Stratistics MRC¿¡ µû¸£¸é ¹ÝµµÃ¼ ·¹ÀÌÀú ´ÙÀÌ¿Àµå Ĩ ¼¼°è ½ÃÀåÀº 2024³â 108¾ï 6,000¸¸ ´Þ·¯·Î ¿¹Ãø ±â°£ µ¿¾È CAGR 10.9%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 202¾ï 1,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¹ÝµµÃ¼ ·¹ÀÌÀú ´ÙÀÌ¿Àµå ĨÀº Àü±â ¿¡³ÊÁö¸¦ ÄÚÈ÷¾î·±Æ® ºûÀ¸·Î º¯È¯ÇÏ´Â ÀåÄ¡·Î, ¸¹Àº ±¤Åë½Å ½Ã½ºÅÛÀÇ ÇÙ½É ºÎǰÀÔ´Ï´Ù. Àεã ÀÎȹ°(InP), °¥·ý ºñ¼Ò(GaAs) µî ¹ÝµµÃ¼ Àç·á´Â Ãâ·Â Àü·Â°ú ÆÄÀåÀ» ¹Ì¼¼ÇÏ°Ô Á¶Á¤ÇÒ ¼ö ÀÖ½À´Ï´Ù. È¿À²ÀÌ ¿ì¼öÇϰí Å©±â°¡ ÀÛ°í ¼Óµµ°¡ ºü¸£±â ¶§¹®¿¡ µ¥ÀÌÅÍ Åë½Å, Åë½Å, ÀÇ·á±â±â ¹× »ê¾÷¿ë ¾ÖÇø®ÄÉÀ̼ǿ¡ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù.
µ¥ÀÌÅÍ Àü¼Û¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ, ÀΰøÁö´É, »ç¹°ÀÎÅͳÝ(IoT)¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁö°í Àü ¼¼°è µ¥ÀÌÅÍ ¼Òºñ°¡ Áõ°¡ÇÔ¿¡ µû¶ó È¿À²ÀûÀÎ ±¤Åë½Å ½Ã½ºÅÛÀº ¸Å¿ì Áß¿äÇÕ´Ï´Ù. Åë½Å ¹× ±¤¼¶À¯ ³×Æ®¿öÅ©¿¡¼ ¹ÝµµÃ¼ ·¹ÀÌÀú ´ÙÀÌ¿Àµå´Â º¸´Ù ºü¸£°í ¿¡³ÊÁö È¿À²ÀûÀÎ µ¥ÀÌÅÍ Àü¼ÛÀ» ÃËÁøÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ¹ÝµµÃ¼ ·¹ÀÌÀú ´ÙÀÌ¿Àµå´Â 5G ³×Æ®¿öÅ©¿Í ´ë±Ô¸ð µ¥ÀÌÅͼ¾ÅÍÀÇ ¼ºÀå¿¡ ÇʼöÀûÀÎ ±¤´ë¿ª Àå°Å¸® ¿¬°á¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. º¸´Ù ºü¸£°í ¾ÈÁ¤ÀûÀÎ Åë½Å ½Ã½ºÅÛ¿¡ ´ëÇÑ ¾÷°è Àü¹ÝÀÇ ¿ä±¸´Â ÀÌ·¯ÇÑ ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä¸¦ Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù.
±ÔÁ¦ ¹× ȯ°æ ¹®Á¦
ȯ°æ ¹× ±ÔÁ¦ ¹®Á¦´Â ¹ÝµµÃ¼ ·¹ÀÌÀú ´ÙÀÌ¿Àµå Ĩ ½ÃÀå¿¡ ½É°¢ÇÑ Àå¾Ö¹°ÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀüÀÚºÎǰ, ƯÈ÷ À¯ÇØ ¿ø¼Ò¸¦ Æ÷ÇÔÇÑ ÀüÀÚºÎǰÀÇ ÀçȰ¿ë ¹× Æó±â¸¦ ±ÔÁ¦ÇÏ´Â ¾ö°ÝÇÑ ¹ý·üÀº Á¦Á¶¸¦ ´õ º¹ÀâÇÏ°í ºñ½Î°Ô ¸¸µé ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¹èÃâ°¡½º ¹× ¿¡³ÊÁö »ç¿ëÀ» ±ÔÁ¦ÇÏ´Â ¹ý±Ô°¡ °ÈµÊ¿¡ µû¶ó ±â¾÷µéÀº ±â¼ú Çõ½Å°ú ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº Á¦Ç°À» »ý»êÇϱâ À§ÇØ ³ë·ÂÇÏ°Ô µÉ °ÍÀÔ´Ï´Ù. ·¹ÀÌÀú ´ÙÀÌ¿Àµå¿¡ »ç¿ëµÇ´Â ÈñÅä·ù ¿ø¼Ò µî ¿øÀÚÀç ä±¼µµ ȯ°æ ¹®Á¦¸¦ ¾ß±âÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©¸¦ ÁؼöÇϱâ À§Çؼ´Â ¸¹Àº ¿¬±¸ °³¹ß ºñ¿ëÀÌ ÇÊ¿äÇϸç, ÀÌ´Â ½ÃÀå È®´ë¸¦ Á¦ÇÑÇÒ ¼ö ÀÖ½À´Ï´Ù.
ÀÇ·á ¹× ÇコÄÉ¾î ±â±â¿¡¼ »ç¿ë Áõ°¡
ÀÇ·á ¹× ÇコÄÉ¾î »ê¾÷¿¡¼ ¹ÝµµÃ¼ ·¹ÀÌÀú ´ÙÀÌ¿Àµå ĨÀÇ »ç¿ëÀÌ Áõ°¡Çϰí ÀÖ´Â °ÍÀº ½ÃÀå È®´ë¸¦ ÃËÁøÇÏ´Â ÁÖ¿ä ¿äÀÎÀÔ´Ï´Ù. ÀÌ ·¹ÀÌÀú´Â ·¹ÀÌÀú ¼ö¼ú ¹× ÇǺΠÀçÇ¥¸éÀ» Æ÷ÇÔÇÑ ÀÇ·á ¼ö¼ú, Ä¡·á, ¿µ»ó Áø´Ü µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. Á¤È®¼º°ú ´Ù¸¥ ºÎÀ§¿¡ ¿µÇâÀ» ÁÖÁö ¾Ê°í ƯÁ¤ Á¶Á÷À» Ç¥ÀûÀ¸·Î »ïÀ» ¼ö ÀÖ´Â ´É·ÂÀ¸·Î ÀÎÇØ ÃÖ¼Òħ½ÀÀû Ä¡·á¿¡ ÇʼöÀûÀÔ´Ï´Ù. ¶ÇÇÑ, ±¤°£¼·´ÜÃþÃÔ¿µ(OCT)À» ÅëÇÑ ¿µ»ó Áø´Ü°ú °°Àº ·¹ÀÌÀú¸¦ ÀÌ¿ëÇÑ Áø´Ü ±â¼úÀÇ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ´Â °Íµµ ·¹ÀÌÀúÀÇ Ã¤Åÿ¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ¹ÝµµÃ¼ ·¹ÀÌÀú´Â ÀÇ·á ±â¼úÀÇ ¹ßÀü°ú ÇÔ²² ´Ù¾çÇÑ ÀÇ·á ÀÀ¿ë ºÐ¾ß¿¡¼ Á¡Á¡ ´õ ¸¹Àº ¼±ÅÃÀ» ¹Þ°í ÀÖ½À´Ï´Ù.
¼÷·ÃµÈ ³ëµ¿·Â ºÎÁ·
ÀÌ·¯ÇÑ Ä¨À» ¼³°èÇϰí Á¦Á¶ÇÏ´Â µ¥ ÇÊ¿äÇÑ º¹ÀâÇÑ Á¦Á¶ °øÁ¤°ú Àü¹® Áö½ÄÀº °íµµ·Î ¼÷·ÃµÈ ¿£Áö´Ï¾î¿Í ±â¼úÀÚ¸¦ ÇÊ¿ä·Î ÇÕ´Ï´Ù. ±×·¯³ª ¹ÝµµÃ¼ ºÐ¾ßÀÇ ¼ºÀåÀº ƯÈ÷ °í±Þ Á¦Á¶ ¹× ¼³°è¿¡ ´ëÇÑ Àü¹® Áö½ÄÀÌ Àü ¼¼°èÀûÀ¸·Î ºÎÁ·ÇÏ¿© ¼ºÀåÀ» ¹æÇØÇϰí ÀÖ½À´Ï´Ù. À¯´ÉÇÑ Àη ºÎÁ·À¸·Î ÀÎÇØ Á¦Ç° ǰÁúÀÌ ÀúÇÏµÇ°í »ý»ê °¡°ÝÀÌ »ó½ÂÇϸç Á¦Ç° °³¹ßÀÌ Áö¿¬µÉ ¼ö ÀÖ½À´Ï´Ù. Á¤ºÎ¿Í ¾÷°è Âü°¡ÀÚµéÀº ÀÌ ¹®Á¦¸¦ ÇØ°áÇÏ°í ¼÷·ÃµÈ ÀηÂÀ» ±¸ÃàÇÏ°í ¹ÝµµÃ¼ ºÎ¹®¿¡ ÀÎÀ縦 À¯Ä¡Çϱâ À§ÇØ ±³À° ¹× ÈÆ·Ã ³ë·Â¿¡ ÀÚ±ÝÀ» ÅõÀÚÇϰí ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
COVID-19´Â ¹ÝµµÃ¼ ·¹ÀÌÀú ´ÙÀÌ¿Àµå Ĩ ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. Ãʱ⠺À¼â¿Í ¼¼°è ¹× °ø±Þ¸ÁÀÇ È¥¶õÀº ÀÚµ¿Â÷, °¡ÀüÁ¦Ç°, µ¥ÀÌÅͼ¾ÅÍ µî ¾÷°èÀÇ ¼ö¿ä °¨¼Ò·Î À̾îÁ³½À´Ï´Ù. ±×·¯³ª ¿ø°Ý ±Ù¹«¿Í ¿Â¶óÀÎ ÇнÀÀÌ ±ÞÁõÇÔ¿¡ µû¶ó µ¥ÀÌÅͼ¾ÅÍ ÀÎÇÁ¶ó¿Í °¡Àü Á¦Ç°¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ¿© ¹ÝµµÃ¼ ·¹ÀÌÀú ´ÙÀÌ¿Àµå Ĩ ½ÃÀåÀ» ¹Ð¾î ºÙ¿´½À´Ï´Ù. Àü¿°º´ÀÇ Àå±âÀûÀÎ ¿µÇâÀº ¾ÆÁ÷ ºÒÅõ¸íÇÏÁö¸¸ ¼¼°è °æÁ¦°¡ ¾ÈÁ¤µÇ°í ±â¼ú ¹ßÀüÀÌ °è¼ÓµÇ¸é ½ÃÀåÀÌ È¸º¹µÇ°í ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ÆÄÀ̹ö ·¹ÀÌÀú ºÎ¹®ÀÌ °¡Àå Ŭ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ÆÄÀ̹ö ·¹ÀÌÀú ºÎ¹®Àº ¿ì¼öÇÑ ºö ǰÁú, ÄÄÆÑÆ®ÇÑ Å©±â ¹× °íÈ¿À²·Î ÀÎÇØ °¡Àå Å« °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. ÀûÀº À¯Áöº¸¼ö·Î Á¤È®ÇÑ °íÃâ·Â Ãâ·ÂÀ» ¾òÀ» ¼ö Àֱ⠶§¹®¿¡ ÀÌ·¯ÇÑ ·¹ÀÌÀú´Â Àç·á °¡°ø, ±Ý¼Ó Àý´Ü ¹× Á¶°¢°ú °°Àº »ê¾÷ ÀÀ¿ë ºÐ¾ß¿¡¼ Á¡Á¡ ´õ ¸¹ÀÌ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ½ÃÀå È®´ë¸¦ ÃËÁøÇÏ´Â ¶Ç ´Ù¸¥ ¿äÀÎÀº °úÇÐ ¹× ÀÇ·á ¿¬±¸ ºÐ¾ß¿¡¼ ÆÄÀ̹ö ·¹ÀÌÀúÀÇ »ç¿ë È®´ëÀÔ´Ï´Ù. ÀΰøÁö´É, 5G ÀÎÇÁ¶ó µî ÷´Ü ±â¼ú°úÀÇ ÅëÇÕÀ¸·Î ÀÎÇØ ½Å·ÚÇÒ ¼ö ÀÖ°í È¿°úÀûÀÎ ¹ÝµµÃ¼ ·¹ÀÌÀú ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¿ä±¸°¡ ´õ¿í Ä¿Áö°í ÀÖ½À´Ï´Ù.
Åë½Å ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»ó
Åë½Å ºÎ¹®Àº °í¼Ó µ¥ÀÌÅÍ Àü¼ÛÀ» À§ÇÑ ±¤ ³×Æ®¿öÅ©¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Ŭ¶ó¿ìµå ¼ºñ½º, ÀΰøÁö´É, »ç¹°ÀÎÅͳÝ(IoT)ÀÇ ±Þ¼ÓÇÑ È®ÀåÀº Àå°Å¸®¿¡¼ º¸´Ù ºü¸£°í ¿¡³ÊÁö È¿À²ÀûÀÎ Åë½ÅÀ» ÃËÁøÇÏ´Â ¹ÝµµÃ¼ ·¹ÀÌÀúÀÇ ´É·Â¿¡ ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. °í¼º´É ¹× È®Àå °¡´ÉÇÑ ³×Æ®¿öÅ· ¼Ö·ç¼Ç¿¡ ·¹ÀÌÀú ´ÙÀÌ¿Àµå ĨÀ» »ç¿ëÇÏ´Â °ÍÀº 5G ±â¼úÀÇ ¹ßÀü°ú ±¤¼¶À¯ Åë½Å ÀÎÇÁ¶óÀÇ °³¼±À¸·Î Å« µµ¿òÀ» ¹Þ°í ÀÖ½À´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀº ƯÈ÷ Áß±¹, ÀϺ», Çѱ¹ µîÀÇ ±¹°¡¿¡¼ °¡ÀüÁ¦Ç°°ú ½º¸¶Æ®Æù »ý»êÀÌ ºü¸£°Ô Áõ°¡Çϰí ÀÖ¾î ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ, Ŭ¶ó¿ìµå ÀÎÇÁ¶ó ¹× µ¥ÀÌÅÍ Åë½Å¿¡¼ ¿¡³ÊÁö È¿À²ÀûÀÎ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, AI ¹× ¸Ó½Å·¯´×ÀÇ ¹ßÀüÀ¸·Î ½ÃÀåÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ¹ÝµµÃ¼ »ê¾÷ÀÇ ¼ºÀåÀº Áß±¹, ÀϺ» µîÀÇ ¹ÝµµÃ¼ »ê¾÷¿¡ ´ëÇÑ Á¤ºÎ ÅõÀÚµµ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
ºÏ¹Ì´Â µ¥ÀÌÅͼ¾ÅÍ, ÇコÄɾî, Åë½Å ºÐ¾ß¿¡¼ Ãֽбâ¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ·¹ÀÌÀú ±â¹Ý ±¤Åë½ÅÀÇ Çõ½ÅÀº ƯÈ÷ °í¼Ó µ¥ÀÌÅÍ Àü¼Û ºÐ¾ß¿¡¼ ·¹ÀÌÀú ±â¹Ý ±¤Åë½ÅÀÇ ¼ö¿ëÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ½ÃÀå È®´ë´Â ÀÌ Áö¿ªÀÇ °·ÂÇÑ R&D ÀÎÇÁ¶ó¿Í ¹ÝµµÃ¼ Á¦Á¶¾÷ü¸¦ ºñ·ÔÇÑ ´Ù¼öÀÇ ÁÖ¿ä ÇÏÀÌÅ×Å© ±â¾÷µé¿¡ ÀÇÇØ ´õ¿í °¡¼Ó鵃 °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ¶ÇÇÑ, ºÏ¹ÌÀÇ AI, ¸Ó½Å·¯´×, ÀÚÀ² ½Ã½ºÅÛ¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁö¸é¼ ´Ù¾çÇÑ ÀÀ¿ë ºÐ¾ß¿¡¼ È¿°úÀûÀÌ°í °í¼º´É ·¹ÀÌÀú¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Semiconductor Laser Diode Chips Market is accounted for $10.86 billion in 2024 and is expected to reach $20.21 billion by 2030 growing at a CAGR of 10.9% during the forecast period. Semiconductor laser diode chips, which transform electrical energy into coherent light, are crucial parts of many optical communication systems. The semiconductor materials used to make these devices, such as indium phosphide (InP) and gallium arsenide (GaAs), provide fine control over output power and wavelength. Because of their great efficiency, small size, and fast speed, they are widely utilized in data transmission, telecommunications, medical devices, and industrial applications.
Rising demand for data transmission
Efficient optical communication systems are crucial as the world's data consumption rises due to a greater dependence on cloud computing, artificial intelligence, and the Internet of Things (IoT). In telecommunications and fiber-optic networks, semiconductor laser diodes are essential for facilitating quicker, more energy-efficient data transport. Their capacity to deliver high-bandwidth, long-distance connections makes them essential for facilitating the growth of 5G networks and massive data centers. Industry-wide trends toward quicker, more dependable communication systems are driving up demand for these technologies.
Regulatory and environmental issues
Environmental and regulatory concerns provide serious obstacles to the market for semiconductor laser diode chips. Strict laws governing the recycling and disposal of electronic components, particularly those that include hazardous elements, can make manufacturing more complex and expensive. Stricter laws governing emissions and energy use are also encouraging businesses to innovate and create more energy-efficient products. The mining of raw materials, such as rare earth elements used in laser diodes, is also raising environmental issues. Significant R&D expenditures are frequently necessary to comply with these regulatory frameworks, which may restrict market expansion.
Rising use in medical and healthcare devices
The medical and healthcare industries' increasing use of semiconductor laser diode chips is a major factor propelling market expansion. These lasers are used in many different fields, including medical operations including laser surgery and skin resurfacing, therapeutic treatments, and diagnostic imaging. They are essential for minimally invasive therapies because of their accuracy and capacity to target particular tissues without influencing other areas. Their adoption is also fueled by the growing need for laser-based diagnostic techniques, such as imaging with optical coherence tomography (OCT). Semiconductor lasers are increasingly being chosen for a variety of medical applications as healthcare technology progress.
Lack of skilled workforce
The complex manufacturing processes and specialized knowledge required to design and produce these chips demand highly skilled engineers and technicians. However, the growth of the semiconductor sector is being hampered by the worldwide lack of expertise, especially in sophisticated manufacturing and design. Product quality may suffer, production prices may rise, and product development delays may result from this shortage of competent workers. Governments and industry participants are spending money on education and training initiatives to solve this problem, build a trained labor force, and draw talent to the semiconductor sector.
Covid-19 Impact
The COVID-19 pandemic significantly impacted the semiconductor laser diode chips market. Initial lockdowns and disruptions in global supply chains led to decreased demand from industries like automotive, consumer electronics, and data centers. However, as remote work and online learning surged, demand for data center infrastructure and consumer electronics increased, boosting the market for semiconductor laser diode chips. The long-term impact of the pandemic remains uncertain, but the market is expected to recover and grow as global economies stabilize and technological advancements continue.
The fiber laser segment is expected to be the largest during the forecast period
The fiber laser segment is estimated to be the largest, due to their excellent beam quality, compact size, and high efficiency. Because of their capacity to produce precise, high-power output with little maintenance, these lasers are becoming more and more used in industrial applications like material processing, metal cutting, and engraving. Another factor driving market expansion is the expanding use of fiber lasers in scientific and medical research. The need for dependable and effective semiconductor laser solutions is further increased by their integration with cutting-edge technologies, such as artificial intelligence and 5G infrastructure.
The communication segment is expected to have the highest CAGR during the forecast period
The communication segment is anticipated to witness the highest CAGR during the forecast period, due to the growing need for optical networks to transmit data at fast speeds. The rapid expansion of cloud services, artificial intelligence, and the Internet of Things (IoT) depends on semiconductor lasers' ability to facilitate faster, more energy-efficient communication over large distances. The use of laser diode chips for high-performance, scalable networking solutions is also greatly aided by the development of 5G technology and improvements in fiber-optic communication infrastructure.
Asia Pacific is expected to have the largest market share during the forecast period due to the rapid expansion of consumer electronics and smartphone production, particularly in nations like China, Japan, and South Korea. Furthermore, the market is expanding due to the growing need for energy-efficient solutions in cloud infrastructure and data communication, which is being driven by developments in AI and machine learning. The growth of the semiconductor industry is also aided by government investments in the industry, such as those made in China and Japan.
North America is projected to witness the highest CAGR over the forecast period, owing to the rising need for modern technologies in data centers, healthcare, and telecommunications. Innovations in laser-based optical communication are driving acceptance, especially in the area of high-speed data transmission. Market expansion is further accelerated by the region's strong R&D infrastructure and plenty of significant tech firms, particularly semiconductor manufacturers. Furthermore, the requirement for effective, high-performance lasers in a variety of applications is increased by North America's growing reliance on AI, machine learning, and autonomous systems.
Key players in the market
Some of the key players profiled in the Semiconductor Laser Diode Chips Market include Coherent Corp., Sharp Corporation, Nichia Corporation, IPG Photonics Corporation, TT Electronics, Panasonic Corporation, Han's Laser Technology Industry Group Co. Ltd., Mitsubishi Electric Corporation, Sumitomo Electric Industries Ltd., Rohm Company Limited, Jenoptik AG, Osram Opto Semiconductors, II-VI Incorporated, Lumentum Technologies, ASML Holding N.V., HeLiOS Laser GmbH, Kyocera Corporation, DILAS Diodenlaser GmbH, Sanken Electric Co. Ltd., and Maxell Ltd.
In November 2023, ROHM launched a high-power laser diode, the RLD90QZW8, aimed at industrial equipment and consumer applications requiring distance measurement and spatial recognition.
In September 2023, IPG Photonics Corporation introduced a new dual-beam laser at The Battery Show in Novi, Michigan. This laser offers high-speed, spatter-free welding, which is especially beneficial for battery manufacturing.