¼¼°èÀÇ InP ¿þÀÌÆÛ ½ÃÀå
InP Wafers
»óǰÄÚµå : 1644044
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 01¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 232 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,464,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 25,393,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ InP ¿þÀÌÆÛ ½ÃÀåÀº 2030³â±îÁö 41¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2024³â¿¡ 21¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ InP ¿þÀÌÆÛ ½ÃÀåÀº ºÐ¼® ±â°£ÀÎ 2024-2030³â¿¡ CAGR 11.7%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 41¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ N-ŸÀÔ InP ¿þÀÌÆÛ´Â CAGR 12.2%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 30¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù. P-ŸÀÔ InP ¿þÀÌÆÛ ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ Áß CAGR 11.0%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº ÃßÁ¤ 5¾ï 5,490¸¸ ´Þ·¯, Áß±¹Àº CAGR 11.0%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ InP ¿þÀÌÆÛ ½ÃÀåÀº 2024³â¿¡ 5¾ï 5,490¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 6¾ï 3,980¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀº 11.0%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 10.9%¿Í 10.0%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 8.5%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ InP ¿þÀÌÆÛ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

÷´Ü ¹ÝµµÃ¼ ¿ëµµ¿¡¼­ InP ¿þÀÌÆÛ°¡ ÇʼöÀûÀÎ ÀÌÀ¯´Â?

Àεã ÀÎÈ­¹°(InP) ¿þÀÌÆÛ´Â ¶Ù¾î³­ ÀüÀÚ ¹× ±¤ÀüÀÚ Æ¯¼ºÀ¸·Î ÀÎÇØ ¹ÝµµÃ¼ ¾÷°è¿¡¼­ °¢±¤À» ¹Þ°í ÀÖ½À´Ï´Ù. InP ¿þÀÌÆÛ´Â ³ôÀº ÀüÀÚ À̵¿µµ, ³ôÀº ¿­ÀüµµÀ², Á÷Á¢ÀûÀÎ ¹êµå°¸ Ư¼ºÀ¸·Î ÀÎÇØ ·¹ÀÌÀú, ±¤°ËÃâ±â, °í¼Ó Æ®·£Áö½ºÅÍ¿Í °°Àº ±¤ ¹× ÀüÀÚ ¿ëµµ¿¡ ÀÌ»óÀûÀ̸ç, ³ôÀº ¼º´É°ú È¿À²¼ºÀÌ ¿ä±¸µÇ´Â °í¼Ó ¹× °íÁÖÆÄ ¿ëµµ¿¡ ÇʼöÀûÀÎ ¼ÒÀçÀÔ´Ï´Ù. InP ¿þÀÌÆÛÀÇ ÁÖ¿ä ¿ëµµ Áß Çϳª´Â Åë½Å ¹× µ¥ÀÌÅÍ Åë½Å ºÐ¾ß·Î, °í¼Ó µ¥ÀÌÅÍ Àü¼ÛÀ» Áö¿øÇÏ´Â ±¤ Æ®·£½Ã¹ö ¹× ±¤ÁýÀûȸ·Î(PIC)¿¡ »ç¿ëµÇ¸ç, 5G ³×Æ®¿öÅ© ¼ö¿ä Áõ°¡¿Í Ŭ¶ó¿ìµå ¼­ºñ½º È®´ë·Î ÀÎÇØ InP ¿þÀÌÆÛ ¼ö¿ä´Â ´õ¿í Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. 5G ³×Æ®¿öÅ© ¼ö¿ä Áõ°¡¿Í Ŭ¶ó¿ìµå ¼­ºñ½º È®´ë·Î ÀÎÇØ, InP ¿þÀÌÆÛ´Â Ã·´Ü Åë½Å ÀÎÇÁ¶ó °³¹ß¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¾çÀÚ ÄÄÇ»ÆÃ, ÀÚÀ²ÁÖÇàÂ÷, ÀÇ·á¿ë ¿µ»óó¸® µî Á¤È®¼º°ú ½Å·Ú¼ºÀÌ ÃÖ¿ì¼±½ÃµÇ´Â ½Å±â¼ú¿¡¼­µµ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±¤¹üÀ§ÇÑ ÀÀ¿ë °¡´É¼ºÀº »ê¾÷ Àü¹ÝÀÇ ±â¼ú Çõ½ÅÀ» ÃËÁøÇÏ´Â µ¥ ÀÖÀ¸¸ç, InP ¿þÀÌÆÛÀÇ Á߿伺ÀÌ Ä¿Áö°í ÀÖÀ½À» °­Á¶Çϰí ÀÖ½À´Ï´Ù.

±â¼úÀÇ ¹ßÀüÀº InP ¿þÀÌÆÛÀÇ ´É·ÂÀ» ¾î¶»°Ô Çâ»ó½Ã۰í Àִ°¡?

±â¼ú Çõ½ÅÀº »ý»ê È¿À² °³¼±, ¿þÀÌÆÛ Ç°Áú Çâ»ó, ÀÀ¿ë ¹üÀ§ È®´ë·Î InP ¿þÀÌÆÛ ½ÃÀå¿¡ Çõ¸íÀ» ºÒ·¯ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. À¯±â±Ý¼ÓÈ­Çбâ»óÁõÂø¹ý(MOCVD), ºÐÀÚ¼± ¿¡ÇÇÅýÃ(MBE) µîÀÇ Ã·´Ü Á¦Á¶ ±â¼úÀº °í¼øµµ, ¹«°áÁ¡ InP ¿þÀÌÆÛ¸¦ »ý»êÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº ƯÈ÷ ±¤ÀüÀÚ ¹× °íÁÖÆÄ Àåºñ¿Í °°Àº Áß¿äÇÑ ¿ëµµ¿¡¼­ ¾ÈÁ¤ÀûÀÎ ¼º´ÉÀ» º¸ÀåÇϸç, InP ¿þÀÌÆÛ¿Í ±¤ÁýÀûȸ·Î(PIC)ÀÇ ÅëÇÕ ¶ÇÇÑ Çõ½ÅÀûÀÎ Ãß¼¼ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ÅëÇÕÀº ¼º´ÉÀ» Çâ»ó½ÃŰ¸é¼­ µð¹ÙÀ̽º Å©±â, Àü·Â ¼Òºñ ¹× ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î InP ¿þÀÌÆÛ ±â¹ÝÀÇ ±¤ Æ®·£½Ã¹ö´Â µ¥ÀÌÅͼ¾ÅÍ ¹× Åë½Å ³×Æ®¿öÅ©¿¡¼­ ´õ ³ôÀº µ¥ÀÌÅÍ ¼Óµµ¿Í ³·Àº Áö¿¬ ½Ã°£À» Áö¿øÇÕ´Ï´Ù. ¶ÇÇÑ 4ÀÎÄ¡ ¹× 6ÀÎÄ¡¿Í °°Àº ´õ Å« ±¸°æÀÇ InP ¿þÀÌÆÛÀÇ °³¹ß·Î »ý»ê È®À强ÀÌ Çâ»óµÇ°í Á¦Á¶ ºñ¿ëÀÌ Àý°¨µÇ¾î ´õ ¸¹Àº »ê¾÷¿¡¼­ ÀÌ ±â¼úÀ» ½±°Ô »ç¿ëÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀû Çõ½ÅÀ» ÅëÇØ InP ¿þÀÌÆÛ´Â Â÷¼¼´ë ÀüÀÚ ¹× Æ÷Åä´Ð½ºÀÇ Áß¿äÇÑ ¿øµ¿·ÂÀ¸·Î¼­ ÀÔÁö¸¦ ±»°ÇÈ÷ Çϰí ÀÖ½À´Ï´Ù.

InP ¿þÀÌÆÛÀÇ ÁÖ¿ä ¿ëµµ´Â ¹«¾ùÀΰ¡?

InP ¿þÀÌÆÛ´Â Åë½Å, Ç×°ø¿ìÁÖ, ÀÇ·á, ÀÚµ¿Â÷ »ê¾÷ µî ´Ù¾çÇÑ ¿ëµµ¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. Åë½Å ºÐ¾ß¿¡¼­´Â ÀÌ ¿þÀÌÆÛ°¡ °í¼Ó ±¤Åë½Å ½Ã½ºÅÛÀÇ ±âÃʰ¡ µÇ¾î ±¤¼¶À¯ ³×Æ®¿öÅ©ÀÇ °í¼Ó µ¥ÀÌÅÍ Àü¼ÛÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. Ç×°ø¿ìÁÖ ¹× ¹æÀ§ ºÐ¾ß¿¡¼­´Â °íÁÖÆÄ ¹× °íÃâ·Â ȯ°æ¿¡¼­ È¿À²ÀûÀ¸·Î ÀÛµ¿ÇÏ´Â ´É·ÂÀ¸·Î ÀÎÇØ InP ¿þÀÌÆÛ°¡ ·¹ÀÌ´õ ½Ã½ºÅÛ ¹× À§¼º Åë½Å Àåºñ¿¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ÇコÄÉ¾î ºÐ¾ß¿¡¼­´Â ¾çÀüÀÚ¹æ»ç¼±´ÜÃþÃÔ¿µ(PET) ½ºÄ³³Ê ¹× °íÇØ»óµµ À̹Ì¡ÀÌ ÇÊ¿äÇÑ ±âŸ Áø´Ü ÅøÀ» Æ÷ÇÔÇÑ Ã·´Ü À̹Ì¡ ½Ã½ºÅÛ¿¡ InP ¿þÀÌÆÛ°¡ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ ºÐ¾ß¿¡¼­´Â ÀÚÀ²ÁÖÇà ³»ºñ°ÔÀÌ¼Ç ¹× Ãæµ¹ ȸÇÇ¿¡ ÇʼöÀûÀÎ LiDAR ½Ã½ºÅÛ¿¡ InP ±â¹Ý ±¤¼¾¼­°¡ Á¡Á¡ ´õ ¸¹ÀÌ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ InP ¿þÀÌÆÛ´Â ¾çÀÚºñÆ® °³¹ß ¹× °íÁ¤¹Ð ±¤ÇÐÀû 󸮸¦ Áö¿øÇÔÀ¸·Î½á ¾çÀÚ ÄÄÇ»ÆÃÀÇ Çõ½ÅÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¿ëµµ´Â InP ¿þÀÌÆÛ°¡ ÷´Ü ±â¼ú¿¡ Àü·ÂÀ» °ø±ÞÇÏ°í ºü¸£°Ô ÁøÈ­ÇÏ´Â »ê¾÷°èÀÇ ¿ä±¸¿¡ ºÎÀÀÇÏ´Â µ¥ ÀÖÀ¸¸ç, ´Ù¿ëµµÇϰí ÇʼöÀûÀ̶ó´Â °ÍÀ» º¸¿©ÁÝ´Ï´Ù.

InP ¿þÀÌÆÛ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

InP ¿þÀÌÆÛ ½ÃÀåÀÇ ¼ºÀåÀº °í¼Ó µ¥ÀÌÅÍ Àü¼Û ¼ö¿äÀÇ ±ÞÁõ, ±¤ ÅëÇÕÀÇ ¹ßÀü, 5G ³×Æ®¿öÅ©ÀÇ Ã¤Åà Ȯ´ë µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ, IoT ±â±â, ½ºÆ®¸®¹Ö ¼­ºñ½ºÀÇ È®»êÀº È¿À²ÀûÀÎ ±¤Åë½Å ½Ã½ºÅÛ¿¡ ´ëÇÑ ±ä±ÞÇÑ ¼ö¿ä¸¦ âÃâÇÏ¿© Åë½Å ¹× µ¥ÀÌÅͼ¾ÅͿ뵵¿¡¼­ InP ¿þÀÌÆÛ¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. CE(Consumer Electronics) ¹× ÀÚµ¿Â÷ µîÀÇ »ê¾÷¿¡¼­ ¼ÒÇü, °í¼Ó, ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº µð¹ÙÀ̽º·ÎÀÇ Àüȯµµ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù. ÀÚÀ²ÁÖÇà ÀÚµ¿Â÷ÀÇ LiDAR äÅðú ÇコÄÉ¾î ºÐ¾ßÀÇ Ã·´Ü À̹Ì¡ ±â¼ú »ç¿ë°ú °°Àº ÃÖÁ¾ ¿ëµµ µ¿ÇâÀº InP ¿þÀÌÆÛ¿¡ »õ·Î¿î ±âȸ¸¦ °¡Á®´ÙÁÖ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¾çÀÚ ÄÄÇ»ÆÃ ¹× Àç»ý¿¡³ÊÁö ¹ßÀü°ú °°Àº Â÷¼¼´ë ±â¼ú¿¡ ´ëÇÑ Á¤ºÎÀÇ ÅõÀÚ´Â InP ±â¹Ý ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ºñ¿ë È¿À²ÀûÀÎ Á¦Á¶ ±â¼ú°ú ¿þÀÌÆÛ »çÀÌÁîÀÇ ´ëÇüÈ­´Â ½ÃÀå °³¹ßÀ» ÃËÁøÇÏ°í ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀÌ º¹ÇÕÀûÀ¸·Î ÀÛ¿ëÇÏ¿© ¼¼°è ±â¼ú ¹ßÀüÀ» ÃËÁøÇϰí Çö´ë »ê¾÷ÀÇ °úÁ¦¸¦ ÇØ°áÇÏ´Â µ¥ ÀÖÀ¸¸ç, InP ¿þÀÌÆÛÀÇ Àü·«Àû Á߿伺ÀÌ ºÎ°¢µÇ°í ÀÖ½À´Ï´Ù.

ºÎ¹®

Á¦Ç° À¯Çü(NÇü InP ¿þÀÌÆÛ, PÇü InP ¿þÀÌÆÛ, ¹ÝÀý¿¬ InP ¿þÀÌÆÛ), Á÷°æ(Á÷°æ 50.8mm, Á÷°æ 76.2mm, Á÷°æ 100mm ÀÌ»ó), ÃÖÁ¾»ç¿ëÀÚ(Åë½Å ÃÖÁ¾»ç¿ëÀÚ, Ç×°ø¿ìÁÖ/¹æÀ§»ê¾÷ ÃÖÁ¾»ç¿ëÀÚ, »ê¾÷, Àü·Â/¿¡³ÊÁö ÃÖÁ¾»ç¿ëÀÚ, ÇコÄɾî ÃÖÁ¾»ç¿ëÀÚ, ±âŸ ÃÖÁ¾»ç¿ëÀÚ) ÇコÄɾî ÃÖÁ¾»ç¿ëÀÚ, ±âŸ ÃÖÁ¾»ç¿ëÀÚ)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹(ÁÖ¸ñ 43»ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global InP Wafers Market to Reach US$4.1 Billion by 2030

The global market for InP Wafers estimated at US$2.1 Billion in the year 2024, is expected to reach US$4.1 Billion by 2030, growing at a CAGR of 11.7% over the analysis period 2024-2030. N-Type InP Wafer, one of the segments analyzed in the report, is expected to record a 12.2% CAGR and reach US$3.0 Billion by the end of the analysis period. Growth in the P-Type InP Wafer segment is estimated at 11.0% CAGR over the analysis period.

The U.S. Market is Estimated at US$554.9 Million While China is Forecast to Grow at 11.0% CAGR

The InP Wafers market in the U.S. is estimated at US$554.9 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$639.8 Million by the year 2030 trailing a CAGR of 11.0% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 10.9% and 10.0% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 8.5% CAGR.

Global InP Wafers Market - Key Trends & Drivers Summarized

Why Are InP Wafers Becoming Essential in Advanced Semiconductor Applications?

Indium phosphide (InP) wafers are gaining prominence in the semiconductor industry due to their exceptional electronic and optoelectronic properties. These wafers are integral to high-speed and high-frequency applications, outperforming traditional silicon-based technologies in areas requiring superior performance and efficiency. InP wafers exhibit higher electron mobility, greater thermal conductivity, and direct bandgap properties, making them ideal for photonic and electronic applications such as lasers, photodetectors, and high-speed transistors. One of the primary applications of InP wafers is in the telecom and data communications sector, where they are used in optical transceivers and photonic integrated circuits (PICs) to support high-speed data transmission. With the rising demand for 5G networks and expanding cloud services, InP wafers are becoming indispensable in the development of advanced communication infrastructure. Furthermore, these wafers are playing a critical role in emerging technologies such as quantum computing, autonomous vehicles, and medical imaging, where precision and reliability are paramount. This broad applicability underscores the growing importance of InP wafers in driving technological innovation across industries.

How Are Technological Advancements Enhancing InP Wafer Capabilities?

Technological innovations are revolutionizing the InP wafer market by improving production efficiency, enhancing wafer quality, and expanding their application scope. Advanced manufacturing techniques, such as metalorganic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE), are enabling the production of high-purity and defect-free InP wafers. These advancements ensure consistent performance in critical applications, particularly in optoelectronics and high-frequency devices. The integration of InP wafers with photonic integrated circuits (PICs) is another transformative trend. This integration reduces the size, power consumption, and cost of devices while improving performance. For example, optical transceivers based on InP wafers are supporting higher data rates and lower latency in data centers and telecom networks. Additionally, the development of larger-diameter InP wafers, such as 4-inch and 6-inch formats, is increasing production scalability and reducing manufacturing costs, making the technology more accessible to a wider range of industries. These technological breakthroughs are solidifying the position of InP wafers as a key enabler of next-generation electronics and photonics.

What Are the Key Applications of InP Wafers Across Industries?

InP wafers are critical in a variety of applications, with their utility spanning telecommunications, aerospace, healthcare, and automotive industries. In telecommunications, these wafers are the foundation for high-speed optical communication systems, enabling faster data transfer in fiber optic networks. The aerospace and defense sectors leverage InP wafers in radar systems and satellite communication devices due to their ability to operate efficiently in high-frequency and high-power environments. In healthcare, InP wafers are used in advanced imaging systems, including positron emission tomography (PET) scanners and other diagnostic tools that require high-resolution imaging. The automotive sector is increasingly adopting InP-based photonic sensors for LiDAR systems, which are essential for autonomous vehicle navigation and collision avoidance. Moreover, InP wafers are enabling innovations in quantum computing by supporting qubit development and precision photonic processing. These applications demonstrate the versatility and indispensability of InP wafers in powering cutting-edge technologies and meeting the demands of rapidly evolving industries.

What Factors Are Driving Growth in the InP Wafers Market?

The growth in the InP Wafers market is driven by several factors, including the surging demand for high-speed data transmission, advancements in photonic integration, and the expanding adoption of 5G networks. The proliferation of cloud computing, IoT devices, and streaming services is creating an urgent need for efficient optical communication systems, propelling the demand for InP wafers in telecom and data center applications. The shift toward smaller, faster, and more energy-efficient devices in industries such as consumer electronics and automotive is also fueling market growth. End-use trends, such as the adoption of LiDAR in autonomous vehicles and the use of advanced imaging technologies in healthcare, are creating new opportunities for InP wafers. Furthermore, government initiatives to invest in next-generation technologies like quantum computing and renewable energy are accelerating the adoption of InP-based solutions. The development of cost-effective manufacturing techniques and larger wafer sizes is enhancing market accessibility, further driving growth. Together, these factors highlight the strategic importance of InP wafers in advancing global technological progress and addressing the challenges of modern industries.

SCOPE OF STUDY:

The report analyzes the InP Wafers market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Product Type (N-Type InP Wafer, P-Type InP Wafer, Semi-Insulating InP Wafer); Diameter (50.8 mm Diameter, 76.2 mm Diameter, 100 mm Diameter & Above); End-Use (Telecommunications End-Use, Aerospace & Defense End-Use, Industrial, Power & Energy End-Use, Healthcare End-Use, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 43 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â