¼¼°èÀÇ µ¶¸³Çü 5G ³×Æ®¿öÅ© ½ÃÀå
Standalone 5G Network
»óǰÄÚµå : 1644255
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 01¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 170 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,464,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 25,393,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ µ¶¸³Çü 5G ³×Æ®¿öÅ© ½ÃÀåÀº 2030³â±îÁö 337¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 26¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ µ¶¸³Çü 5G ³×Æ®¿öÅ© ½ÃÀåÀº 2024-2030³â¿¡ CAGR 53.3%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 337¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ µ¶¸³Çü 5G ³×Æ®¿öÅ© ¼Ö·ç¼ÇÀº CAGR 50.1%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 246¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. µ¶¸³Çü 5G ³×Æ®¿öÅ© ¼­ºñ½º ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ÀÇ CAGR·Î 65.3%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 6¾ï 8,400¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 50.6%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ µ¶¸³Çü 5G ³×Æ®¿öÅ© ½ÃÀåÀº 2024³â¿¡ 6¾ï 8,400¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 49¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀº 50.6%¿¡ ´ÞÇÕ´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 47.9%¿Í 46.2%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 36.8%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ µ¶¸³Çü 5G ³×Æ®¿öÅ© ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

µ¶¸³Çü 5G ³×Æ®¿öÅ©°¡ Ä¿³ØÆ¼ºñƼÀÇ °ÔÀÓ Ã¼ÀÎÀú°¡ µÇ´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

µ¶¸³Çü(SA) 5G ³×Æ®¿öÅ©´Â µ¥ÀÌÅÍ Áý¾àÀû ¿ëµµ¸¦ À§ÇØ ºñ±³ÇÒ ¼ö ¾ø´Â ¼Óµµ, ¾ÈÁ¤¼º, ¿ë·®À» Á¦°øÇÔÀ¸·Î½á Åë½Å ȯ°æ¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ±âÁ¸ 4G ÀÎÇÁ¶ó¿¡ ÀÇÁ¸ÇÏ´Â ºñÇ¥ÁØ(NSA) 5G¿Í ´Þ¸® SA 5G´Â Ŭ¶ó¿ìµå ³×ÀÌÆ¼ºê 5G Äھ Ȱ¿ëÇÏ¿© µ¶¸³ÀûÀ¸·Î ÀÛµ¿ÇÏ¿© ±× ÀáÀç·ÂÀ» ÃÖ´ëÇÑ ¹ßÈÖÇÕ´Ï´Ù. ÀÌ ¾ÆÅ°ÅØÃ³´Â ÃÊÀúÁö¿¬, IoT µð¹ÙÀ̽º¸¦ À§ÇÑ ´ë±Ô¸ð ¿¬°á¼º, °í±Þ ³×Æ®¿öÅ© ½½¶óÀÌ½Ì ±â´ÉÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â´ÉÀº ÀÚÀ²ÁÖÇàÂ÷, ½º¸¶Æ® ÆÑÅ丮, ¸ôÀÔÇü AR/VR °æÇè µî Â÷¼¼´ë ±â¼ú¿¡ Àü·ÂÀ» °ø±ÞÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.

SA 5G ³×Æ®¿öÅ©¿¡ ´ëÇÑ ¼ö¿ä´Â Ä¿³ØÆ¼µå µð¹ÙÀ̽º¿Í µ¥ÀÌÅͺ£À̽º ¿ëµµÀÇ ±Þ¼ÓÇÑ È®»êÀ» Áö¿øÇÏ´Â °­·ÂÇÑ ¿¬°á ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÇコÄɾî, Á¦Á¶, ¿î¼Û µî ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ ±â¾÷Àº ½Ç½Ã°£ ÀÀ´ä¼º°ú ¾ÈÁ¤¼ºÀÌ ¿ä±¸µÇ´Â ¹Ì¼Ç Å©¸®Æ¼ÄÃÇÑ ¿ëµµ¸¦ ±¸ÇöÇϱâ À§ÇØ SA 5G¸¦ äÅÃÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ SA 5G·ÎÀÇ ÀüȯÀº ÇÁ¶óÀ̺ø ³×Æ®¿öÅ© ¹× Çâ»óµÈ ¼ÒºñÀÚ ¼­ºñ½º µî »õ·Î¿î ¼öÀÔ¿øÀ» ÅëÇØ 5G ÅõÀÚ·Î ¸ÅÃâÀ» âÃâÇϰíÀÚ ÇÏ´Â »ç¾÷Àڵ鿡°Ô ÇʼöÀûÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ÆÐ·¯´ÙÀÓÀÇ º¯È­´Â µðÁöÅÐ °æÁ¦¸¦ Çü¼ºÇÏ´Â µ¥ ÀÖÀ¸¸ç, SA 5GÀÇ Çõ½Å °¡´É¼ºÀ» °­Á¶Çϰí ÀÖ½À´Ï´Ù.

±â¼úÀº ¾î¶»°Ô µ¶¸³Çü 5G ³×Æ®¿öÅ©ÀÇ ´É·ÂÀ» Çü¼ºÇϴ°¡?

µ¶¸³Çü 5G ³×Æ®¿öÅ©¸¦ Áö¿øÇÏ´Â ±â¼ú ¹ßÀüÀº 5G ³×Æ®¿öÅ©ÀÇ Çõ½Å ´É·ÂÀÇ ÇÙ½ÉÀÔ´Ï´Ù. Ŭ¶ó¿ìµå ³×ÀÌÆ¼ºê 5G ÄÚ¾î ¾ÆÅ°ÅØÃ³´Â ¿ªµ¿ÀûÀ̰í È®Àå °¡´ÉÇÑ ³×Æ®¿öÅ© °ü¸®¸¦ °¡´ÉÇÏ°Ô Çϸç, ¼­ºñ½º ÇÁ·Î¹ÙÀÌ´õ°¡ ³×Æ®¿öÅ© ½½¶óÀÌ½Ì ¹× ¿¡Áö ÄÄÇ»ÆÃ°ú °°Àº °í±Þ ±â´ÉÀ» µµÀÔÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù. ƯÈ÷ ³×Æ®¿öÅ© ½½¶óÀ̽ÌÀº ´ÜÀÏ ¹°¸®Àû ³×Æ®¿öÅ©¸¦ ÃÊÀúÁö¿¬ ÃÊÀúÁö¿¬ Åë½Å(URLLC) ¹× ´ë±Ô¸ð ¸Ó½ÅÇü Åë½Å(mMTC)°ú °°Àº ƯÁ¤ ÀÌ¿ë »ç·Ê¿¡ ¸Â°Ô ¿©·¯ °³ÀÇ °¡»ó ³×Æ®¿öÅ©·Î ºÐÇÒÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ À¯¿¬¼ºÀº »ê¾÷ ÀÚµ¿È­¿¡¼­ ½º¸¶Æ® ½ÃƼ ÀÎÇÁ¶ó¿¡ À̸£±â±îÁö ´Ù¾çÇÑ ¿ëµµ¸¦ Áö¿øÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.

SA 5G¸¦ ½ÇÇöÇÏ´Â ¶Ç ´Ù¸¥ Áß¿äÇÑ ±â¼ú ¿ä¼Ò´Â ¹Ð¸®¹ÌÅÍÆÄ(mmWave) ½ºÆåÆ®·³À¸·Î, Ãʰí¼Ó µ¥ÀÌÅÍ Àü¼Û°ú ÃÖ¼Ò Áö¿¬¿¡ ÇÊ¿äÇÑ ³ÐÀº ´ë¿ªÆøÀ» Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ Massive MIMO(Multiple Input, Multiple Output) ¹× ºöÆ÷¹Ö ±â¼úÀº ³×Æ®¿öÅ©ÀÇ È¿À²¼º°ú ¿ë·®À» Çâ»ó½Ã۰í Àα¸ ¹ÐÁý Áö¿ª¿¡¼­µµ ¾ÈÁ¤ÀûÀÎ ¼º´ÉÀ» º¸ÀåÇϸç, SA 5G ³×Æ®¿öÅ©¿¡ AI¿Í ¸Ó½Å·¯´×À» ÅëÇÕÇÏ¿© ¸®¼Ò½º ÀÚ¿ø ÇÒ´çÀ» ´õ¿í ÃÖÀûÈ­ÇÏ°í ¿¹Ãø À¯Áöº¸¼ö¸¦ °­È­ÇÏ¿© Àüü ³×Æ®¿öÅ©ÀÇ ¼º´ÉÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú ¹ßÀüÀ¸·Î µ¶¸³Çü 5G´Â ¹Ì·¡ ¿¬°á¼º Àü¸ÁÀÇ Ãʼ®ÀÌ µÉ °ÍÀÔ´Ï´Ù.

µ¶¸³Çü 5G ³×Æ®¿öÅ©ÀÇ ÁøÈ­¸¦ Çü¼ºÇÏ´Â µ¿ÇâÀº ¹«¾ùÀΰ¡?

µ¶¸³Çü 5G ½ÃÀåÀº ¾÷°è Àü¹Ý¿¡ °ÉÃÄ °ü·Ã¼ºÀÌ ³ô¾ÆÁö°í ÀÖ´Â ¸î °¡Áö Çõ½ÅÀû µ¿Çâ¿¡ ÀÇÇØ Çü¼ºµÇ°í ÀÖ½À´Ï´Ù. ƯÈ÷ ¹Ì¼Ç Å©¸®Æ¼ÄÃÇÑ ¾÷¹«¸¦ À§ÇØ ¾ÈÀüÇÏ°í °í¼º´ÉÀÇ ¿¬°á¼ºÀ» ¿øÇÏ´Â ±â¾÷ »çÀÌ¿¡¼­ ÇÁ¶óÀ̺ø 5G ³×Æ®¿öÅ©¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ´Â °ÍÀÌ ±× Áß ÇϳªÀÔ´Ï´Ù. ÇÁ¶óÀ̺ø 5G ³×Æ®¿öÅ©¸¦ ÅëÇØ ±â¾÷Àº Áö¿¬, ´ë¿ªÆø, º¸¾È µî ƯÁ¤ ¿ä±¸»çÇ׿¡ ¸Â°Ô ³×Æ®¿öÅ© ¸Å°³º¯¼ö¸¦ ¸ÂÃãÈ­ÇÒ ¼ö ÀÖÀ¸¸ç, »ê¾÷ ÀÚµ¿È­, ¿ø°Ý ¼ö¼ú, ÀÚÀ² ¹°·ù µîÀÇ ÀÌ¿ë »ç·Ê¿¡ ÀûÇÕÇÕ´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ µ¿ÇâÀº SA 5G¿Í ¿¬µ¿µÈ ¿§Áö ÄÄÇ»ÆÃÀÇ È®´ëÀÔ´Ï´Ù. ¿§Áö ÄÄÇ»ÆÃÀº µ¥ÀÌÅÍ Ã³¸®¸¦ ¼Ò½º¿¡ °¡±õ°Ô ó¸®ÇÔÀ¸·Î½á ´ë±â ½Ã°£À» ÁÙÀ̰í, ÀÚÀ²ÁÖÇàÂ÷³ª ¸ôÀÔÇü °ÔÀÓ°ú °°Àº ¿ëµµ¿¡ ÇʼöÀûÀÎ ½Ç½Ã°£ ÀÇ»ç°áÁ¤ ´É·ÂÀ» °­È­ÇÕ´Ï´Ù. ¶ÇÇÑ ½º¸¶Æ® ½ÃƼÀÇ È®»êÀº Áö´ÉÇü ±³Åë½Ã½ºÅÛ, ¿¡³ÊÁö °ü¸®, °ø°ø¾ÈÀü ¼Ö·ç¼Ç µî ÷´Ü µµ½Ã ÀÎÇÁ¶ó¸¦ Áö¿øÇϱâ À§ÇÑ SA 5G ³×Æ®¿öÅ©¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ SA 5GÀÇ Ã¤ÅÃÀº °æÁ¦ ¼ºÀåÀ» °¡¼ÓÇϱâ À§ÇØ Á¤ºÎ°¡ µðÁöÅÐ ÀüȯÀ» ¿ì¼±¼øÀ§¿¡ µÎ°í ÀÖ´Â ½ÅÈï ½ÃÀå¿¡¼­µµ ÁöÁö¸¦ ¾ò°í ÀÖ½À´Ï´Ù.

µ¶¸³Çü 5G ³×Æ®¿öÅ© ½ÃÀåÀÇ ±Þ¼ºÀå ¿äÀÎÀº ¹«¾ùÀΰ¡?

µ¶¸³Çü 5G ³×Æ®¿öÅ© ½ÃÀåÀÇ ¼ºÀåÀº °í¼º´É ¿¬°á¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ³×Æ®¿öÅ© ±â¼ú ¹ßÀü, µ¥ÀÌÅÍ Áý¾àÀû ¿ëµµÀÇ È®»ê µî ¿©·¯ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ÃËÁø¿äÀÎ Áß Çϳª´Â IoT ±â±âÀÇ È®»ê°ú ´ë±Ô¸ð ±â°èÇü Åë½Å(mMTC)À» Áö¿øÇϱâ À§ÇÑ ¿øÈ°ÇÑ ¿¬°á¼ºÀÇ Çʿ伺À̸ç, SA 5G ³×Æ®¿öÅ©´Â ³ó¾÷¿¡¼­ ¹°·ù¿¡ À̸£±â±îÁö »ê¾÷ Àü¹Ý¿¡ °ÉÃÄ ¼ö½Ê¾ï °³ÀÇ Ä¿³ØÆ¼µå µð¹ÙÀ̽º¸¦ °ü¸®ÇÏ´Â µ¥ ÇÊ¿äÇÑ È®À强°ú È¿À²¼ºÀ» Á¦°øÇÕ´Ï´Ù. È¿À²¼ºÀ» Á¦°øÇÕ´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ ¿øµ¿·ÂÀº ÀÚÀ²ÁÖÇàÂ÷, ¿ø°ÝÀÇ·á, »ê¾÷ ÀÚµ¿È­ µîÀÇ ¿ëµµ¿¡¼­ ÃÊÀúÁö¿¬ ÃÊ½Å·Ú Åë½Å(URLLC)¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖÀ¸¸ç, SA 5GÀÇ °ÅÀÇ Áï°¢ÀûÀÎ ÀÀ´ä¼Óµµ´Â ÀÌ·¯ÇÑ ÀÌ¿ë »ç·Ê¸¦ ½ÇÇöÇÏ´Â µ¥ ÀÖÀ¸¸ç, ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ¶ÇÇÑ ±â¾÷°ú Á¤ºÎÀÇ µðÁöÅÐ Àüȯ¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó SA 5G¸¦ Çõ½ÅÀÇ ±â¹ÝÀ¸·Î äÅÃÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. Á֯ļö °æ¸Å, ÀÎÇÁ¶ó °³¹ß, Åë½Å »ç¾÷ÀÚ¿Í ±â¼ú ÇÁ·Î¹ÙÀÌ´õ °£ÀÇ ÆÄÆ®³Ê½Ê¿¡ ´ëÇÑ ÅõÀÚ°¡ ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î ºñµ¶¸³Çü ¾ÆÅ°ÅØÃ³¿¡¼­ µ¶¸³Çü ¾ÆÅ°ÅØÃ³·ÎÀÇ ÀüȯÀº 5G ½Ã´ë ¼ö¿ä¸¦ ÃæÁ·½Ãų ¼ö ÀÖ´Â º¸´Ù °ß°íÇÏ°í ¹Ì·¡ ÁöÇâÀûÀÎ ³×Æ®¿öÅ©·ÎÀÇ ¾÷°è Àü¹ÝÀÇ ÀüȯÀ» ¹Ý¿µÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÃßÁø·ÂÀº µ¶¸³Çü 5G ³×Æ®¿öÅ©°¡ Àü ¼¼°è ¿¬°á¼º¿¡ º¯ÇõÀûÀÎ ¿µÇâÀ» ¹ÌÄ¥ °ÍÀÓÀ» °­Á¶Çϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

ÄÄÆ÷³ÍÆ®(µ¶¸³Çü 5G ³×Æ®¿öÅ© ¼Ö·ç¼Ç, µ¶¸³Çü 5G ³×Æ®¿öÅ© ¼­ºñ½º), ³×Æ®¿öÅ© À¯Çü(ÆÛºí¸¯ ³×Æ®¿öÅ©, ÇÁ¶óÀ̺ø ³×Æ®¿öÅ©), ¾ÖÇø®ÄÉÀ̼Ç(Á¦Á¶ ¾ÖÇø®ÄÉÀ̼Ç, ±â¾÷ ¾ÖÇø®ÄÉÀ̼Ç, ÀÚµ¿Â÷¡¤¿î¼Û ¾ÖÇø®ÄÉÀ̼Ç, ¿¡³ÊÁö¡¤À¯Æ¿¸®Æ¼ ¾ÖÇø®ÄÉÀ̼Ç, ÇコÄÉ¾î ¾ÖÇø®ÄÉÀ̼Ç, ±âŸ ¾ÖÇø®ÄÉÀ̼Ç)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹(ÃÑ 36°Ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Standalone 5G Network Market to Reach US$33.7 Billion by 2030

The global market for Standalone 5G Network estimated at US$2.6 Billion in the year 2024, is expected to reach US$33.7 Billion by 2030, growing at a CAGR of 53.3% over the analysis period 2024-2030. Standalone 5G Network Solutions, one of the segments analyzed in the report, is expected to record a 50.1% CAGR and reach US$24.6 Billion by the end of the analysis period. Growth in the Standalone 5G Network Services segment is estimated at 65.3% CAGR over the analysis period.

The U.S. Market is Estimated at US$684.0 Million While China is Forecast to Grow at 50.6% CAGR

The Standalone 5G Network market in the U.S. is estimated at US$684.0 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$4.9 Billion by the year 2030 trailing a CAGR of 50.6% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 47.9% and 46.2% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 36.8% CAGR.

Global Standalone 5G Network Market - Key Trends & Drivers Summarized

What Makes Standalone 5G Networks a Game-Changer in Connectivity?

Standalone (SA) 5G networks are revolutionizing the telecommunications landscape by delivering unparalleled speed, reliability, and capacity for data-intensive applications. Unlike non-standalone (NSA) 5G, which relies on existing 4G infrastructure, SA 5G operates independently, leveraging a cloud-native 5G core that unlocks its full potential. This architecture enables ultra-low latency, massive connectivity for IoT devices, and advanced network slicing capabilities. These features are critical for powering next-generation technologies, including autonomous vehicles, smart factories, and immersive AR/VR experiences.

The demand for SA 5G networks is fueled by the growing need for robust connectivity solutions to support the rapid proliferation of connected devices and data-driven applications. Enterprises across industries such as healthcare, manufacturing, and transportation are adopting SA 5G to enable mission-critical applications that require real-time responsiveness and reliability. Furthermore, the transition to SA 5G is essential for operators seeking to monetize 5G investments through new revenue streams, such as private networks and enhanced consumer services. This paradigm shift underscores the transformative potential of SA 5G in shaping the digital economy.

How Does Technology Shape the Capabilities of Standalone 5G Networks?

The technological advancements underpinning standalone 5G networks are central to their transformative capabilities. A cloud-native 5G core architecture allows for dynamic and scalable network management, enabling service providers to deploy advanced features such as network slicing and edge computing. Network slicing, in particular, enables the segmentation of a single physical network into multiple virtual networks tailored to specific use cases, such as ultra-reliable low-latency communications (URLLC) or massive machine-type communications (mMTC). This flexibility is critical for supporting diverse applications ranging from industrial automation to smart city infrastructure.

Another key technological enabler of SA 5G is millimeter wave (mmWave) spectrum, which provides the high bandwidth necessary for ultra-fast data transfer and minimal latency. Additionally, massive MIMO (Multiple Input, Multiple Output) and beamforming technologies enhance network efficiency and capacity, ensuring consistent performance even in densely populated areas. The integration of AI and machine learning in SA 5G networks further optimizes resource allocation and enhances predictive maintenance, improving overall network performance. These technological advancements collectively position standalone 5G as a cornerstone of the future connectivity landscape.

What Trends Are Shaping the Evolution of Standalone 5G Networks?

The standalone 5G market is being shaped by several transformative trends that highlight its growing relevance across industries. One prominent trend is the surge in demand for private 5G networks, particularly among enterprises seeking secure, high-performance connectivity for mission-critical operations. Private 5G networks allow businesses to customize network parameters to meet specific requirements, such as latency, bandwidth, and security, making them ideal for use cases like industrial automation, remote surgery, and autonomous logistics.

Another significant trend is the expansion of edge computing in conjunction with SA 5G. By bringing data processing closer to the source, edge computing reduces latency and enhances real-time decision-making capabilities, which are essential for applications like autonomous vehicles and immersive gaming. Additionally, the rollout of smart cities is driving investments in SA 5G networks to support advanced urban infrastructure, including intelligent transportation systems, energy management, and public safety solutions. The adoption of SA 5G is also gaining traction in emerging markets, where governments are prioritizing digital transformation to drive economic growth.

What Factors Are Driving the Rapid Growth of the Standalone 5G Network Market?

The growth in the standalone 5G network market is driven by several factors, including the increasing demand for high-performance connectivity, advancements in network technology, and the proliferation of data-intensive applications. One of the primary drivers is the rising adoption of IoT devices and the need for seamless connectivity to support massive machine-type communications (mMTC). SA 5G networks provide the scalability and efficiency required to manage billions of connected devices across industries, from agriculture to logistics.

Another critical driver is the emphasis on ultra-reliable low-latency communications (URLLC) for applications like autonomous vehicles, remote healthcare, and industrial automation. The ability of SA 5G to deliver near-instantaneous response times is pivotal for enabling these use cases. Additionally, the increasing focus on digital transformation by enterprises and governments is accelerating the adoption of SA 5G as a foundation for innovation. Investments in spectrum auctions, infrastructure development, and partnerships between telecom operators and technology providers are further propelling market growth. Lastly, the shift from non-standalone to standalone architectures reflects the broader industry transition toward more robust, future-ready networks capable of meeting the demands of the 5G era. These drivers underscore the transformative impact of standalone 5G networks on global connectivity.

SCOPE OF STUDY:

The report analyzes the Standalone 5G Network market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Component (Standalone 5G Network Solutions, Standalone 5G Network Services); Network Type (Public Network, Private Network); Application (Manufacturing Application, Enterprise Application, Automotive & Transportation Application, Energy & Utilities Application, Healthcare Application, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 36 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â