¼¼°èÀÇ ÀÓ»ó½ÃÇè¿ë ÀΰøÁö´É ½ÃÀå
Artificial Intelligence in Clinical Trials
»óǰÄÚµå : 1644166
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 01¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 180 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,464,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 25,393,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ÀÓ»ó½ÃÇè¿ë ÀΰøÁö´É ½ÃÀåÀº 2030³â±îÁö 35¾ï ´Þ·¯¿¡ µµ´Þ

2024³â¿¡ 16¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ ÀÓ»ó½ÃÇè¿ë ÀΰøÁö´É ½ÃÀåÀº ºÐ¼® ±â°£ÀÎ 2024-2030³â¿¡ CAGR 14.0%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 35¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ ÀÓ»ó½ÃÇè AI ¼ÒÇÁÆ®¿þ¾î´Â CAGR 13.3%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á±îÁö 19¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÓ»ó½ÃÇè AI ¼­ºñ½º ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 14.8%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 4¾ï 2,060¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 13.2%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ÀÓ»ó½ÃÇè¿ë ÀΰøÁö´É ½ÃÀåÀº 2024³â¿¡ 4¾ï 2,060¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀ» 13.2%·Î °ßÀÎÇϸç 2030³â±îÁö 5¾ï 4,500¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 12.8%¿Í 12.1%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 10.3%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ÀÓ»ó½ÃÇè¿ë ÀΰøÁö´É ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

AI°¡ ÀÓ»ó½ÃÇèÀ» ¾î¶»°Ô º¯È­½Ãų °ÍÀΰ¡?

ÀΰøÁö´É(AI)Àº È¿À²¼ºÀ» ³ôÀ̰í, ºñ¿ëÀ» Àý°¨Çϰí, °á°ú¸¦ °³¼±ÇÔÀ¸·Î½á ÀÓ»ó½ÃÇè ȯ°æÀ» Çõ½ÅÀûÀ¸·Î º¯È­½Ã۰í ÀÖ½À´Ï´Ù. AI´Â ¸Ó½Å·¯´× ¾Ë°í¸®Áò, ÀÚ¿¬ ¾ð¾î ó¸®(NLP), ¿¹Ãø ºÐ¼®À» Ȱ¿ëÇÏ¿© ÀÓ»ó½ÃÇè ÇÁ·Î¼¼½º¸¦ °£¼ÒÈ­ÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ¹®Á¦¸¦ ÇØ°áÇϰí, ½Ã°£°ú ºñ¿ë, ȯÀÚ ¸ðÁý ¹× µ¥ÀÌÅÍ ¼öÁý Áö¿¬°ú °°Àº ºñÈ¿À²ÀûÀÎ ¹®Á¦¸¦ ÇØ°áÇÒ ¼ö ÀÖ½À´Ï´Ù.

ȯÀÚ ¸ðÁý¿¡¼­ AI ½Ã½ºÅÛÀº ÀüÀڰǰ­±â·Ï(EHR), À¯ÀüÀÚ µ¥ÀÌÅÍ ¹× ±âŸ µ¥ÀÌÅͼ¼Æ®¸¦ ºÐ¼®ÇÏ¿© ÀÓ»ó½ÃÇè ±âÁØÀ» ÃæÁ·ÇÏ´Â Àû°Ý Èĺ¸ÀÚ¸¦ ½Äº°ÇÕ´Ï´Ù. ¶ÇÇÑ AI´Â °ú°Å µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© °¡Àå È¿°úÀûÀÎ ÇÁ·ÎÅäÄÝ, Æò°¡º¯¼ö ¹× ¿¬±¸ ¹æ¹ýÀ» ¿¹ÃøÇÔÀ¸·Î½á ÀÓ»ó½ÃÇè ¼³°è¸¦ ÃÖÀûÈ­Çϰí, ¸ðÁý ÀÏÁ¤À» ´ÜÃàÇÏ°í º¸´Ù ´Ù¾çÇÏ°í ´ëÇ¥¼º ÀÖ´Â Âü°¡ÀÚ Ç®À» È®º¸ÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù.

ÀÓ»ó½ÃÇè Áß AI ±â¹Ý Ç÷§ÆûÀº ȯÀÚ ¹ÝÀÀ ¸ð´ÏÅ͸µÀ» ÀÚµ¿È­Çϰí ÀÌ»ó ¡Èĸ¦ ½Ç½Ã°£À¸·Î ÆÄ¾ÇÇÏ¿© µ¥ÀÌÅÍ ¼öÁý ¹× ºÐ¼®À» °­È­ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÅøÀ» ÅëÇØ ½Å¼ÓÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖÀ¸¸ç, ÀÇ·ÚÀÚ´Â ÇÁ·ÎÅäÄÝÀ» Á¶Á¤ÇÏ°í ½ÃÇè È¿À²¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. AI´Â ÀÓ»ó½ÃÇè ¿öÅ©Ç÷οìÀÇ ÁÖ¿ä º´¸ñÇö»óÀ» ÇØ°áÇÔÀ¸·Î½á ÀÓ»ó ¿¬±¸ ¹× °³¹ß¿¡ º¯È­¸¦ °¡Á®¿À°í ÀÖ½À´Ï´Ù.

ÀÓ»ó½ÃÇè¿¡¼­ AI µµÀÔÀÇ ¿øµ¿·ÂÀº ¹«¾ùÀΰ¡?

ÀÓ»ó½ÃÇèÀÇ º¹À⼺Àº ÀÌ ºÐ¾ß¿¡¼­ AI µµÀÔÀÇ Å« ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. Á¤¹ÐÀÇ·á¿Í °³ÀÎ ¸ÂÃãÇü Ä¡·áÀÇ ºÎ»óÀ¸·Î ÀÓ»ó½ÃÇèÀº º¸´Ù »ó¼¼ÇÑ µ¥ÀÌÅÍ¿Í ÇÇÇèÀÚ ¸ðÁý ¹× ¸ð´ÏÅ͸µ¿¡ ´ëÇÑ °³º°È­µÈ Á¢±Ù ¹æ½ÄÀ» ÇÊ¿ä·Î Çϰí ÀÖÀ¸¸ç, AI ½Ã½ºÅÛÀº ÀÌ·¯ÇÑ º¹ÀâÇÑ µ¥ÀÌÅͼ¼Æ®¸¦ °ü¸®Çϰí ÇØ¼®ÇÏ´Â µ¥ ÇÊ¿äÇÑ ÄÄÇ»ÆÃ ¹× ºÐ¼® ´É·ÂÀ» Á¦°øÇÔÀ¸·Î½á ÀÓ»ó½ÃÇèÀÇ ¼º°øÀ» º¸ÀåÇÕ´Ï´Ù. ¼º°øÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù.

ÀǾàǰ °³¹ß ºñ¿ë Áõ°¡µµ Áß¿äÇÑ ¿äÀÎ Áß ÇϳªÀÔ´Ï´Ù. Æò±ÕÀûÀ¸·Î Á¦¾à¾÷°è¿¡¼­ ÀÓ»ó½ÃÇèÀº R&D ºñ¿ëÀÇ »ó´ç ºÎºÐÀ» Â÷ÁöÇϴµ¥, AI ±â¹Ý ÅøÀº ÀÓ»ó½ÃÇè ±â°ü ¼±Á¤, µ¥ÀÌÅÍ ºÐ¼®, ±ÔÁ¦ ´ç±¹ º¸°í µî ³ëµ¿Áý¾àÀûÀÎ ÀÛ¾÷À» ÀÚµ¿È­ÇÏ¿© ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ È¿À²¼ºÀ» ÅëÇØ ½ºÆù¼­´Â ÀÚ¿øÀ» º¸´Ù È¿°úÀûÀ¸·Î ¹èºÐÇϰí ÀǾàǰÀ» ´õ »¡¸® ½ÃÀå¿¡ Ãâ½ÃÇÒ ¼ö ÀÖ½À´Ï´Ù.

¶ÇÇÑ AI ÅøÀº ȯÀÚ µî·Ï ¹× û±¸ µ¥ÀÌÅͺ£À̽º¿Í °°Àº ½ÇÁ¦ µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© Ä¡·á¹ýÀÇ Àå±âÀûÀÎ ¾ÈÀü¼º°ú È¿´ÉÀ» Æò°¡Çϱâ À§ÇØ ½ÃÆÇ ÈÄ ÀÓ»ó½ÃÇè ¹× °üÂû ¿¬±¸¿¡ AI¸¦ µµÀÔÇÏ´Â µî ½ÇÁ¦ Áõ°Å¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â´ÉÀº ±Ù°Å¿¡ ±â¹ÝÇÑ ÀÇ»ç°áÁ¤À» °­Á¶ÇÏ´Â ±ÔÁ¦ µ¿Çâ°ú ÀÏÄ¡Çϸç, ÀÓ»ó½ÃÇè¿¡ AI¸¦ ÅëÇÕÇÏ´Â °ÍÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

AI°¡ Àӻ󿬱¸ÀÇ ´Ù¾ç¼º°ú Á¢±Ù¼ºÀ» °³¼±ÇÒ ¼ö Àִ°¡?

AI´Â °í±Þ µ¥ÀÌÅÍ ºÐ¼®°ú ¿¹Ãø ¸ðµ¨¸µÀ» Ȱ¿ëÇÏ¿© ´Ù¾ç¼º ¹× Á¢±Ù¼º°ú °°Àº ÀÓ»ó ¿¬±¸ÀÇ ¿À·£ ³­Á¦¸¦ ÇØ°áÇϰí ÀÖ½À´Ï´Ù. ±âÁ¸ ÀÓ»ó½ÃÇèÀº ºÒƯÁ¤ ´Ù¼ö·ÎºÎÅÍ Âü°¡ÀÚ¸¦ ¸ðÁýÇÏ´Â µ¥ ¾î·Á¿òÀ» °Þ¾î Àα¸Åë°èÇÐÀûÀ¸·Î ÀϹÝÈ­µÇÁö ¾Ê´Â ÆíÇâµÈ °á°ú¸¦ ÃÊ·¡ÇÒ ¼ö Àִµ¥, AI ½Ã½ºÅÛÀº ÀÓ»ó Á¤º¸¿Í ÇÔ²² »çȸÀα¸ÇÐÀû µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© ´Ù¾çÇÑ Âü°¡ÀÚ¸¦ ½Äº°ÇÏ°í ¸ðÁýÇÔÀ¸·Î½á º¸´Ù Á¾ÇÕÀûÀÎ ÀÓ»ó½ÃÇèÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÓ»ó½ÃÇèÀ» ½ÇÇöÇÕ´Ï´Ù.

AI¸¦ Ȱ¿ëÇÑ ÅøÀº ºÐ»êÇü ¹× °¡»ó ÀÓ»ó½ÃÇè ¸ðµ¨À» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á ÀÓ»ó½ÃÇè¿¡ ´ëÇÑ Á¢±Ù¼ºÀ» È®´ëÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀº Âü°¡ÀÚµéÀÌ ÀÓ»ó½ÃÇèÀ» À§ÇØ ÀÓ»ó½ÃÇè ±â°üÀ» ¹æ¹®ÇØ¾ß ÇÒ Çʿ伺À» ÁÙ¿©ÁÖ°í, Áö¹æÀ̳ª ÀÇ·á ¼­ºñ½º°¡ ºÎÁ·ÇÑ Áö¿ª Áֹε鵵 ÀÓ»ó½ÃÇè¿¡ ½±°Ô Á¢±ÙÇÒ ¼ö ÀÖµµ·Ï Çϸç, AI´Â ¿ø°Ý ¸ð´ÏÅ͸µ°ú µ¥ÀÌÅÍ ¼öÁýÀ» ¿ëÀÌÇÏ°Ô ÇÏ¿© Âü°¡ÀÚµéÀÌ Áý¿¡¼­ Æí¾ÈÇÏ°Ô ÀÓ»ó½ÃÇè¿¡ Âü¿©ÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ÀÌ ±â´ÉÀº ¸ðÁý·üÀ» Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó Àü¹ÝÀûÀΠȯÀÚ °æÇèÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.

¶ÇÇÑ AI´Â ÀÓ»ó½ÃÇè µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î ºÐ¼®ÇÒ ¼ö ÀÖÀ¸¹Ç·Î ½ºÆù¼­°¡ Âü¿©ÀÇ À庮À» ÆÄ¾ÇÇϰí ÇØ°áÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ¸ðÁý Àü·«À» Á¶Á¤ÇÏ°í ¹°·ù ¹®Á¦¸¦ Á¦°ÅÇÔÀ¸·Î½á AI´Â º¸´Ù °øÆòÇÑ ÀÓ»ó ¿¬±¸ Àü¸ÁÀ» Á¶¼ºÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº º¸´Ù ´ëÇ¥¼º ÀÖ°í ¿µÇâ·Â ÀÖ´Â ÀÓ»ó½ÃÇèÀ» À§ÇÑ ±æÀ» ¿­¾îÁÖ°í ÀÖ½À´Ï´Ù.

ÀÓ»ó½ÃÇè¿¡¼­ AI ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

ÀÓ»ó½ÃÇè ºÐ¾ßÀÇ ÀΰøÁö´É(AI) ½ÃÀå ¼ºÀåÀº Àӻ󿬱¸ÀÇ Çõ½Å°ú È¿À²¼º¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¸¦ ¹Ý¿µÇÏ´Â ¸î °¡Áö ÁÖ¿ä ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ¸¸¼ºÁúȯ À¯º´·ü Áõ°¡¿Í °³ÀÎ ¸ÂÃãÇü Ä¡·áÀÇ Çʿ伺 Áõ°¡´Â º¹ÀâÇÑ ÀÓ»ó½ÃÇè ¼³°è ¹× ¼öÇà¿¡ AI¸¦ µµÀÔÇÏ´Â µ¥ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖÀ¸¸ç, AI ±â¹Ý Ç÷§ÆûÀº ¸ðÁýÀ» °¡¼ÓÈ­Çϰí, ÇÁ·ÎÅäÄÝÀ» ÃÖÀûÈ­Çϸç, µ¥ÀÌÅÍ ºÐ¼®À» °­È­ÇÔÀ¸·Î½á Çö´ë Àӻ󿬱¸ÀÇ ÁÖ¿ä °úÁ¦¸¦ ÇØ°áÇϰí ÀÖ½À´Ï´Ù.

ÀǾàǰÀÇ ½Å¼ÓÇÑ ½ÂÀΰú ÀÓ»ó½ÃÇè °úÁ¤ÀÇ Åõ¸í¼º Çâ»ó°ú °°Àº ¼ÒºñÀÚ Çൿ µ¿ÇâÀº Á¦¾àȸ»çµéÀÌ AI ¼Ö·ç¼ÇÀ» äÅÃÇϵµ·Ï À¯µµÇϰí ÀÖÀ¸¸ç, AI ÅøÀº ½Ç½Ã°£ º¸°í ¹× ¸ð´ÏÅ͸µÀ» ÅëÇØ ÀÌÇØ°ü°èÀÚµéÀÌ ÀÓ»ó½ÃÇèÀÇ ¼ö¸íÁÖ±â Àü¹Ý¿¡ °ÉÃÄ Á¤º¸¸¦ ¾òÀ» ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù.

¶ÇÇÑ FDA¿Í °°Àº ±â°üÀº ÀÓ»ó½ÃÇèÀÇ È¿À²¼º°ú ±ÔÁ¤ Áؼö¸¦ °³¼±Çϱâ À§ÇØ AIÀÇ µµÀÔÀ» Àå·ÁÇϰí ÀÖÀ¸¸ç, Àӻ󿬱¸¿¡ ÷´Ü ±â¼úÀ» »ç¿ëÇÏ´Â °Í¿¡ ´ëÇÑ ±ÔÁ¦ ´ç±¹ÀÇ Áö¿øµµ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀº AI ¾Ë°í¸®Áò, µ¥ÀÌÅÍ ÅëÇÕ, ¿þ¾î·¯ºí ±â¼úÀÇ ¹ßÀü°ú ÇÔ²² ÀÓ»ó½ÃÇè¿¡¼­ AI ½ÃÀåÀÇ ±Þ¼ÓÇÑ ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖÀ¸¸ç, ÀǾàǰ °³¹ß ¹× ÀÓ»ó ¿¬±¸ ºÐ¾ßÀÇ ¹Ì·¡ Çõ½ÅÀÇ ÇÙ½ÉÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

ÄÄÆ÷³ÍÆ®(¼ÒÇÁÆ®¿þ¾î ÄÄÆ÷³ÍÆ®, ¼­ºñ½º ÄÄÆ÷³ÍÆ®);¾ÖÇø®ÄÉÀ̼Ç(ÀǾàǰ °³¹ß ¾ÖÇø®ÄÉÀ̼Ç, Drug Discovery ¾ÖÇø®ÄÉÀ̼Ç, ÀÓ»ó½ÃÇè °ü¸® ¾ÖÇø®ÄÉÀ̼Ç, ±âŸ ¾ÖÇø®ÄÉÀ̼Ç);ÃÖÁ¾ ¿ëµµ(Á¦¾à¡¤¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö ±â¾÷ ÃÖÁ¾ ¿ëµµ, Çмú¡¤¿¬±¸±â°ü ÃÖÁ¾ ¿ëµµ, ±âŸ ÃÖÁ¾ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹(ÃÑ 48°Ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Artificial Intelligence in Clinical Trials Market to Reach US$3.5 Billion by 2030

The global market for Artificial Intelligence in Clinical Trials estimated at US$1.6 Billion in the year 2024, is expected to reach US$3.5 Billion by 2030, growing at a CAGR of 14.0% over the analysis period 2024-2030. Clinical Trials AI Software, one of the segments analyzed in the report, is expected to record a 13.3% CAGR and reach US$1.9 Billion by the end of the analysis period. Growth in the Clinical Trials AI Services segment is estimated at 14.8% CAGR over the analysis period.

The U.S. Market is Estimated at US$420.6 Million While China is Forecast to Grow at 13.2% CAGR

The Artificial Intelligence in Clinical Trials market in the U.S. is estimated at US$420.6 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$545.0 Million by the year 2030 trailing a CAGR of 13.2% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 12.8% and 12.1% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 10.3% CAGR.

Global Artificial Intelligence in Clinical Trials Market - Key Trends & Drivers Summarized

How Is AI Transforming Clinical Trials?

Artificial Intelligence (AI) is revolutionizing the clinical trials landscape by enhancing efficiency, reducing costs, and improving outcomes. Traditional clinical trials are often time-consuming, expensive, and fraught with inefficiencies, such as delays in patient recruitment and data collection. AI addresses these challenges by leveraging machine learning algorithms, natural language processing (NLP), and predictive analytics to streamline trial processes.

In patient recruitment, AI systems analyze electronic health records (EHRs), genetic data, and other datasets to identify eligible candidates who meet trial criteria. This accelerates recruitment timelines and ensures a more diverse and representative participant pool. AI also optimizes trial design by analyzing historical data to predict the most effective protocols, endpoints, and methodologies.

During trials, AI-powered platforms enhance data collection and analysis by automating the monitoring of patient responses and identifying anomalies in real time. These tools enable faster decision-making, allowing sponsors to adjust protocols and improve trial efficiency. By addressing critical bottlenecks in trial workflows, AI is transforming clinical research and development.

What Drives the Adoption of AI in Clinical Trials?

The increasing complexity of clinical trials is a significant driver of AI adoption in this domain. With the rise of precision medicine and personalized therapies, trials require more granular data and tailored approaches to recruitment and monitoring. AI systems provide the computational power and analytical capabilities needed to manage and interpret these complex datasets, ensuring trial success.

The growing cost of drug development is another key factor. On average, clinical trials account for a substantial portion of R&D expenditures in the pharmaceutical industry. AI-powered tools reduce costs by automating labor-intensive tasks, such as site selection, data analysis, and regulatory reporting. This efficiency allows sponsors to allocate resources more effectively and bring drugs to market faster.

Additionally, the demand for real-world evidence is driving the adoption of AI in post-market trials and observational studies. AI tools analyze real-world data, such as patient registries and claims databases, to assess the long-term safety and effectiveness of therapies. These capabilities align with regulatory trends emphasizing evidence-based decision-making, further supporting AI’s integration into clinical trials.

Can AI Improve Diversity and Accessibility in Clinical Research?

AI is addressing longstanding challenges in clinical research, such as diversity and accessibility, by leveraging advanced data analysis and predictive modeling. Traditional clinical trials often struggle to recruit participants from underrepresented populations, leading to biased results that may not generalize across demographics. AI systems analyze socio-demographic data alongside clinical information to identify and recruit diverse participants, ensuring more inclusive trials.

AI-powered tools are also expanding access to clinical trials by enabling decentralized and virtual trial models. These approaches reduce the need for participants to travel to trial sites, making research more accessible to those in rural or underserved areas. AI facilitates remote monitoring and data collection, allowing participants to engage from the comfort of their homes. This capability not only improves recruitment rates but also enhances the overall patient experience.

Moreover, AI enables real-time analysis of trial data, allowing sponsors to identify and address barriers to participation. By tailoring recruitment strategies and removing logistical challenges, AI is fostering a more equitable clinical research landscape. These advancements are paving the way for more representative and impactful clinical trials.

What’s Driving the Growth of the AI in Clinical Trials Market?

The growth in the Artificial Intelligence in Clinical Trials market is driven by several key factors, reflecting the increasing demand for innovation and efficiency in clinical research. The rising prevalence of chronic diseases and the growing need for personalized therapies are spurring the adoption of AI to design and execute complex trials. AI-powered platforms accelerate recruitment, optimize protocols, and enhance data analysis, addressing critical challenges in modern clinical research.

Consumer behavior trends, such as the demand for faster drug approvals and greater transparency in trial processes, are pushing pharmaceutical companies to adopt AI solutions. AI tools enable real-time reporting and monitoring, ensuring that stakeholders remain informed throughout the trial lifecycle.

Furthermore, regulatory support for the use of advanced technologies in clinical research is boosting market growth. Agencies such as the FDA are encouraging the adoption of AI to improve trial efficiency and compliance. These factors, combined with advancements in AI algorithms, data integration, and wearable technologies, are driving the rapid expansion of the AI in Clinical Trials market, positioning it as a cornerstone of future innovation in drug development and clinical research.

SCOPE OF STUDY:

The report analyzes the Artificial Intelligence in Clinical Trials market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Component (Software Component, Services Component); Application (Drug Development Application, Drug Discovery Application, Clinical Trial Management Application, Other Applications); End-Use (Pharma & Biotech Companies End-Use, Academic and Research Institutes End-Use, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 48 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â