in demanding environments.

The increasing use of GaN in consumer electronics is another trend shaping the future of this market. GaN-based power adapters and chargers, for example, are becoming popular due to their compact size and high efficiency. GaN transistors allow for faster, cooler, and smaller power supplies, making them ideal for laptops, smartphones, and other portable devices. As consumers demand more compact and efficient electronics, GaN technology is poised to become a standard in the consumer electronics market. As these trends continue to develop, GaN semiconductor devices will play an increasingly important role in driving innovation and efficiency across a wide range of industries.

SCOPE OF STUDY:

The report analyzes the GaN Semiconductor Devices market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Segment (Opto-Semiconductors, Power Semiconductors, GaN Radio Frequency Devices); End-Use (Automotive, Consumer Electronics, Aerospace & Defense, Healthcare, Information & Communication Technology, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 17 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â