¼¼°èÀÇ ÀÀ±Þ ±¸Á¶¿ë µå·Ð ½ÃÀå
Drones for Emergency Responders
»óǰÄÚµå : 1644177
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 01¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 178 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,274,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,824,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

ÀÀ±Þ ±¸Á¶¿ë µå·Ð ¼¼°è ½ÃÀå ±Ô¸ð´Â 2030³â±îÁö 85¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

2024³â 39¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ÀÀ±Þ ±¸Á¶¿ë µå·Ð ¼¼°è ½ÃÀåÀº 2024-2030³â°£ 13.7%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 85¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¼öÁ÷ÀÌÂø·ú(VTOL) µå·ÐÀº CAGR 15.0%¸¦ ±â·ÏÇÏ¿© ºÐ¼® ±â°£ Á¾·á ½ÃÁ¡¿¡ 44¾ï ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. °íÁ¤ÀÍ µå·Ð ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 11.7%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀå 10¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 12.8%·Î ¼ºÀå Àü¸Á

¹Ì±¹ÀÇ ÀÀ±Þ ±¸Á¶¿ë µå·Ð ½ÃÀå ±Ô¸ð´Â 2024³â 10¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 13¾ï ´Þ·¯ ±Ô¸ð¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2024-2030³âÀÇ ºÐ¼® ±â°£ µ¿¾È 12.8%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ª ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ °¢°¢ 12.8%¿Í 11.7%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ ¾à 9.9%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼¼°è ÀÀ±Þ ±¸Á¶¿ë µå·Ð ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ ¿ä¾à

µå·ÐÀº ¾î¶»°Ô ºñ»ó ´ëÀÀ ´É·ÂÀ» °­È­Çϴ°¡?

µå·ÐÀº Àç³­, »ç°í ¹× ±âŸ À§±â »óȲÀ» º¸´Ù ½Å¼ÓÇÏ°í ¾ÈÀüÇϸç È¿À²ÀûÀ¸·Î °ü¸®ÇÒ ¼ö ÀÖ´Â ¹æ¹ýÀ» Á¦°øÇÔÀ¸·Î½á ±ä±Þ ´ëÀÀ ¾÷¹«¸¦ Çõ½ÅÀûÀ¸·Î º¯È­½Ã۰í ÀÖ½À´Ï´Ù. È«¼ö, »êºÒ, ÁöÁø°ú °°Àº ÀÚ¿¬ÀçÇØ°¡ ¹ß»ýÇÏ¸é µå·ÐÀº ÇÇÇØ¸¦ Æò°¡Çϰí, À§ÇèÀ» ½Äº°Çϰí, ½Ç½Ã°£À¸·Î ÇÇÇØÀÚ¸¦ ã´Â µ¥ »ç¿ëµË´Ï´Ù. ¾î·Á¿î ÁöÇü À§¸¦ ºñÇàÇÏ°í ¹«³ÊÁø °Ç¹°À̳ª ¿Üµý °÷ µî Á¢±ÙÇϱ⠾î·Á¿î °÷¿¡ Á¢±ÙÇÒ ¼ö ÀÖ´Â µå·ÐÀº Ãʵ¿ ´ëÀÀ ¿ä¿øµé¿¡°Ô ÇʼöÀûÀÎ µµ±¸°¡ µÇ°í ÀÖ½À´Ï´Ù.

¿¹¸¦ µé¾î, »êºÒ °ü¸®¿¡¼­ µå·ÐÀº ¿¬¼Ò È®´ë ¸ð´ÏÅ͸µ, ¿­ ºÐÆ÷ Æò°¡, ÇÇÇØ Áö¿ªÀÇ »ó¼¼ÇÑ ¿­ ºÐÆ÷µµ ÀÛ¼º¿¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ ±ä±Þ ´ëÀÀÆÀÀº ´ëÇÇ, ÀÚ¿ø ¹èºÐ, ÁøÈ­ Àü·«¿¡ ´ëÇÑ Á¤º¸¿¡ ÀÔ°¢ÇÑ ÆÇ´ÜÀ» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ¼ö»ö ¹× ±¸Á¶ Ȱµ¿¿¡¼­ °íÇØ»óµµ Ä«¸Þ¶ó, Àû¿Ü¼± ¼¾¼­, GPS ±â¼úÀ» žÀçÇÑ µå·ÐÀº ¾ß°£À̳ª ¹Ð¸²°ú °°ÀÌ ½Ã¾ß°¡ ÁÁÁö ¾ÊÀº »óȲ¿¡¼­µµ ½ÇÁ¾ÀÚÀÇ À§Ä¡¸¦ ½Å¼ÓÇÏ°Ô ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. µå·ÐÀº ÀÀ±Þ ±¸Á¶´ë¿ø¿¡°Ô Áß¿äÇÑ ½Ç½Ã°£ µ¥ÀÌÅ͸¦ Á¦°øÇÔÀ¸·Î½á ±ä±Þ ±¸Á¶ Ȱµ¿ÀÇ ¼Óµµ¿Í È¿°ú¸¦ Çâ»ó½ÃÄÑ ´ëÀÀ ½Ã°£À» Å©°Ô ´ÜÃàÇϰí ÀθíÀ» ±¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

µå·ÐÀº Àç³­ Áö¿ª¿¡ ÀǾàǰ, ½Ä·®, ¹° µîÀ» Àü´ÞÇÏ´Â µî Àç³­ ±¸È£ Ȱµ¿¿¡µµ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ¸¹Àº °æ¿ì, µå·ÐÀº µµ·Î°¡ ºÀ¼âµÇ°Å³ª ÀÎÇÁ¶ó°¡ ¼Õ»óµÈ Áö¿ª¿¡ ±¸È£Ç°À» Àü´ÞÇÒ ¼ö ÀÖ¾î ±âÁ¸ ¹è¼Û ¹æ¹ýÀÌ Á÷¸éÇÑ ¹°·ù ¹®Á¦¸¦ ÇÇÇÒ ¼ö ÀÖ½À´Ï´Ù. Áß¿äÇÑ ¹°Ç°À» ½Å¼ÓÇÏ°Ô Àü´ÞÇÒ ¼ö ÀÖ´Â ÀÌ ´É·ÂÀº ½Ã°£ÀÌ °¡Àå Áß¿äÇÑ Àç³­ Ãʱ⠴ܰ迡¼­ ƯÈ÷ Áß¿äÇϸç, ÀüÅëÀûÀÎ °ø±Þ¸ÁÀÌ ÁߴܵǴ Àç³­ Ãʱ⠴ܰ迡 ƯÈ÷ Áß¿äÇÕ´Ï´Ù.

ÀÀ±Þ ´ëÀÀ µå·ÐÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ÁÖ¿ä ¿äÀÎÀº?

ÀÀ±Þ ±¸Á¶¿ë µå·ÐÀÇ ¼ºÀå ¿øµ¿·ÂÀº ¸î °¡Áö Áß¿äÇÑ ¿äÀÎÀÌ ÀÖÀ¸¸ç, ¸ðµÎ ½Å¼ÓÇϰí È¿À²ÀûÀÌ¸ç ¾ÈÀüÇÑ ±ä±Þ ´ëÀÀ ´É·Â¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿Í °ü·ÃÀÌ ÀÖ½À´Ï´Ù. ÁÖ¿ä ¿äÀÎ Áß Çϳª´Â Àü ¼¼°èÀûÀ¸·Î ÀÚ¿¬ÀçÇØÀÇ ºóµµ¿Í ½É°¢¼ºÀÌ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ±âÈÄ º¯È­°¡ °¡¼ÓÈ­µÇ¸é¼­ Ç㸮ÄÉÀÎ, È«¼ö, »êºÒ°ú °°Àº ÀÌ»ó±âÈÄ ¹ß»ý·üÀÌ Áõ°¡Çϰí ÀÖ¾î º¸´Ù È¿°úÀûÀÎ Àç³­ ´ëÀÀ Àü·«¿¡ ´ëÇÑ ±ä±ÞÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. µå·ÐÀº ±ä±Þ ´ëÀÀ ¿ä¿ø¿¡°Ô ÇÇÇØ »óȲÀ» ½Å¼ÓÇÏ°Ô ÆÄ¾ÇÇϰí, ÇÇÇØÀÚÀÇ À§Ä¡¸¦ ÆÄ¾ÇÇϸç, Áß¿äÇÑ ¹°Ç°À» ÇÇÇØ Áö¿ª¿¡ Àü´ÞÇÒ ¼ö ÀÖ´Â °­·ÂÇÑ µµ±¸¸¦ Á¦°øÇÕ´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎÀº ½Ç½Ã°£ »óȲ ÆÄ¾ÇÀ» À§ÇÑ µå·ÐÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ±ä±Þ ´ëÀÀ »óȲ¿¡¼­ Á¤È®ÇÑ ÃֽŠÁ¤º¸¿¡ Á¢±ÙÇÏ´Â °ÍÀº È¿°úÀûÀÎ ÀÇ»ç°áÁ¤À» ³»¸®´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. µå·ÐÀº °íÇØ»óµµ À̹ÌÁö, ¿­È­»ó µ¥ÀÌÅÍ, ¶óÀÌºê ºñµð¿À Çǵ带 Á¦°øÇÏ¿© ÇöÀå »óȲÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ µ¥ÀÌÅ͸¦ ÅëÇØ ±ä±Þ ´ëÀÀÆÀÀº ÀÚ¿øÀ» º¸´Ù È¿°úÀûÀ¸·Î ¹èºÐÇϰí, ±¸Á¶ Ȱµ¿ÀÇ ¿ì¼±¼øÀ§¸¦ Á¤Çϰí, ´ëÀÀ¿¡ Âü¿©ÇÏ´Â ´Ù¸¥ ±â°ü°ú Çù·ÂÇÒ ¼ö ÀÖ½À´Ï´Ù.

µå·Ð ±â¼úÀÇ ¹ßÀüµµ ½ÃÀå ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. Ãֽеå·ÐÀº Á¡Á¡ ´õ Á¤±³ÇÑ ¼¾¼­¸¦ žÀçÇϰí, ºñÇà ½Ã°£ÀÌ ±æ¾îÁö°í, ±âµ¿¼ºÀÌ Çâ»óµÇ°í, ³»ÈļºÀÌ °³¼±µÇ°í, ±ä±Þ Ȱµ¿¿¡ ´ëÇÑ ½Å·Ú¼ºÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ÇöÀç ¸¹Àº µå·ÐÀº ÀÚÀ²ºñÇà ±â´ÉÀ» °®Ãß°í ÀÖ¾î »ç¶÷ÀÌ Á÷Á¢ Á¶Á¾ÇÏÁö ¾Ê°íµµ À§ÇèÇÑ È¯°æÀ̳ª À§Çèµµ°¡ ³ôÀº ȯ°æ¿¡¼­µµ Ȱµ¿ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀÚÀ²¼ºÀ» ÅëÇØ Àΰ£ÀÇ °³ÀÔÀÌ ´ú ÇÊ¿äÇϰí, È­Àç°¡ Ȱ¹ßÇÑ Áö¿ªÀ̳ª µ¶¼º °¡½º°¡ °¡µæÇÑ Áö¿ª°ú °°ÀÌ Àΰ£ÀÌ ´ëÀÀÇϱ⿡´Â ³Ê¹« À§ÇèÇÑ À§ÇèÇÑ »óȲ¿¡¼­µµ µå·ÐÀ» ºñÇàÇÒ ¼ö ÀÖ½À´Ï´Ù.

±â¼úÀÇ ¹ßÀüÀº ÀÀ±Þ ´ëÀÀ µå·ÐÀÇ ¹Ì·¡¸¦ ¾î¶»°Ô Çü¼ºÇϰí Àִ°¡?

±â¼úÀÇ ¹ßÀüÀº ÀÀ±Þ ±¸Á¶´ë¿øµéÀÌ »ç¿ëÇÏ´Â µå·ÐÀÇ ´É·ÂÀ» ºü¸£°Ô È®ÀåÇϰí ÀÖÀ¸¸ç, À§±â °ü¸®¸¦ À§ÇÑ µå·ÐÀ» ´õ¿í È¿°úÀûÀÌ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â µµ±¸·Î ¸¸µé°í ÀÖ½À´Ï´Ù. °¡Àå Áß¿äÇÑ °³¼±Á¡ Áß Çϳª´Â µå·ÐÀÇ ¼¾¼­ °­È­ÀÔ´Ï´Ù. °íÇØ»óµµ Ä«¸Þ¶ó, Àû¿Ü¼± ¼¾¼­, ¶óÀÌ´Ù(LiDAR)¸¦ ÀåÂøÇÑ µå·ÐÀº Áß¿äÇÑ µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î Æ÷ÂøÇÏ¿© Àç³­ ÇöÀå¿¡ ´ëÇÑ »ó¼¼Çϰí Á¤È®ÇÑ Á¤º¸¸¦ Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, Àû¿Ü¼± À̹ÌÁö ¼¾¼­´Â È­ÀçÀÇ ÇÖ½ºÆÌ°ú ÀÎüÀÇ ¿­ ½Ã±×´Ïó¸¦ ½Äº°ÇÒ ¼ö ÀÖÀ¸¸ç, ÀÌ´Â ¼ö»ö ¹× ±¸Á¶ ÀÓ¹«¿¡ ÇʼöÀûÀÔ´Ï´Ù. ¸¶Âù°¡Áö·Î, LiDAR´Â Àç³­ ÇöÀåÀÇ 3D Áöµµ¸¦ »ý¼ºÇÒ ¼ö ÀÖ¾î ÁöÁøÀ̳ª °Ç¹° ºØ±« ÈÄ ±¸Á¶¹°ÀÇ ¹«°á¼ºÀ» Æò°¡Çϰí ÀÜÇØ ¼ÓÀ» Ž»öÇÏ´Â µ¥ µµ¿òÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.

¶ÇÇÑ, ÀÚÀ²ºñÇà ±â¼úÀÇ ¹ßÀüÀº Àç³­ ´ëÀÀ¿¡ ÀÖ¾î µå·ÐÀÇ È°¿ë¿¡ Å« º¯È­¸¦ °¡Á®¿Ã °ÍÀÔ´Ï´Ù. ÀÚÀ²ºñÇà µå·ÐÀº Àç³­ Áö¿ª ¸ÅÇÎ, »êºÒ °æ°è¼± Á¶»ç, ¹°Ç° ¹è¼Û µî Á¤ÇØÁø ÀÓ¹«¸¦ »ç¶÷ÀÌ Á¶Á¾ÇÏÁö ¾Ê°íµµ ¼öÇàÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀÚÀ²¼ºÀ» ÅëÇØ »êºÒ, À§Çè¹° À¯Ãâ µî »ç¶÷ÀÌ °³ÀÔÇϱâ À§ÇèÇÑ °íÀ§Çè ȯ°æ¿¡¼­µµ µå·ÐÀ» ¿î¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÚÀ² µå·ÐÀº ´Ù¸¥ µå·Ð ¹× ´ëÀÀÆÀ°ú Åë½ÅÇÒ ¼ö ÀÖ¾î Áö¼ÓÀûÀÎ ½Ç½Ã°£ »óȲ ¾÷µ¥ÀÌÆ®¸¦ Á¦°øÇÏ´Â ³×Æ®¿öÅ© ½Ã½ºÅÛÀ» ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Çù·ÂÀº È¿À²¼ºÀ» ³ôÀ̰í, Áß¿äÇÑ Á¤º¸¸¦ °øÀ¯Çϸç, Àüü ºñ»ó ´ëÀÀ Ȱµ¿À» ÃÖÀûÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ ±â¼ú ¹ßÀüÀº µå·Ð°ú ÀΰøÁö´É(AI) ¹× ¸Ó½Å·¯´×ÀÇ ÅëÇÕÀ¸·Î, AI ¾Ë°í¸®ÁòÀ» ÅëÇØ µå·ÐÀº ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î ó¸®ÇÏ¿© ÆÐÅÏ, ÀáÀçÀû À§Çè ¶Ç´Â Ãß°¡ Á¶»ç°¡ ÇÊ¿äÇÑ °ü½É ¿µ¿ªÀ» ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, AI´Â ¿­È­»ó µ¥ÀÌÅ͸¦ ÀÚµ¿À¸·Î ºÐ¼®ÇÏ¿© °¤Èù »ýÁ¸ÀÚ³ª È­Àç À§ÇèÀ» ³ªÅ¸³»´Â ¿­¿øÀ» °¨ÁöÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ±â´ÉÀº µå·ÐÀÇ ÀÚÀ²Àû ¿î¿µ ´É·ÂÀ» Çâ»ó½ÃÄÑ ¼öÁýµÈ µ¥ÀÌÅ͸¦ ±â¹ÝÀ¸·Î ÀÚÀ²ÀûÀ¸·Î ÀÓ¹«¸¦ Á¶Á¤ÇÔÀ¸·Î½á Àΰ£ÀÇ °³ÀÔÀ» ÁÙÀ̰í ÀÓ¹« ¼º°ø·üÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀÌ °è¼Ó ¹ßÀüÇÔ¿¡ µû¶ó µå·ÐÀº ´õ¿í Á¤±³ÇØÁ® ±ä±Þ ´ëÀÀ Àü·«¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® ÀâÀ» °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

ÀÀ±Þ ´ëÀÀ µå·ÐÀÇ ÁÖ¿ä ÃËÁø¿äÀÎÀº ¹«¾ùÀΰ¡?

ÀÀ±Þ ´ëÀÀ µå·Ð ½ÃÀåÀÇ ¼ºÀåÀº ÀÚ¿¬ÀçÇØÀÇ ºóµµ Áõ°¡, º¸´Ù ½Å¼ÓÇϰí È¿À²ÀûÀÎ ±ä±Þ ´ëÀÀÀÇ Çʿ伺, µå·Ð ±â¼úÀÇ Áö¼ÓÀûÀÎ ¹ßÀü µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ÀÌ»ó±âÈÄ¿Í ÀÚ¿¬ÀçÇØÀÇ ºó¹øÇÑ ¹ß»ýÀº ½ÃÀåÀÇ Áß¿äÇÑ ÃËÁø¿äÀÎÀÔ´Ï´Ù. ±âÈÄ º¯È­°¡ °¡¼ÓÈ­µÊ¿¡ µû¶ó Ç㸮ÄÉÀÎ, »êºÒ, È«¼ö ¹ß»ý ºóµµ°¡ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»ó¿¡ µû¶ó º¸´Ù ½Å¼ÓÇϰí È¿°úÀûÀÎ ´ëÀÀ Àü·«ÀÌ Àý½ÇÈ÷ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. µå·ÐÀº ½Å¼ÓÇÑ ÇÇÇØ Æò°¡, ÇÇÇØÀÚÀÇ À§Ä¡ È®ÀÎ, ±ä±Þ ¹°Ç° ¹è¼ÛÀ» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á ÇØ°áÃ¥À» Á¦°øÇÒ ¼ö ÀÖÀ¸¸ç, ÀÌ ¸ðµç °ÍÀÌ ÀθíÀ» ±¸Çϰí Àç³­ÀÇ Àü¹ÝÀûÀÎ ¿µÇâÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ ¿øµ¿·ÂÀº ºñ»ó ´ëÀÀ ½Ã³ª¸®¿À¿¡¼­ ½Ç½Ã°£ »óȲ ÀνĿ¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ÷´Ü ¼¾¼­, Ä«¸Þ¶ó, ¿­È­»ó ±â´ÉÀÌ Å¾ÀçµÈ µå·ÐÀº ±ä±Þ ´ëÀÀÆÀÀÌ ÇÇÇØ Áö¿ª¿¡ ´ëÇÑ »ó¼¼Çϰí Ãֽе¥ÀÌÅÍ¿¡ Áï°¢ÀûÀ¸·Î Á¢±ÙÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ÀÌ·¯ÇÑ Çâ»óµÈ »óȲ ÀνÄÀ» ÅëÇØ ±ä±Þ ´ëÀÀ ¿ä¿øµéÀº ÀÚ¿ø ¹èºÐ¿¡ ´ëÇÑ Á¤º¸¿¡ ÀÔ°¢ÇÑ °áÁ¤À» ³»¸®°í, ±¸Á¶ Ȱµ¿ÀÇ ¿ì¼±¼øÀ§¸¦ Á¤Çϰí, »õ·Î¿î À§Çù¿¡ º¸´Ù È¿°úÀûÀ¸·Î ´ëÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù.

±â¼úÀÇ ¹ßÀü, ƯÈ÷ µå·ÐÀÇ ÀÚÀ²¼º, ¼¾¼­ ±â¼ú ¹× AIÀÇ ÅëÇÕµµ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ÀÚÀ²Çü µå·ÐÀº Àΰ£ÀÇ °¨½Ã ¾øÀ̵µ º¹ÀâÇÑ ÀÛ¾÷À» ¼öÇàÇÒ ¼ö ÀÖ°Ô µÇ¾ú°í, Àΰ£ ´ëÀÀÀÚ°¡ °¥ ¼ö ¾ø´Â À§ÇèÇÑ È¯°æ¿¡¼­µµ ÀÓ¹«¸¦ ¼öÇàÇÒ ¼ö ÀÖ°Ô µÇ¾úÀ¸¸ç, AI¿Í ¸Ó½Å·¯´×ÀÇ ÅëÇÕÀº µå·ÐÀÇ ´É·ÂÀ» ´õ¿í Çâ»ó½ÃÄÑ ½Ç½Ã°£À¸·Î µ¥ÀÌÅ͸¦ ºÐ¼®Çϰí ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀ¸·Î µå·ÐÀº ´õ È¿À²ÀûÀÏ »Ó¸¸ ¾Æ´Ï¶ó ±ä±Þ Ȱµ¿ Áß¿¡ Áß¿äÇÑ ¼­ºñ½º¸¦ Á¦°øÇÏ´Â µ¥ ÀÖ¾î ´õ¿í ½Å·ÚÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

ºÎ¹®

µå·Ð À¯Çü(¼öÁ÷ÀÌÂø·ú(VTOL) µå·Ð, °íÁ¤ÀÍ µå·Ð, ¸ÖƼ·ÎÅÍ µå·Ð), ÀÚÀ²¼º ¼öÁØ(¹ÝÀÚÀ² µå·Ð, ¿ÏÀü ÀÚÀ² µå·Ð, ¿ø°ÝÁ¶Á¾ µå·Ð), ÀÀ¿ë ºÐ¾ß(Á¤ºÎ ÀÀ¿ë, ±¹¹æ ÀÀ¿ë, »ê¾÷ ÇöÀå ÀÀ¿ë, ±âŸ ÀÀ¿ë) ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹½Ã(ÁÖ¸ñ¹Þ´Â 44°³ ±â¾÷)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Drones for Emergency Responders Market to Reach US$8.5 Billion by 2030

The global market for Drones for Emergency Responders estimated at US$3.9 Billion in the year 2024, is expected to reach US$8.5 Billion by 2030, growing at a CAGR of 13.7% over the analysis period 2024-2030. Vertical Take-Off & Loading (VTOL) Drones, one of the segments analyzed in the report, is expected to record a 15.0% CAGR and reach US$4.4 Billion by the end of the analysis period. Growth in the Fixed-wing Drones segment is estimated at 11.7% CAGR over the analysis period.

The U.S. Market is Estimated at US$1.0 Billion While China is Forecast to Grow at 12.8% CAGR

The Drones for Emergency Responders market in the U.S. is estimated at US$1.0 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$1.3 Billion by the year 2030 trailing a CAGR of 12.8% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 12.8% and 11.7% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 9.9% CAGR.

Global Drones for Emergency Responders Market - Key Trends & Drivers Summarized

How Are Drones Enhancing Emergency Response Capabilities?

Drones are transforming emergency response operations, providing responders with faster, safer, and more efficient ways to manage disasters, accidents, and other critical situations. In times of natural disasters such as floods, wildfires, or earthquakes, drones are used to assess damage, identify hazards, and locate victims in real-time. Their ability to fly over difficult terrains and access hard-to-reach areas, such as collapsed buildings or remote locations, makes them indispensable tools for first responders.

For example, in wildfire management, drones are deployed to monitor fire spread, assess heat signatures, and create detailed thermal maps of the affected areas. This allows emergency teams to make informed decisions about evacuations, resource allocation, and firefighting strategies. In search and rescue operations, drones equipped with high-resolution cameras, thermal imaging sensors, and GPS technology can quickly locate missing persons, even in low visibility conditions, such as at night or in dense forests. By providing first responders with critical, real-time data, drones improve the speed and effectiveness of emergency operations, significantly reducing response times and potentially saving lives.

Drones are also used for disaster relief efforts, such as delivering medical supplies, food, and water to affected areas. In many cases, drones can deliver aid to regions where roads are blocked or infrastructure is damaged, bypassing the logistical challenges faced by traditional delivery methods. This ability to deliver crucial supplies quickly is especially important during the early stages of a disaster, when time is of the essence, and traditional supply chains are disrupted.

What Are the Key Drivers Driving the Growth of Drones for Emergency Responders?

The growth of drones for emergency responders is driven by several key factors, all of which are related to the increasing need for fast, efficient, and safe emergency response capabilities. One of the primary drivers is the growing frequency and severity of natural disasters worldwide. As climate change accelerates, the incidence of extreme weather events such as hurricanes, floods, and wildfires is on the rise, creating an urgent need for more effective disaster response strategies. Drones provide emergency responders with a powerful tool to quickly assess the damage, locate victims, and deliver critical supplies to affected areas.

Another significant driver of the market is the increasing adoption of drones for real-time situational awareness. In emergency response situations, having access to accurate, up-to-date information is crucial for making effective decisions. Drones provide first responders with high-resolution imagery, thermal data, and live video feeds, giving them a comprehensive understanding of the situation on the ground. This data allows emergency teams to allocate resources more effectively, prioritize rescue efforts, and coordinate with other agencies involved in the response.

The advancement of drone technology is also contributing to the market’s growth. Modern drones are equipped with increasingly sophisticated sensors, longer flight times, better maneuverability, and improved weather resistance, making them more reliable for emergency operations. Many drones now feature autonomous flight capabilities, allowing them to operate without direct human control in hazardous or high-risk environments. This autonomy reduces the need for human intervention, allowing drones to fly in dangerous situations, such as active fire zones or areas with toxic fumes, where it would be too risky to send in human responders.

How Are Technological Advancements Shaping the Future of Drones for Emergency Responders?

Technological advancements are rapidly expanding the capabilities of drones used by emergency responders, making them more effective and reliable tools for managing crises. One of the most significant improvements is the enhancement of drone sensors. Drones equipped with high-definition cameras, infrared sensors, and LiDAR can capture critical data in real time, providing responders with detailed, accurate information about the disaster area. For example, thermal imaging sensors can identify heat signatures, such as those from fire hotspots or human bodies, which is essential in search and rescue missions. Similarly, LiDAR can create 3D maps of disaster sites, helping responders assess structural integrity or navigate through debris after an earthquake or building collapse.

Additionally, the development of autonomous flight technology is a game-changer for drone use in emergency response. Autonomous drones can carry out predefined tasks, such as mapping disaster zones, surveying wildfire boundaries, or delivering supplies, without the need for a human pilot. This autonomy allows drones to operate in high-risk environments, such as in the midst of a wildfire or a hazardous materials spill, where it would be dangerous for humans to intervene. Furthermore, autonomous drones can communicate with other drones or response teams, creating a networked system that provides continuous, real-time situational updates. This coordination improves efficiency, ensures that critical information is shared, and optimizes the overall emergency response effort.

Another key technological advancement is the integration of drones with artificial intelligence (AI) and machine learning. AI algorithms allow drones to process vast amounts of data in real time, identifying patterns, potential hazards, or areas of interest that require further investigation. For instance, AI can automatically analyze thermal imaging data to detect heat sources indicative of trapped survivors or fire risks. This capability enhances the drone’s ability to operate autonomously and autonomously adjust its mission based on the data it collects, reducing human intervention and increasing mission success rates. As these technologies continue to evolve, drones will become even more sophisticated and integral to emergency response strategies.

What Are the Key Growth Drivers for Drones for Emergency Responders?

The growth in the Drones for Emergency Responders market is driven by several factors, including the increasing frequency of natural disasters, the need for faster and more efficient emergency response, and ongoing advancements in drone technologies. The growing prevalence of extreme weather events and natural disasters is a significant driver of the market. As climate change accelerates, the frequency of hurricanes, wildfires, and floods is expected to rise, creating an urgent need for faster and more effective response strategies. Drones provide a solution by enabling rapid damage assessment, victim location, and the delivery of emergency supplies, all of which can save lives and reduce the overall impact of disasters.

Another critical driver is the increasing demand for real-time situational awareness in emergency response scenarios. Drones equipped with advanced sensors, cameras, and thermal imaging capabilities provide emergency teams with immediate access to detailed, up-to-date data about disaster zones. This enhanced situational awareness allows responders to make informed decisions about resource allocation, prioritize rescue efforts, and respond more effectively to emerging threats.

Technological advancements, particularly in drone autonomy, sensor technology, and AI integration, are also accelerating market growth. Autonomous drones are now able to carry out complex tasks without human oversight, allowing them to perform missions in high-risk environments where human responders cannot go. The integration of AI and machine learning further enhances the capabilities of drones, enabling them to analyze data and make decisions in real-time. These advancements ensure that drones are not only more efficient but also more reliable in delivering critical services during emergency operations.

SCOPE OF STUDY:

The report analyzes the Drones for Emergency Responders market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Drone Type (Vertical Take-Off & Loading (VTOL) Drones, Fixed-wing Drones, Multirotor Drones); Autonomy Level (Semi-Autonomous Drones, Fully Autonomous Drones, Remotely Piloted Drones); Application (Government Application, Defense Application, Industrial Sites Application, Other Applications)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 44 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â