¼¼°èÀÇ MLOps ½ÃÀå
MLOps
»óǰÄÚµå : 1644049
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 01¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 208 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,260,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,780,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ MLOps ½ÃÀåÀº 2030³â±îÁö 182¾ï ´Þ·¯¿¡ µµ´Þ

2024³â¿¡ 25¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ MLOps ½ÃÀåÀº 2024-2030³â¿¡ CAGR 39.1%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 182¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ MLOps Ç÷§ÆûÀº CAGR 37.3%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 129¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. MLOps ¼­ºñ½º ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 44.5%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 6¾ï 5,920¸¸ ´Þ·¯, Áß±¹Àº CAGR 37.2%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ MLOps ½ÃÀåÀº 2024³â¿¡ 6¾ï 5,920¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 27¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀº 37.2%°¡ µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 35.5%¿Í 34.1%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 27.5%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ MLOps ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Çö´ë AI ¿öÅ©Ç÷ο쿡¼­ MLOps°¡ Áß¿äÇÑ ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

MLOps(Machine Learning Operations)´Â ½ÇÁ¦ ¿ëµµ¿¡¼­ ¸Ó½Å·¯´×(ML) ¸ðµ¨À» ¹èÆ÷, °ü¸® ¹× È®ÀåÇÏ´Â µ¥ ÇʼöÀûÀÎ ÇÁ·¹ÀÓ¿öÅ©°¡ µÇ°í ÀÖÀ¸¸ç, AI ±â¹Ý ¼Ö·ç¼ÇÀÇ µµÀÔÀÌ Áõ°¡ÇÔ¿¡ µû¶ó MLOps´Â ÀÌ·¯ÇÑ ¸ðµ¨À» È¿À²ÀûÀ¸·Î ¿î¿µ, Àϰü¼º, ¹Ýº¹¼º ¹× È®À强À» º¸ÀåÇÏ´Â ¸ÞÄ¿´ÏÁòÀ» Á¦°øÇÕ´Ï´Ù. ¸ðµ¨À» È¿À²ÀûÀ¸·Î ¿î¿µÇϰí Àϰü¼º, ÀçÇö¼º, È®À强À» º¸ÀåÇÏ´Â ¸ÞÄ¿´ÏÁòÀ» Á¦°øÇÕ´Ï´Ù. ±âÁ¸ÀÇ ML °³¹ß Á¢±Ù ¹æ½ÄÀº ¹öÀü °ü¸®, ¸ðµ¨ µå¸®ÇÁÆ®, ¹èÆ÷ º¹À⼺ µîÀÇ ¹®Á¦¿¡ Á÷¸éÇÏ´Â °æ¿ì°¡ ¸¹¾Ò´Âµ¥, MLOps´Â ÀÚµ¿È­, Áö¼ÓÀû ÅëÇÕ/Áö¼ÓÀû ¹èÆ÷(CI/CD) ÆÄÀÌÇÁ¶óÀÎ, ¸ð´ÏÅ͸µ ÅøÀ» µµÀÔÇÏ¿© ÀÌ·¯ÇÑ ¹®Á¦¸¦ È¿°úÀûÀ¸·Î ÇØ°áÇÕ´Ï´Ù. ¹®Á¦¸¦ ÇØ°áÇϰí È¿°úÀûÀÎ AI ±¸ÇöÀÇ Ãʼ®À¸·Î »ï´Â´Ù. ±ÝÀ¶, ÇコÄɾî, ¼Ò¸Å, Á¦Á¶ µî ´Ù¾çÇÑ »ê¾÷¿¡¼­ MLOps¸¦ Ȱ¿ëÇÏ¿© AI ±¸»óÀ» °£¼ÒÈ­ÇÏ´Â µ¥ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ÀÇ·á ºÐ¾ß¿¡¼­ MLOps´Â Áø´Ü ¹× Ä¡·á °èȹ¿¡ »ç¿ëµÇ´Â ¿¹Ãø ¸ðµ¨À» °ü¸®Çϰí Àå±â°£¿¡ °ÉÃÄ Á¤È®¼º°ú ÄÄÇöóÀ̾𽺸¦ À¯ÁöÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ±ÝÀ¶±â°üÀº MLOps¸¦ »ç¿ëÇÏ¿© »ç±â °¨Áö ¸ðµ¨À» ¸ð´ÏÅ͸µÇÏ°í ¾÷µ¥ÀÌÆ®ÇÏ¿© ÁøÈ­ÇÏ´Â À§Çù ȯ°æ¿¡ ÀûÀÀÇϰí ÀÖÀ¸¸ç, MLOps´Â µ¥ÀÌÅÍ °úÇÐÀÚ¿Í IT ¿î¿µÀÇ °£±ØÀ» ¸Þ¿ö ±â¾÷ÀÌ AI ÅõÀÚ¿¡¼­ ÀϰüµÈ °¡Ä¡¸¦ âÃâÇÏ°í ¿î¿µ À§Çè°ú ºñÈ¿À²¼ºÀ» ÃÖ¼ÒÈ­ÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. AI ÅõÀÚ¿¡¼­ ÀϰüµÈ °¡Ä¡¸¦ âÃâÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù.

±â¼úÀÇ ¹ßÀüÀº MLOpsÀÇ ´É·ÂÀ» ¾î¶»°Ô Çâ»ó½Ã۰í Àִ°¡?

AI¿Í Ŭ¶ó¿ìµå ±â¼úÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀ¸·Î MLOpsÀÇ ±â´ÉÀÌ Å©°Ô Çâ»óµÇ°í, ´Ù¾çÇÑ »ê¾÷¿¡¼­ MLOps¸¦ äÅÃÇϰí ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ³×ÀÌÆ¼ºê Ç÷§ÆûÀº MLOps¿¡ È®Àå °¡´ÉÇÑ ÀÎÇÁ¶ó¸¦ Á¦°øÇÏ¿© ±â¾÷ÀÌ ¿ÂÇÁ·¹¹Ì½º ¸®¼Ò½ºÀÇ Á¦¾à ¾øÀÌ ¸ðµ¨À» °ü¸®ÇÏ°í ¹èÆ÷ÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù. ÇÏÀ̺긮µå Ŭ¶ó¿ìµå¿Í ¸ÖƼ Ŭ¶ó¿ìµå Àü·«µµ È®»êµÇ°í ÀÖÀ¸¸ç, ±â¾÷Àº ´Ù¾çÇÑ ÄÄÇ»ÆÃ ȯ°æ¿¡¼­ MLOps ÅøÀ» Ȱ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ µµÄ¿(Docker)³ª Äí¹ö³×Ƽ½º(Kubernetes)¿Í °°Àº ÄÁÅ×À̳ÊÈ­ ±â¼úÀº ±â¹Ý ÀÎÇÁ¶ó¿¡ °ü°è¾øÀÌ ÀϰüµÈ ML ¸ðµ¨À» ½±°Ô Æ÷ÀåÇÏ°í ¹èÆ÷ÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ÀÚµ¿È­´Â ¶Ç ´Ù¸¥ Áß¿äÇÑ ¿øµ¿·ÂÀ̸ç, °í±Þ ÅøÀº ¿øÈ°ÇÑ ¸ðµ¨ ±³À°, Å×½ºÆ® ¹× ¹èÆ÷¸¦ ¿ëÀÌÇÏ°Ô Çϰí, TensorFlow Extended(TFX) ¹× MLflow¿Í °°Àº ÇÁ·¹ÀÓ¿öÅ©´Â µ¥ÀÌÅÍ °ËÁõ, ¸ðµ¨ ¹öÀü °ü¸® ¹× ¸ð´ÏÅ͸µ ±â´ÉÀ» ÅëÇÕÇÏ¿© MLOps ¿öÅ©Ç÷οìÀÇ ±â´ÉÀ» ÅëÇÕÇÏ¿© MLOps ¿öÅ©Ç÷ο츦 À§ÇÑ ¿£µåÅõ¿£µå ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ AI ±â¹Ý ÀÚµ¿È­ ÅøÀº ML ½Ã½ºÅÛÀÇ °¡½Ã¼ºÀ» °­È­ÇÏ¿© »çÀü ¿¹¹æÀû ¹®Á¦ ÇØ°á°ú ¼º´É ÃÖÀûÈ­¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¶ÇÇÑ ¼³¸í °¡´ÉÇÑ AI(XAI)ÀÇ ¹ßÀüÀº MLOps ÆÄÀÌÇÁ¶óÀο¡ ÅëÇÕµÇ¾î ±ÔÁ¦°¡ ¾ö°ÝÇÑ »ê¾÷¿¡¼­ Åõ¸í¼º°ú ÄÄÇöóÀ̾𽺸¦ º¸ÀåÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú ¹ßÀüÀ¸·Î MLOps´Â Æ´»õ ÇÁ·¹ÀÓ¿öÅ©¿¡¼­ ±â¾÷ AI Àü·«ÀÇ ÇÙ½É ¿ä¼Ò·Î °Åµì³ª°í ÀÖ½À´Ï´Ù.

°¢ »ê¾÷¿¡¼­ MLOpsÀÇ ÁÖ¿ä ¿ëµµ´Â ¹«¾ùÀΰ¡?

MLOps´Â °¢ »ê¾÷ ºÐ¾ß¿¡¼­ AI ¸ðµ¨À» µµÀÔÇϰí À¯ÁöÇÏ´Â ¹æ½ÄÀ» À籸¼ºÇÏ¿© È¿À²¼º°ú Çõ½ÅÀ» ÃËÁøÇÏ´Â Çõ½ÅÀûÀÎ ¿ëµµ¸¦ ±¸ÇöÇϰí ÀÖ½À´Ï´Ù. ¼Ò¸Å ¾÷°è¿¡¼­´Â MLOps°¡ Ãßõ ¿£Áø, µ¿Àû °¡°Ý Ã¥Á¤ ¸ðµ¨, Àç°í ÃÖÀûÈ­ ½Ã½ºÅÛ µî¿¡ Ȱ¿ëµÇ¾î ½ÃÀå µ¿Çâ°ú °í°´ ¼±È£µµ¿¡ ºü¸£°Ô ´ëÀÀÇÒ ¼ö ÀÖµµ·Ï µ½°í ÀÖ½À´Ï´Ù. ÇコÄÉ¾î »ê¾÷¿¡¼­ MLOps´Â ȯÀÚ ¸ð´ÏÅ͸µ, ÀÇ·á ¿µ»ó, °³ÀÎÈ­µÈ Ä¡·á °èȹÀ» À§ÇÑ ¿¹Ãø ºÐ¼®ÀÇ ¹èÆ÷¸¦ °£¼ÒÈ­Çϰí, ¿ªµ¿ÀûÀÎ ÀÓ»ó ȯ°æ¿¡¼­ ¸ðµ¨ÀÇ Á¤È®¼º°ú ÀûÇÕ¼ºÀ» º¸ÀåÇÕ´Ï´Ù. Á¦Á¶¾÷¿¡¼­ MLOps´Â ¿¹ÃøÀû À¯Áöº¸¼ö, ǰÁú°ü¸®, °øÁ¤ ÃÖÀûÈ­¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î, ´Ù¿îŸÀÓÀ» ÁÙÀÌ°í »ý»ê¼ºÀ» Çâ»ó½ÃŰ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ±ÝÀ¶±â°ü¿¡¼­´Â MLOps°¡ ½Å¿ë Á¡¼ö, À§Çè Æò°¡, »ç±â °¨Áö ½Ã½ºÅÛ °ü¸®¿¡ »ç¿ëµÇ¸ç, °æÁ¦ ¹× Çൿ ÆÐÅÏÀÇ º¯È­¿¡ µû¶ó ½Ç½Ã°£À¸·Î ¸ðµ¨À» Á¶Á¤ÇÕ´Ï´Ù. ¿î¼Û ¾÷°è´Â MLOps¸¦ °æ·Î ÃÖÀûÈ­, ÀÚÀ²ÁÖÇà ½Ã½ºÅÛ, °ø±Þ¸Á ºÐ¼®¿¡ Ȱ¿ëÇÏ¿© ¿î¿µ È¿À²¼ºÀ» ³ôÀÌ°í ºñ¿ëÀ» Àý°¨Çϰí ÀÖÀ¸¸ç, MLOps´Â AI ¸ðµ¨ ¹èÆ÷ ¹× ¸ð´ÏÅ͸µÀ» Ç¥ÁØÈ­ ¹× ÀÚµ¿È­ÇÏ¿© ±â¾÷ÀÌ AI ±¸»óÀ» È®ÀåÇϰí ÀϰüµÈ °¡Ä¡¿Í °æÀï ¿ìÀ§¸¦ È®º¸ÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù. ÀϰüµÈ °¡Ä¡¿Í °æÀï ¿ìÀ§¸¦ Á¦°øÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù.

MLOps ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

MLOps ½ÃÀåÀÇ ¼ºÀåÀº AI ±â¼ú äÅà Áõ°¡, Ŭ¶ó¿ìµå ÄÄÇ»ÆÃÀÇ ¹ßÀü, È¿À²ÀûÀÎ ¸ðµ¨ °ü¸® ÇÁ·¹ÀÓ¿öÅ©¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡ µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ±â¾÷Àº ÀÇ»ç°áÁ¤, ¿î¿µ È¿À²¼º, °í°´ °æÇèÀ» °³¼±Çϱâ À§ÇØ AI¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ ¸ðµ¨ÀÌ ÇÁ·Î´ö¼Ç ȯ°æ¿¡¼­ ÀϰüµÈ ¼º´ÉÀ» ¹ßÈÖÇÒ ¼ö ÀÖµµ·Ï Çϱâ À§ÇØ MLOps¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¾÷°è Àü¹Ý¿¡ °ÉÃÄ µ¥ÀÌÅͺ£À̽º ¿ëµµÀÌ È®»êµÇ¸é¼­ ¸ðµ¨ ¹èÆ÷ ¹× ¸ð´ÏÅ͸µÀÇ º¹À⼺À» °ü¸®ÇÒ ¼ö ÀÖ´Â ¼Ö·ç¼ÇÀ¸·Î MLOpsÀÇ µµÀÔÀÌ ´õ¿í °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ÇÏÀ̺긮µå ¾÷¹« ȯ°æÀÇ ºÎ»ó, µ¥ÀÌÅÍ º¸¾ÈÀÇ Á߿伺, ½Ç½Ã°£ ºÐ¼®ÀÇ Ã¤Åðú °°Àº ÃÖÁ¾ ¿ëµµ µ¿Çâµµ MLOps ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ±ÝÀ¶ ¹× ÀÇ·á¿Í °°ÀÌ ±ÔÁ¦°¡ ¾ö°ÝÇÑ »ê¾÷¿¡¼­´Â ±ÔÁ¤ Áؼö¸¦ º¸ÀåÇϰí AI ½Ã½ºÅÛÀÇ ¹«°á¼ºÀ» À¯ÁöÇϱâ À§ÇØ MLOps¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ MLOps¿Í ¿§Áö ÄÄÇ»ÆÃ, IoT, ºí·ÏüÀΰú °°Àº ½Å±â¼ú°úÀÇ ÅëÇÕÀº MLOpsÀÇ Àû¿ë ¹üÀ§¸¦ È®ÀåÇϰí Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ä¼ÒµéÀÌ °áÇյǾî È®Àå °¡´ÉÇϰí È¿À²ÀûÀÎ AI ¿î¿µÀ» °¡´ÉÇÏ°Ô ÇÏ´Â MLOpsÀÇ Áß¿äÇÑ ¿ªÇÒÀÌ ºÎ°¢µÇ°í ÀÖÀ¸¸ç, »ê¾÷ Àü¹Ý¿¡ °ÉÃÄ Áö´ÉÇü ½Ã½ºÅÛÀÇ ¹Ì·¡¸¦ Çü¼ºÇϰí ÀÖ½À´Ï´Ù.

ºÎ¹®

ÄÄÆ÷³ÍÆ®(MLOps Ç÷§Æû, MLOps ¼­ºñ½º), ¹èÆ÷(¿ÂÇÁ·¹¹Ì½º ¹èÆ÷, Ŭ¶ó¿ìµå ±â¹Ý ¹èÆ÷), ±â¾÷ ±Ô¸ð(´ë±â¾÷, Áß¼Ò±â¾÷), »ê¾÷º°(BFSI »ê¾÷º°, ÇコÄÉ¾î ¹× »ý¸í°úÇÐ »ê¾÷º°, IT ¹× Åë½Å »ê¾÷º°, ¼Ò¸Å ¹× E-Commerce »ê¾÷º°, Á¤ºÎ ¹× °ø°ø ºÎ¹® »ê¾÷º°, ¿¡³ÊÁö ¹× À¯Æ¿¸®Æ¼ »ê¾÷º°, ±âŸ »ê¾÷º°)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹(ÃÑ 42»ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global MLOps Market to Reach US$18.2 Billion by 2030

The global market for MLOps estimated at US$2.5 Billion in the year 2024, is expected to reach US$18.2 Billion by 2030, growing at a CAGR of 39.1% over the analysis period 2024-2030. MLOps Platforms, one of the segments analyzed in the report, is expected to record a 37.3% CAGR and reach US$12.9 Billion by the end of the analysis period. Growth in the MLOps Services segment is estimated at 44.5% CAGR over the analysis period.

The U.S. Market is Estimated at US$659.2 Million While China is Forecast to Grow at 37.2% CAGR

The MLOps market in the U.S. is estimated at US$659.2 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$2.7 Billion by the year 2030 trailing a CAGR of 37.2% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 35.5% and 34.1% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 27.5% CAGR.

Global MLOps Market - Key Trends & Drivers Summarized

Why Is MLOps Critical in Modern AI Workflows?

MLOps (Machine Learning Operations) is becoming an indispensable framework for deploying, managing, and scaling machine learning (ML) models in real-world applications. As organizations increasingly adopt AI-driven solutions, MLOps provides the structure to operationalize these models efficiently, ensuring consistency, reproducibility, and scalability in production environments. The traditional approach to ML development often faces challenges related to version control, model drift, and deployment complexities. MLOps addresses these issues by introducing automation, continuous integration/continuous deployment (CI/CD) pipelines, and monitoring tools, making it a cornerstone of effective AI implementation. Industries such as finance, healthcare, retail, and manufacturing are leveraging MLOps to streamline their AI initiatives. In healthcare, MLOps is crucial for managing predictive models used in diagnostics and treatment planning, ensuring they remain accurate and compliant over time. Financial institutions use MLOps to monitor and update fraud detection models, adapting them to evolving threat landscapes. By bridging the gap between data scientists and IT operations, MLOps is enabling businesses to derive consistent value from their AI investments while minimizing operational risks and inefficiencies.

How Are Technological Advancements Enhancing MLOps Capabilities?

The rapid evolution of AI and cloud technologies is significantly enhancing MLOps capabilities, driving its adoption across industries. Cloud-native platforms are offering scalable infrastructure for MLOps, enabling organizations to manage and deploy models without the constraints of on-premises resources. Hybrid and multi-cloud strategies are also becoming prevalent, allowing enterprises to leverage MLOps tools across diverse computing environments. Additionally, containerization technologies such as Docker and Kubernetes have made it easier to package and deploy ML models consistently, irrespective of the underlying infrastructure. Automation is another critical driver, with advanced tools facilitating seamless model training, testing, and deployment. Frameworks such as TensorFlow Extended (TFX) and MLflow are providing end-to-end solutions for MLOps workflows, incorporating capabilities for data validation, model versioning, and monitoring. AI-driven automation tools are also enhancing the observability of ML systems, enabling proactive issue resolution and performance optimization. Furthermore, advancements in explainable AI (XAI) are being integrated into MLOps pipelines, ensuring transparency and compliance in highly regulated industries. These technological strides are elevating MLOps from a niche framework to a critical component of enterprise AI strategies.

What Are the Key Applications of MLOps Across Industries?

The adoption of MLOps is reshaping how industries deploy and maintain AI models, enabling transformative applications that drive efficiency and innovation. In the retail sector, MLOps is powering recommendation engines, dynamic pricing models, and inventory optimization systems, helping businesses respond swiftly to market trends and customer preferences. In the healthcare industry, MLOps is streamlining the deployment of predictive analytics for patient monitoring, medical imaging, and personalized treatment plans, ensuring models remain accurate and relevant in dynamic clinical environments. In manufacturing, MLOps is integral to predictive maintenance, quality control, and process optimization, reducing downtime and enhancing productivity. Financial institutions use MLOps to manage credit scoring, risk assessment, and fraud detection systems, adapting these models in real-time to changing economic and behavioral patterns. The transportation sector leverages MLOps for route optimization, autonomous vehicle systems, and supply chain analytics, enhancing operational efficiency and reducing costs. By standardizing and automating the deployment and monitoring of AI models, MLOps is enabling businesses to scale their AI initiatives across a wide range of applications, delivering consistent value and competitive advantages.

What Factors Are Driving Growth in the MLOps Market?

The growth in the MLOps market is driven by several factors, including the increasing adoption of AI technologies, advancements in cloud computing, and the rising need for efficient model management frameworks. Organizations are investing heavily in AI to improve decision-making, operational efficiency, and customer experiences, creating a strong demand for MLOps to ensure these models deliver consistent performance in production. The proliferation of data-driven applications across industries is further accelerating the adoption of MLOps as a solution to manage the complexities of model deployment and monitoring. End-use trends such as the rise of hybrid work environments, the growing emphasis on data security, and the adoption of real-time analytics are also fueling demand for MLOps solutions. Industries with stringent regulatory requirements, such as finance and healthcare, are increasingly relying on MLOps to ensure compliance and maintain the integrity of their AI systems. Additionally, the integration of MLOps with emerging technologies like edge computing, IoT, and blockchain is expanding its application scope and driving innovation. Together, these factors underscore the critical role of MLOps in enabling scalable and efficient AI operations, shaping the future of intelligent systems across industries.

SCOPE OF STUDY:

The report analyzes the MLOps market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Component (MLOps Platforms, MLOps Services); Deployment (On-Premise Deployment, Cloud-based Deployment); Enterprise Size (Large Enterprises, SMEs); Vertical (BFSI Vertical, Healthcare & Life Sciences Vertical, IT & Telecom Vertical, Retail & E-Commerce Vertical, Government & Public Sectors Vertical, Energy & Utilities Vertical, Other Verticals)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 42 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â