¼¼°èÀÇ ¼ö¾ÐÆÄ¼â À¯Ã¼ ¹× È­ÇÐÁ¦Ç° ½ÃÀå
Fracking Fluid and Chemicals
»óǰÄÚµå : 1650906
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 02¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 194 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,163,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,489,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼ö¾ÐÆÄ¼â À¯Ã¼ ¹× È­ÇÐÁ¦Ç° ¼¼°è ½ÃÀåÀº 2030³â±îÁö 904¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 550¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ºÐÇØ À¯Ã¼ ¹× È­ÇÐÁ¦Ç° ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö ¿¬Æò±Õ 8.6%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 904¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¼ö¼º À¯Ã¼ ºÎ¹®Àº CAGR 7.5%¸¦ ±â·ÏÇÏ¿© ºÐ¼® ±â°£ Á¾·á ½ÃÁ¡¿¡ 520¾ï ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯¼º À¯Ã¼ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 11.0%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº ¾à 143¾ï ´Þ·¯, Áß±¹Àº CAGR 11.5%·Î ¼ºÀå Àü¸Á

¹Ì±¹ÀÇ ¼ö¾ÐÆÄ¼â À¯Ã¼ ¹× È­ÇÐÁ¦Ç° ½ÃÀåÀº 2024³â 143¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 200¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2024-2030³â ºÐ¼® ±â°£ µ¿¾È 11.5%ÀÇ CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ª ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ µ¿¾È °¢°¢ 5.8% ¹× 6.8%ÀÇ CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ ¾à 6.4%ÀÇ CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼¼°è ¼ö¾ÐÆÄ¼â À¯Ã¼ ¹× È­ÇÐÁ¦Ç° ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ Á¤¸®

¼ö¾ÐÆÄ¼â À¯Ã¼ ¹× È­ÇÐÁ¦Ç°ÀÌ ¼ö¾ÐÆÄ¼â °øÁ¤À» ¾î¶»°Ô º¯È­½Ã۰í Àִ°¡?

¼ö¾ÐÆÄ¼â À¯Ã¼ ¹× È­ÇÐÁ¦Ç°Àº ¼ö¾ÐÆÄ¼â °øÁ¤¿¡ ÇʼöÀûÀ̸ç, ÁöÇÏ ±íÀº ¾Ï¼®Ãþ¿¡¼­ ¼®À¯ ¹× °¡½º ÃßÃâÀ» °­È­ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÀϹÝÀûÀ¸·Î ÇÁ·¡Å·À̶ó°í ºÒ¸®´Â ¼ö¾ÐÆÄ¼â´Â ¹°, ¸ð·¡, È­ÇÐÁ¦Ç°À» °í¾ÐÀ¸·Î È¥ÇÕÇÑ °ÍÀ» ¿ì¹°¿¡ ÁÖÀÔÇÏ¿© ¼ÎÀϾϿ¡ ±Õ¿­À» ¸¸µé¾î °¤ÇôÀִ źȭ¼ö¼Ò¸¦ ¹æÃâÇÏ°Ô ÇÕ´Ï´Ù. ¼ö¾ÐÆÄ¼â À¯Ã¼´Â ¸¶Âû °¨¼Ò, ÇÁ·ÎÆÇ(º¸Åë ¸ð·¡) ¿î¹Ý, À¯Á¤ ³» ¹ÚÅ׸®¾Æ ¹ø½Ä ¾ïÁ¦ µî ¿©·¯ °¡Áö ¿ªÇÒÀ» ÇÕ´Ï´Ù. À¯Ã¼¿Í È­ÇÐÁ¦Ç°ÀÇ ÀûÀýÇÑ Á¶ÇÕÀÌ ¾øÀ¸¸é °øÁ¤ÀÇ È¿À²ÀÌ ÇöÀúÇÏ°Ô ¶³¾îÁö°í »ý»ê ¼Óµµ°¡ ´À·ÁÁö°í ¿î¿µºñ¿ëÀÌ »ó½ÂÇÕ´Ï´Ù. ¼ö¾ÐÆÄ¼â À¯Ã¼ÀÇ ±¸¼ºÀº À¯Á¤ÀÇ ÁöÁúÇÐÀû Ư¼º¿¡ µû¶ó ´Ù¸£Áö¸¸ ÀϹÝÀûÀ¸·Î ¹°(90-95%), ÇÁ·ÎÆÇ(5-10%), È­ÇÐÁ¦Ç°(0.5-2%)·Î ±¸¼ºµË´Ï´Ù.

¼ö¾ÐÆÄ¼â À¯Ã¼¿¡ Æ÷ÇÔµÈ È­ÇÐÁ¦Ç°Àº À¯Ã¼ÀÇ Á¡¼ºÀ» ºÐÇØÇϰí, ÆÄÀÌÇÁÀÇ ºÎ½ÄÀ» ¹æÁöÇϰí, À¯Á¤À» ¾ÈÁ¤È­½ÃŰ´Â µî ƯÁ¤ ±â´ÉÀ» ¼öÇàÇϵµ·Ï ¼³°èµÇ¾î ÀÖ½À´Ï´Ù. °¡Àå ÀϹÝÀûÀ¸·Î »ç¿ëµÇ´Â È­ÇÐÁ¦Ç°¿¡´Â °ÖÈ­Á¦(À¯Ã¼¸¦ ³óÃà), »ì»ý¹°Á¦(¹ÚÅ׸®¾Æ¸¦ Á×ÀÓ), °è¸éȰ¼ºÁ¦(Ç¥¸éÀå·ÂÀ» ³·Ãã) µîÀÌ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ È­ÇÐÁ¦Ç°Àº À¯Ã¼°¡ À¯Á¤ ³»¿¡¼­ ´õ ½±°Ô À̵¿ÇÒ ¼ö ÀÖµµ·Ï Çϰí, ¾Ï¹Ý¿¡ Çü¼ºµÈ ±Õ¿­ÀÌ ¿­·ÁÀÖ¾î źȭ¼ö¼Ò°¡ ÁöÇ¥¸éÀ¸·Î È帣µµ·Ï º¸ÀåÇÕ´Ï´Ù. ÃÖ±Ù ¸î ³â µ¿¾È ¾÷°è´Â È¿À² Çâ»ó, ȯ°æ ¿µÇâ °¨¼Ò, »ç¿ë È­ÇÐÁ¦Ç°ÀÇ ¾ÈÀü¼º °­È­¿¡ ÁßÁ¡À» µÎ¾î ¼ö¾ÐÆÄ¼â À¯Ã¼ ¹èÇÕ¿¡ »ó´çÇÑ ÁøÀüÀ» ÀÌ·ç¾ú½À´Ï´Ù. ÇÁ·¡Å·ÀÌ °è¼ÓÇØ¼­ ¿¡³ÊÁö ȯ°æÀ» Áö¹èÇÏ´Â °¡¿îµ¥, À¯Ã¼¿Í È­ÇÐÁ¦Ç°ÀÇ ¿ªÇÒÀº À¯Á¤ÀÇ ¼º´ÉÀ» ÃÖÀûÈ­ÇÏ°í »õ·Î¿î ¼®À¯ ¹× °¡½º ¸ÅÀå·®À» ¹ß±¼ÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿ªÇÒÀ» °è¼ÓÇÒ °ÍÀÔ´Ï´Ù.

¼ö¾ÐÆÄ¼â À¯Ã¼ÀÇ È¯°æ ¿µÇâÀ» °³¼±ÇÏ´Â ±â¼ú Çõ½ÅÀ̶õ?

¼ö¾ÐÆÄ¼â À¯Ã¼¿Í È­ÇÐÁ¦Ç°ÀÌ È¯°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀº ÁöÇϼö ¿À¿°, ÁöÇ¥ À¯Ãâ, ƯÁ¤ È­ÇÐÁ¦Ç°ÀÇ µ¶¼º¿¡ ´ëÇÑ ¿ì·Á·Î ÀÎÇØ ³í¶õÀÇ ´ë»óÀÌ µÇ°í ÀÖ½À´Ï´Ù. ±× °á°ú, ¾÷°è´Â º¸´Ù ģȯ°æÀûÀÎ ¼ö¾ÐÆÄ¼â À¯Ã¼ °³¹ß¿¡ ¸¹Àº ÅõÀÚ¸¦ ÇØ¿Ô½À´Ï´Ù. ÀÌ ºÐ¾ßÀÇ Áß¿äÇÑ Çõ½Å Áß Çϳª´Â »ýºÐÇØ¼º ¶Ç´Â Àúµ¶¼º È­ÇÐÁ¦Ç°À» »ç¿ëÇÏ´Â "ģȯ°æ" ¼ö¾ÐÆÄ¼â À¯Ã¼·Î ÀüȯÇÏ´Â °ÍÀÔ´Ï´Ù. ÀÌ·¯ÇÑ À¯Ã¼´Â ³ôÀº ¼öÁØÀÇ ¼º´ÉÀ» À¯ÁöÇϸ鼭 ÇÁ·¡Å· °øÁ¤ÀÇ È¯°æÀû ¹ßÀÚ±¹À» ÃÖ¼ÒÈ­Çϵµ·Ï ¼³°èµÇ¾ú½À´Ï´Ù. ¿¹¸¦ µé¾î, ÀϺΠ»ç¾÷ÀÚµéÀº ±âÁ¸ÀÇ ÇÕ¼º È­ÇÐÁ¦Ç° ´ë½Å ½Ä¹° À¯·¡ ÷°¡Á¦ ¹× ±âŸ õ¿¬ ¹°ÁúÀ» »ç¿ëÇϱ⠽ÃÀÛÇß½À´Ï´Ù. ÀÌ·¯ÇÑ È¯°æ ģȭÀûÀÎ ´ëü ¹°ÁúÀº ÁöÇϼö ¿À¿° °¡´É¼ºÀ» ÁÙÀÌ°í Æó¼ö󸮸¦ ´õ ½±°í À§ÇèÇÏÁö ¾Ê°Ô ÇÏ´Â µ¥ µµ¿òÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.

¼ö¾ÐÆÄ¼â À¯Ã¼·Î ÀÎÇÑ È¯°æ ¿µÇâÀ» ÁÙÀ̱â À§ÇÑ ¶Ç ´Ù¸¥ Å« ÁøÀüÀº ¹°ÀÇ ÀçȰ¿ë°ú Àç»ç¿ë ±â¼úÀÇ ÀÌ¿ë È®´ëÀÔ´Ï´Ù. ÇÁ·¡Å· ÀÛ¾÷¿¡´Â ¸¹Àº ¾çÀÇ ¹°ÀÌ ÇÊ¿äÇϸç, ¹°ÀÌ ºÎÁ·ÇÑ Áö¿ª¿¡¼­´Â Áö¿ª ¼öÀÚ¿ø °í°¥ÀÌ ¿ì·ÁµÇ°í ÀÖ½À´Ï´Ù. ÀÌ ¹®Á¦¸¦ ÇØ°áÇϱâ À§ÇØ ÇöÀç ¸¹Àº ¿¡³ÊÁö ±â¾÷µéÀÌ Ã¤±¼¿¡ »ç¿ëµÈ ¹°À» ó¸®Çϰí Àç»ç¿ëÇÏ´Â ¹° ÀçȰ¿ë ½Ã½ºÅÛÀ» µµÀÔÇÏ¿© ´ã¼ö ¼Òºñ·®À» Å©°Ô ÁÙ¿´½À´Ï´Ù. °æ¿ì¿¡ µû¶ó¼­´Â ¾×ü ÇÁ·ÎÆÇÀ̳ª ÀÌ»êȭź¼Ò µî ¹°À» »ç¿ëÇÏÁö ¾Ê´Â ¼ö¾ÐÆÄ¼â À¯Ã¼¸¦ ½ÇÇèÇÏ´Â °æ¿ìµµ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº °­È­µÈ ±ÔÁ¦¿Í »çȸÀû °¨½ÃÀÇ Áõ°¡¿Í ÇÔ²² ¾÷°è¸¦ º¸´Ù Áö¼Ó°¡´ÉÇÑ °üÇàÀ¸·Î À̲ø°í ÀÖ½À´Ï´Ù. ¿©ÀüÈ÷ °úÁ¦´Â ³²¾ÆÀÖÁö¸¸, ¼ö¾ÐÆÄ¼â¿Í °ü·ÃµÈ ȯ°æÀû À§ÇèÀ» ÁÙÀ̱â À§ÇØ ¼ö¾ÐÆÄ¼â À¯Ã¼¿Í È­ÇÐÁ¦Ç°ÀÇ ÁøÈ­°¡ µµ¿òÀÌ µÇ°í ÀÖ½À´Ï´Ù.

¼ö¾ÐÆÄ¼â È­ÇÐÁ¦Ç°Àº ¿ì¹°ÀÇ ¼º´É°ú È¿À²¼ºÀ» ¾î¶»°Ô Çâ»ó½Ãų ¼ö ÀÖÀ»±î?

¼ö¾ÐÆÄ¼â È­ÇÐÁ¦Ç°Àº ƯÈ÷ ¼ÎÀϰú °°Àº ºñÀüÅëÀûÀÎ ÁöÃþ¿¡¼­ ¼®À¯ ¹× °¡½ºÁ¤ÀÇ ¼º´É°ú È¿À²À» ÃÖÀûÈ­ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ È­ÇÐÁ¦Ç°Àº ¾Ï¼®¿¡ ±Õ¿­À» »ý¼ºÇϰí À¯ÁöÇÏ´Â µ¥ ÇÊ¿äÇÑ À¯Ã¼ Ư¼ºÀ» °­È­ÇÏ¿© źȭ¼ö¼ÒÀÇ ÃÖ´ë ȸ¼ö¸¦ º¸ÀåÇϵµ·Ï ¼³°èµÇ¾î ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, °ÖÈ­Á¦´Â ¼ö¾ÐÆÄ¼â À¯Ã¼¸¦ µÎ²®°Ô Çϰí ÇÁ·ÎÆÇÆ®¸¦ ±Õ¿­ ±í¼÷ÀÌ ¿î¹ÝÇÏ´Â µ¥ Áß¿äÇÕ´Ï´Ù. ÇÁ·ÎÆÇÆ®°¡ ÅðÀûµÇ¾î °ÖÀÌ ºÒÇÊ¿äÇÏ°Ô µÇ¸é, ºê·¹ÀÌÄ¿¶ó´Â È­ÇÐÁ¦Ç°À» ÷°¡ÇÏ¿© À¯Ã¼¸¦ ¾ã°Ô ¸¸µé¾î À¯Á¤¿¡¼­ ½±°Ô À¯ÃâµÉ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ³óÃà°ú °¨Á¡ÀÇ ±ÕÇü°ú ºÎ½Ä ¹æÁöÁ¦ ¹× ½ºÄÉÀÏ ¹æÁöÁ¦¿Í °°Àº ´Ù¸¥ ÷°¡Á¦ÀÇ »ç¿ëÀº À¯Á¤ÀÇ ±â´ÉÀ» À¯ÁöÇÏ¿© Àå±âÀûÀ¸·Î »ý»ê·®À» ±Ø´ëÈ­ÇÕ´Ï´Ù.

¼ö¾ÐÆÄ¼â È­ÇÐÁ¦Ç°ÀÇ ¶Ç ´Ù¸¥ Áß¿äÇÑ ºÐ·ùÀÎ ¸¶ÂûÀú°¨Á¦ÀÇ ¿ªÇÒÀº °ú¼ÒÆò°¡ÇÒ ¼ö ¾ø½À´Ï´Ù. ½½¸¯¿öÅÍ Ã·°¡Á¦·Î ¾Ë·ÁÁø ¸¶Âû °¨¼ÒÁ¦´Â À¯Ã¼¿Í ÆÄÀÌÇÁ »çÀÌÀÇ ¸¶ÂûÀ» °¨¼Ò½ÃÄÑ À¯Á¤ ³» À¯Ã¼ ÁÖÀÔÀ» º¸´Ù ¿øÈ°ÇÏ°í ºü¸£°Ô ÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù. À̸¦ ÅëÇØ ÀåºñÀÇ ¸¶¸ð¿Í ¼Õ»óÀ» ÁÙÀÏ ¼ö ÀÖÀ» »Ó¸¸ ¾Æ´Ï¶ó ÀÛ¾÷ÀÚ°¡ ´õ ºü¸¥ ¼Óµµ·Î À¯Ã¼¸¦ ÆßÇÎÇÒ ¼ö ÀÖ¾î ´õ ³ÐÀº ¹üÀ§ÀÇ ¾Ï¼®À» ÆÄ¼âÇÏ°í »ý»ê ¼öÀ²À» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ È­ÇÐÁ¦Ç°ÀÇ °­È­´Â ¼ö¾ÐÆÄ¼âÀÇ È¿À²À» ³ôÀ̰í, ¿ì¹°ÀÇ ¼ö¸íÀ» ¿¬ÀåÇϸç, »ý»êÀ²À» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ¼ÎÀÏÃþ¿¡¼­ ä±¼ÀÌ ´õ¿í ¾î·Á¿öÁü¿¡ µû¶ó, ¼ö¾ÐÆÄ¼â È­ÇÐÁ¦Ç°ÀÇ Á¤È®ÇÑ ¹èÇÕ°ú Àû¿ëÀº ¼®À¯ ¹× °¡½º ä±¼ÀÇ ¹Ì·¡¿¡ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

¼ö¾ÐÆÄ¼â À¯Ã¼ ¹× È­ÇÐÁ¦Ç° ½ÃÀåÀÇ ¼ºÀå ¿øµ¿·ÂÀº?

¼ö¾ÐÆÄ¼â À¯Ã¼ ¹× È­ÇÐÁ¦Ç° ½ÃÀåÀÇ ¼ºÀåÀº ¿¡³ÊÁö ¼ö¿ä Áõ°¡, ½ÃÃß ±â¼úÀÇ ¹ßÀü, ºñÀüÅëÀû ¼®À¯ ¹× °¡½º ¸ÅÀå·®¿¡¼­ ¼ö¾ÐÆÄ¼âÀÇ »ç¿ë È®´ë µî ¿©·¯ ¿äÀο¡ ±âÀÎÇÕ´Ï´Ù. ºÏ¹Ì, ƯÈ÷ ¹Ì±¹ÀÇ ¼ÎÀÏ ºÕÀº ÀÌ ½ÃÀåÀ» Å©°Ô °ßÀÎÇϰí ÀÖ½À´Ï´Ù. ¼ö¾ÐÆÄ¼â¸¦ ÅëÇØ ¸·´ëÇÑ ¾çÀÇ ¼ÎÀÏ ¿ÀÀϰú °¡½º¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ°Ô µÇ¸é¼­, ¿¡³ÊÁö ȸ»çµéÀº ÀÌ·¯ÇÑ µµÀüÀûÀÎ ÁöÃþ¿¡¼­ »ý»êÀ» ÃÖÀûÈ­Çϱâ À§ÇØ ¼ö¾ÐÆÄ¼â À¯Ã¼¿Í È­ÇÐÁ¦Ç°ÀÇ »ç¿ëÀ» ´Ã¸®°í ÀÖ½À´Ï´Ù. ´õ ¸¹Àº ÆÄ¼â ´Ü°è¿Í ´ë·®ÀÇ À¯Ã¼¸¦ ÇÊ¿ä·Î ÇÏ´Â ´õ ±ä Ⱦ´Ü À¯Á¤À» ½ÃÃßÇÏ´Â Ãß¼¼µµ ¼ö¾ÐÆÄ¼â È­ÇÐÁ¦Ç°¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. »ç¾÷ÀÚµéÀÌ À¯Á¤ÀÇ »ý»ê¼ºÀ» ±Ø´ëÈ­Çϱâ À§ÇØ ³ë·ÂÇÏ´Â °¡¿îµ¥, È¿À²¼ºÀ» ³ôÀÌ°í ºñ¿ëÀ» Àý°¨ÇÒ ¼ö Àִ ÷´Ü È­ÇÐ Á¦Á¦¿¡ ´ëÇÑ ¼ö¿ä´Â ´õ¿í Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

±ÔÁ¦ ´ç±¹ÀÇ ¾Ð·Â°ú ¼ö¾ÐÆÄ¼â°¡ ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ ´ëÇÑ »çȸÀû ¿ì·Á¿¡ ÈûÀÔ¾î, º¸´Ù ģȯ°æÀûÀÎ ¼ö¾ÐÆÄ¼â¿ë À¯Ã¼¸¦ ã´Â ¿òÁ÷ÀÓµµ ¶Ç ´Ù¸¥ Áß¿äÇÑ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó °í¼º´ÉÀ» À¯ÁöÇϸ鼭µµ »ýŰ迡 ´ëÇÑ ÇÇÇØ¸¦ ÃÖ¼ÒÈ­Çϵµ·Ï ¼³°èµÈ 'ģȯ°æ' ¼ö¾ÐÆÄ¼â È­ÇÐÁ¦Ç°¿¡ ´ëÇÑ ¿¬±¸°³¹ßÀÌ È°¹ßÈ÷ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ¹°ÀÇ ÀçȰ¿ë°ú ´ëü À¯Ã¼ °³¹ß¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁø °Íµµ ¼ö¾ÐÆÄ¼â È­ÇÐÁ¦Ç° ½ÃÀåÀÇ ±â¼ú Çõ½Å¿¡ »õ·Î¿î ±æÀ» ¿­¾ú½À´Ï´Ù. ¶ÇÇÑ, ¼®Åº°ú ¼®À¯¿¡ ºñÇØ ûÁ¤¿¡³ÊÁö¿øÀΠõ¿¬°¡½º·ÎÀÇ Àüȯ, ƯÈ÷ õ¿¬°¡½º°¡ Àç»ý¿¡³ÊÁö·ÎÀÇ ÀüȯÀ» À§ÇÑ ¿¬·á·Î °£ÁֵǴ Áö¿ª¿¡¼­´Â ÆÄ¼â ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀÎÀº È­ÇаøÇÐÀÇ ¹ßÀü°ú ÇÔ²² ±â¾÷µéÀÌ Ã¤±¼ È¿À²À» ³ôÀ̰í ȯ°æÀû À§ÇèÀ» ÁÙÀÌ·Á´Â ³ë·ÂÀ» °è¼ÓÇϸ鼭 ¼ö¾ÐÆÄ¼â À¯Ã¼ ¹× È­ÇÐÁ¦Ç° ½ÃÀåÀ» ¹ßÀü½Ã۰í ÀÖ½À´Ï´Ù.

¼ö¾ÐÆÄ¼â È­ÇÐÁ¦Ç° »ê¾÷¿¡¼­ ÇâÈÄ ¾î¶² Ãß¼¼¸¦ º¼ ¼ö ÀÖÀ»±î?

¼ö¾ÐÆÄ¼â À¯Ã¼ ¹× È­ÇÐÁ¦Ç° ½ÃÀåÀÇ ¹Ì·¡´Â Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ °ü½É, ±â¼ú Çõ½Å, ¼¼°è ¿¡³ÊÁö ¼ö¿ä µî ¸î °¡Áö »õ·Î¿î Æ®·»µå¿¡ ÀÇÇØ Çü¼ºµÉ °ÍÀÔ´Ï´Ù. °¡Àå Áß¿äÇÑ Æ®·»µå Áß Çϳª´Â º¸´Ù ģȯ°æÀûÀ̰í Áö¼Ó°¡´ÉÇÑ È­ÇÐÁ¦Ç°ÀÇ °³¹ßÀÌ ÁøÇàµÇ°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ±ÔÁ¦ ±â°ü°ú ȯ°æ ´Üü ¸ðµÎ ÇÁ·¡Å· »ê¾÷ÀÌ È¯°æ ¹ßÀÚ±¹À» ÁÙ¿©¾ß ÇÑ´Ù´Â ¾Ð·ÂÀ» °¡Çϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. »ýºÐÇØ¼º ¹× Àúµ¶¼º È­ÇÐÁ¦Ç°À¸·ÎÀÇ ÀüȯÀº ½ÃÀå ¼ö¿ä¿Í ±ÔÁ¦ ¿ä°Ç ¸ðµÎ¿¡ ÀÇÇØ °¡¼ÓÈ­µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ, ³ª³ë±â¼úÀÇ ¹ßÀüÀº ¼ö¾ÐÆÄ¼âÀÇ È¿À²¼º°ú È¿°ú¸¦ Çâ»ó½Ãų ¼ö ÀÖ´Â ³ª³ëÀÔÀÚÀÇ Å½»öÀ» ÅëÇØ ¼ö¾ÐÆÄ¼â È­ÇÐÁ¦Ç°ÀÇ ±¸¼º¿¡ Çõ¸íÀ» ÀÏÀ¸Å³ ż¼¸¦ °®Ãß°í ÀÖ½À´Ï´Ù. ³ª³ëÀÔÀÚ´Â ¼ö¾ÐÆÄ¼âÀÇ È¿À²°ú È¿°ú¸¦ Çâ»ó½ÃŰ´Â ´É·Â¿¡ ´ëÇØ ¿¬±¸µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀÔÀÚ´Â ±Õ¿­À» ¿­°í, À¯Ã¼ÀÇ Á¡µµ¸¦ ³·Ã߸ç, À¯Á¤ ³» ¸·ÈûÀ» ¹æÁöÇÏ´Â ÇÁ·ÎÆÇÆ®ÀÇ ´É·ÂÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ »õ·Î¿î Æ®·»µå´Â ¼ö¾ÐÆÄ¼â À¯Ã¼ ¹× È­ÇÐÁ¦Ç°ÀÇ »ç¿ëÀ» ÃÖÀûÈ­Çϱâ À§ÇÑ µðÁöÅÐ ±â¼ú°ú µ¥ÀÌÅÍ ºÐ¼®ÀÇ ºÎ»óÀÔ´Ï´Ù. ½Ç½Ã°£ ¸ð´ÏÅ͸µ°ú ¿¹Ãø ºÐ¼®À» ÅëÇÕÇÔÀ¸·Î½á ¿î¿µÀÚ´Â °¢ À¯Á¤ÀÇ Æ¯Á¤ ÁöÁúÇÐÀû Á¶°Ç¿¡ ¸Â°Ô ¼ö¾ÐÆÄ¼â À¯Ã¼ÀÇ È­ÇÐ ¼ººÐÀ» Á¶Á¤ÇÏ¿© È¿À²¼ºÀ» °³¼±ÇÏ°í ³¶ºñ¸¦ ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¥ÀÌÅÍ ±â¹Ý Á¢±Ù ¹æ½ÄÀº º¸´Ù Á¤È®ÇÑ ÇÁ·¡Å·À» °¡´ÉÇÏ°Ô Çϰí, ÇÊ¿äÇÑ È­ÇÐÁ¦Ç°ÀÇ ÃÑ·®À» ÁÙ¿© °øÁ¤ÀÇ È¯°æÀû Áö¼Ó°¡´É¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. ¶ÇÇÑ, ½ÅÈï±¹À» Áß½ÉÀ¸·Î õ¿¬°¡½º¿¡ ´ëÇÑ ¼¼°è ¼ö¿ä°¡ Áö¼ÓÀûÀ¸·Î Áõ°¡ÇÔ¿¡ µû¶ó »õ·Î¿î ¸ÅÀå·®À» ¹ß±¼ÇÒ ¼ö ÀÖ´Â ÇÁ·¡Å· ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â ¿¬±¸°³¹ß¿¡ ´ëÇÑ ÅõÀÚ¸¦ ´õ¿í ÃËÁøÇϰí, ¼ö¾ÐÆÄ¼â À¯Ã¼ ¹× È­ÇÐÁ¦Ç° ½ÃÀåÀÌ ¼¼°è ¿¡³ÊÁö »ê¾÷¿¡¼­ ¿ªµ¿ÀûÀÌ°í ºü¸£°Ô ÁøÈ­ÇÏ´Â ºÐ¾ß·Î ÀÚ¸®¸Å±èÇÒ ¼ö ÀÖµµ·Ï ÇÒ °ÍÀÔ´Ï´Ù.

ºÎ¹®

ºÎ¹®(¼ö¼º À¯Ã¼, À¯¼º À¯Ã¼, °Åǰ À¯Ã¼, ±âŸ ºÎ¹®)

Á¶»ç ´ë»ó ±â¾÷ »ç·Ê(ÃÑ 42°Ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Fracking Fluid and Chemicals Market to Reach US$90.4 Billion by 2030

The global market for Fracking Fluid and Chemicals estimated at US$55.0 Billion in the year 2024, is expected to reach US$90.4 Billion by 2030, growing at a CAGR of 8.6% over the analysis period 2024-2030. Water-Based Fluids, one of the segments analyzed in the report, is expected to record a 7.5% CAGR and reach US$52.0 Billion by the end of the analysis period. Growth in the Oil-Based Fluids segment is estimated at 11.0% CAGR over the analysis period.

The U.S. Market is Estimated at US$14.3 Billion While China is Forecast to Grow at 11.5% CAGR

The Fracking Fluid and Chemicals market in the U.S. is estimated at US$14.3 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$20.0 Billion by the year 2030 trailing a CAGR of 11.5% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 5.8% and 6.8% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 6.4% CAGR.

Global Fracking Fluid and Chemicals Market - Key Trends and Drivers Summarized

How Are Fracking Fluids and Chemicals Transforming the Hydraulic Fracturing Process?

Fracking fluids and chemicals are indispensable to the hydraulic fracturing process, playing a critical role in enhancing the extraction of oil and gas from deep underground rock formations. Hydraulic fracturing, commonly known as fracking, involves injecting a high-pressure mixture of water, sand, and chemicals into wells to create fissures in shale rock, releasing trapped hydrocarbons. The fracking fluid serves multiple purposes, including reducing friction, transporting the proppant (typically sand), and controlling bacterial growth within the well. Without the proper combination of fluids and chemicals, the process would be significantly less efficient, resulting in lower production rates and higher operational costs. The composition of fracking fluids varies based on the geological characteristics of the well, but it typically consists of water (90-95%), proppant (5-10%), and chemicals (0.5-2%).

The chemicals in fracking fluids are designed to perform specific functions, such as breaking down the viscosity of the fluid, preventing pipe corrosion, and stabilizing the well. Some of the most common chemicals used include gelling agents (to thicken the fluid), biocides (to kill bacteria), and surfactants (to reduce surface tension). These chemicals enable the fluid to travel through the wellbore more easily and ensure that the fractures created in the rock remain open, allowing hydrocarbons to flow to the surface. In recent years, the industry has made significant advancements in the formulation of fracking fluids, with a focus on improving efficiency, reducing environmental impact, and enhancing the safety of the chemicals used. As fracking continues to dominate the energy landscape, the role of fluids and chemicals will remain essential in optimizing well performance and unlocking new reserves of oil and gas.

What Innovations Are Improving the Environmental Impact of Fracking Fluids?

The environmental impact of fracking fluids and chemicals has been a contentious issue, with concerns surrounding groundwater contamination, surface spills, and the toxicity of certain chemicals. As a result, the industry has invested heavily in the development of more environmentally friendly fracking fluids. One of the key innovations in this area has been the shift toward "green" fracking fluids, which use biodegradable or less harmful chemicals. These fluids are designed to minimize the ecological footprint of the fracking process while maintaining high levels of performance. For instance, some operators have started using plant-based additives and other natural substances in place of traditional synthetic chemicals. These green alternatives help reduce the potential for groundwater contamination and make the disposal of wastewater easier and less hazardous.

Another major advancement in reducing the environmental impact of fracking fluids is the increased use of water recycling and reuse technologies. Fracking operations require vast quantities of water, and in water-scarce regions, this has raised concerns about the depletion of local water resources. To address this issue, many energy companies now implement water recycling systems that treat and reuse the water used in fracking, significantly reducing freshwater consumption. In some cases, companies are also experimenting with non-water-based fracking fluids, such as liquid propane or carbon dioxide, which can reduce water use altogether. These technological innovations, combined with stricter regulations and increased public scrutiny, are driving the industry toward more sustainable practices. Although challenges remain, the evolution of fracking fluids and chemicals is helping to mitigate the environmental risks associated with hydraulic fracturing.

How Are Fracking Chemicals Enhancing Well Performance and Efficiency?

Fracking chemicals are instrumental in optimizing the performance and efficiency of oil and gas wells, particularly in unconventional formations like shale. These chemicals are designed to enhance the fluid properties needed to create and maintain fractures in the rock, ensuring maximum hydrocarbon recovery. For example, gelling agents, which thicken the fracking fluid, are crucial for carrying proppant deep into the fractures. Once the proppant is deposited and the gel is no longer needed, chemicals known as breakers are added to thin the fluid back down, allowing it to flow easily out of the well. This balance of thickening and thinning, along with the use of other additives like corrosion inhibitors and scale preventers, ensures that the well remains functional and that production rates are maximized over the long term.

The role of friction reducers, another important class of fracking chemicals, cannot be understated. Friction reducers, often known as slickwater additives, lower the friction between the fluid and the pipe, allowing for smoother and faster injection of the fracking fluid into the well. This not only reduces wear and tear on the equipment but also enables operators to pump fluids at higher rates, which can result in more extensive fracturing of the rock and higher production yields. These chemical enhancements have made it possible to increase the efficiency of hydraulic fracturing, leading to longer well lifespans and higher production rates. As shale formations become more challenging to extract from, the precise formulation and application of fracking chemicals will continue to play a pivotal role in the future of oil and gas extraction.

What’s Driving the Growth of the Fracking Fluid and Chemicals Market?

The growth in the fracking fluid and chemicals market is driven by several factors, including the rising demand for energy, advancements in drilling technology, and the expanding use of hydraulic fracturing in unconventional oil and gas reserves. The shale boom in North America, particularly in the United States, has been a significant driver of this market. With vast reserves of shale oil and gas becoming accessible through hydraulic fracturing, energy companies have increased their use of fracking fluids and chemicals to optimize production from these challenging formations. The trend toward drilling longer lateral wells, which require more fracking stages and higher volumes of fluid, has also contributed to the growing demand for fracking chemicals. As operators strive to maximize well productivity, the need for advanced chemical formulations that can enhance efficiency and reduce costs is expected to rise further.

Another key driver is the push for more environmentally friendly fracking fluids, spurred by regulatory pressure and public concern over the environmental impact of fracking. This has led to increased research and development in "green" fracking chemicals, which are designed to minimize ecological damage while maintaining high performance. The growing emphasis on water recycling and the development of alternative fluids have also opened new avenues for innovation in the fracking chemicals market. Additionally, the global shift toward natural gas as a cleaner energy source compared to coal and oil has bolstered demand for fracking technologies, particularly in regions where natural gas is seen as a transition fuel in the move toward renewable energy. These factors, coupled with advancements in chemical engineering, are driving the fracking fluid and chemicals market forward, as companies continue to seek ways to improve extraction efficiency and reduce environmental risks.

What Future Trends Are Emerging in the Fracking Chemicals Industry?

The future of the fracking fluids and chemicals market is set to be shaped by several emerging trends, including a continued focus on sustainability, technological innovation, and global energy demand. One of the most significant trends is the ongoing development of greener and more sustainable chemicals, as both regulatory bodies and environmental groups place increasing pressure on the fracking industry to reduce its environmental footprint. The shift toward biodegradable and less toxic chemicals is expected to accelerate, driven by both market demand and regulatory requirements. In addition, advancements in nanotechnology are poised to revolutionize the composition of fracking chemicals, with nanoparticles being explored for their ability to improve the efficiency and effectiveness of hydraulic fracturing. These particles can potentially enhance the proppant’s ability to hold open fractures, reduce the viscosity of fluids, and prevent the formation of blockages within the well.

Another emerging trend is the rise of digital technologies and data analytics in optimizing the use of fracking fluids and chemicals. Through the integration of real-time monitoring and predictive analytics, operators can tailor the chemical composition of fracking fluids to the specific geological conditions of each well, improving efficiency and reducing waste. This data-driven approach enables more precise fracking, reducing the overall volume of chemicals needed and improving the environmental sustainability of the process. Additionally, as the global demand for natural gas continues to rise, particularly in developing economies, the need for fracking technologies that can unlock new reserves is expected to grow. This will fuel further investment in research and development, ensuring that the fracking fluids and chemicals market remains a dynamic and rapidly evolving sector in the global energy industry.

SCOPE OF STUDY:

The report analyzes the Fracking Fluid and Chemicals market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Segment (Water-Based Fluids, Oil-Based Fluids, Foam-Based Fluids, Other Segments)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 42 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â