¼¼°èÀÇ ±×·¡ÇÁ Å×Å©³î·¯Áö ½ÃÀå
Graph Technology
»óǰÄÚµå : 1644037
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2025³â 01¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 246 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,487,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 25,463,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ±×·¡ÇÁ Å×Å©³î·¯Áö ½ÃÀåÀº 2030³â±îÁö 169¾ï ´Þ·¯¿¡ µµ´Þ

2024³â¿¡ 54¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ ±×·¡ÇÁ Å×Å©³î·¯Áö ½ÃÀåÀº 2024-2030³â¿¡ CAGR 20.7%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 169¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ ±×·¡ÇÁ Å×Å©³î·¯Áö ¼ÒÇÁÆ®¿þ¾î´Â CAGR 19.2%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 110¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±×·¡ÇÁ Å×Å©³î·¯Áö ¼­ºñ½º ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ÀÇ CAGR·Î 24.1%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 14¾ï ´Þ·¯, Áß±¹Àº CAGR 19.7%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹Ãø

¹Ì±¹ÀÇ ±×·¡ÇÁ Å×Å©³î·¯Áö ½ÃÀåÀº 2024³â¿¡ 14¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 26¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀº 19.7%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 18.7%¿Í 18.0%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 14.4%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ±×·¡ÇÁ Å×Å©³î·¯Áö ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

±×·¡ÇÁ ±â¼úÀº µ¥ÀÌÅÍ °ü°è¿Í ºÐ¼®¿¡ ¾î¶² Çõ¸íÀ» °¡Á®¿Ã °ÍÀΰ¡?

±×·¡ÇÁ ±â¼úÀº µ¥ÀÌÅͼ¼Æ®ÀÇ º¹ÀâÇÑ °ü°è¸¦ ¿øÈ°ÇÏ°Ô ¸ÅÇÎÇϰí Ž»öÇÒ ¼ö ÀÖ°Ô ÇÔÀ¸·Î½á Á¶Á÷ÀÌ µ¥ÀÌÅ͸¦ ºÐ¼®Çϰí ÇØ¼®ÇÏ´Â ¹æ½ÄÀ» º¯È­½Ã۰í ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ °ü°èÇü µ¥ÀÌÅͺ£À̽º´Â ±¸Á¶È­µÈ µ¥ÀÌÅÍ¿¡´Â È¿À²ÀûÀÌÁö¸¸, µ¿ÀûÀÌ°í »óÈ£ ¿¬°áµÈ Á¤º¸¸¦ ºÐ¼®ÇÏ´Â µ¥´Â ºÎÁ·Çß½À´Ï´Ù. ±×·¡ÇÁ µ¥ÀÌÅͺ£À̽º´Â °ü°èÇü µ¥ÀÌÅͺ£À̽º¸¦ ÅëÇØ ÀÌ·¯ÇÑ ¹®Á¦¸¦ ÇØ°áÇϰí, ´Ù¸¥ ¹æ¹ýÀ¸·Î´Â ¹ß°ßÇϱ⠾î·Á¿î ÆÐÅÏ, Á¾¼Ó¼º, ¿¬°á¼ºÀ» ¹ß°ßÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ÀÌ·¯ÇÑ ±â´ÉÀ¸·Î ÀÎÇØ ±×·¡ÇÁ ±â¼úÀº »ç±â °¨Áö, °í°´ °ü°è °ü¸®, °ø±Þ¸Á ÃÖÀûÈ­ µî ´Ù¾çÇÑ ¿ëµµ¿¡¼­ ¸Å¿ì À¯¿ëÇÏ°Ô È°¿ëµÉ ¼ö ÀÖ½À´Ï´Ù.

¿¹¸¦ µé¾î ºÎÁ¤ÇàÀ§ °¨Áö ºÐ¾ß¿¡¼­ ±×·¡ÇÁ ±â¼úÀº Á¶Á÷ÀÌ Á¶Á÷ °£ÀÇ ¹Ì¹¦ÇÏ°í ¼û°ÜÁø ¿¬°á°í¸®¸¦ ã¾Æ³»¾î Á¶Á÷ÀÌ ´Éµ¿ÀûÀ¸·Î ¸®½ºÅ©¸¦ ÁÙÀÏ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ¸¶Âù°¡Áö·Î ÇコÄÉ¾î ºÐ¾ß¿¡¼­µµ ±×·¡ÇÁ µ¥ÀÌÅͺ£À̽º´Â ȯÀÚ ¿©Á¤ ÃßÀû, Áúº´ ÁøÇà Áöµµ, ÀÓ»ó½ÃÇè ÃÖÀûÈ­¿¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ¼Ò¸Å¾÷ü¿Í E-Commerce Ç÷§ÆûÀº ±×·¡ÇÁ¸¦ Ȱ¿ëÇÏ¿© Ãßõ ¿£ÁøÀ» °³¼±Çϰí, Ãʰ³ÀÎÈ­µÈ »óǰ Á¦¾ÈÀ» Á¦°øÇÏ¿© °í°´ Âü¿©µµ¸¦ ³ôÀ̰í ÀÖ½À´Ï´Ù. ±×·¡ÇÁ ±â¼úÀº °í¸³µÈ µ¥ÀÌÅÍ Æ÷ÀÎÆ®°¡ ¾Æ´Ñ °ü°è¿¡ ÃÊÁ¡À» ¸ÂÃß¾î ±â¾÷¿¡ ´õ ±íÀº ÀλçÀÌÆ®À» Á¦°øÇϰí, ´õ ¸¹Àº Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» °¡´ÉÇÏ°Ô Çϸç, ¾÷°è Àü¹ÝÀÇ Çõ½ÅÀ» ÃËÁøÇÕ´Ï´Ù.

°¢ »ê¾÷ ºÐ¾ß¿¡¼­ ±×·¡ÇÁ ±â¼úÀÌ ºü¸£°Ô äÅõǰí ÀÖ´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

´Ù¾çÇÑ »ê¾÷ ºÐ¾ßÀÇ ±â¾÷ÀÌ ±×·¡ÇÁ ±â¼úÀ» µµÀÔÇÏ´Â ÀÌÀ¯´Â º¹ÀâÇÏ°í »óÈ£ ¿¬°áµÈ µ¥ÀÌÅ͸¦ ó¸®ÇÒ ¼ö ÀÖ´Â µ¶º¸ÀûÀÎ ´É·Â ¶§¹®ÀÔ´Ï´Ù. ±ÝÀ¶ ¼­ºñ½º ºÐ¾ß¿¡¼­ ±×·¡ÇÁ µ¥ÀÌÅͺ£À̽º´Â °Å·¡ ÆÐÅÏÀ» ºÐ¼®Çϰí, ºÎÁ¤ ÇàÀ§¸¦ ½Äº°Çϰí, ±ÔÁ¦ ¿ä°ÇÀ» ÁؼöÇÏ´Â µ¥ µµ¿òÀ» ÁÖ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ¹æ´ëÇÑ µ¥ÀÌÅͼ¼Æ®¸¦ È¿À²ÀûÀ¸·Î ó¸®ÇÏ¿© ÀÌ»ó ¡Èĸ¦ °¨ÁöÇϰí Àǽɽº·¯¿î Ȱµ¿À» ¿¬°áÇÔÀ¸·Î½á ±ÝÀ¶ ±â°ü¿¡ °­·ÂÇÑ »ç±â ¹æÁö ÅøÀ» Á¦°øÇÕ´Ï´Ù. ¸¶Âù°¡Áö·Î °ø±Þ¸Á °ü¸® ºÐ¾ß¿¡¼­µµ ±×·¡ÇÁ ±â¼úÀ» ÅëÇØ ±â¾÷Àº º¹ÀâÇÑ ¹°·ù ³×Æ®¿öÅ©¸¦ ¸ÅÇÎÇϰí, Àç°í¸¦ ½Ç½Ã°£À¸·Î ¸ð´ÏÅ͸µÇϰí, È¥¶õÀ» ¿¹ÃøÇÏ¿© ¿î¿µÀ» °£¼ÒÈ­ÇÏ°í ºñ¿ëÀ» ÃÖ¼ÒÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù.

Åë½Å ºÐ¾ß¿¡¼­´Â ³×Æ®¿öÅ© ÀÎÇÁ¶ó ÃÖÀûÈ­, ´Ù¿îŸÀÓ °¨¼Ò, ¼­ºñ½º ǰÁú Çâ»ó¿¡ ±×·¡ÇÁ ±â¹Ý ºÐ¼®ÀÌ È°¿ëµÇ°í ÀÖ½À´Ï´Ù. ÇÑÆí, ¸¶ÄÉÆÃ ¹× °í°´ °æÇè ºÐ¾ß¿¡¼­´Â ±×·¡ÇÁ ¸ðµ¨À» Ȱ¿ëÇÏ¿© °í°´À» 360µµ ÆÄ¾ÇÇÏ¿© °³ÀÎÈ­µÈ °æÇèÀ» Á¦°øÇÔÀ¸·Î½á °í°´ Ãæ¼ºµµ¿Í À¯ÁöÀ²À» ³ôÀ̰í ÀÖ½À´Ï´Ù. Áõ°¡ÇÏ´Â µ¥ÀÌÅÍ ¾ç¿¡ ´ëÀÀÇÏ°í ´Ù¾çÇÑ ÀÌ¿ë »ç·Ê¿¡ ÀûÀÀÇÒ ¼ö ÀÖ´Â È®À强À¸·Î ÀÎÇØ ±×·¡ÇÁ ±â¼úÀº È¿À²¼º, Çõ½Å¼º, °æÀï ¿ìÀ§¸¦ Ãß±¸ÇÏ´Â Çö´ë ±â¾÷ÀÇ ÇÙ½É ¿ä¼Ò·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

±×·¡ÇÁ Å×Å©³î·¯Áö´Â ¾î¶»°Ô ½ÅÈï ºÐ¾ßÀÇ Çõ½ÅÀ» ÃËÁøÇϰí Àִ°¡?

±×·¡ÇÁ ±â¼úÀº ÀΰøÁö´É(AI), »çÀ̹ö º¸¾È, »ç¹°ÀÎÅͳÝ(IoT) µî »õ·Î¿î ¿µ¿ªÀÇ Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ±×·¡ÇÁ µ¥ÀÌÅͺ£À̽º¿Í ¸Ó½Å·¯´×À» ÅëÇÕÇÔÀ¸·Î½á ±â¾÷Àº µ¥ÀÌÅͼ¼Æ®ÀÇ º¹ÀâÇÑ °ü°è¸¦ ÀÌÇØÇÒ ¼ö ÀÖ´Â º¸´Ù Áö´ÉÀûÀÎ ½Ã½ºÅÛÀ» ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î ½Å¾à °³¹ß ¹× À¯ÀüüÇÐ ºÐ¾ßÀÇ AI ¿ëµµ´Â ½Å¾à È常¦ ½Äº°Çϰí À¯ÀüÀû »óÈ£ ÀÛ¿ëÀ» ÀÌÇØÇϱâ À§ÇØ ±×·¡ÇÁ ¸ðµ¨À» »ç¿ëÇϰí ÀÖ½À´Ï´Ù. ÀÚ¿¬ ¾ð¾î 󸮿¡¼­ ±×·¡ÇÁ´Â ÀÇ¹Ì ÀÌÇØ¸¦ °¡´ÉÇÏ°Ô ÇÏ°í °Ë»ö ¿£Áø, 꺿, ¾ð¾î ¸ðµ¨À» °­È­ÇÕ´Ï´Ù.

»çÀ̹ö º¸¾È ºÐ¾ß¿¡¼­´Â ¹æ´ëÇÑ È°µ¿ ³×Æ®¿öÅ©¸¦ ºÐ¼®Çϰí ÀáÀçÀûÀÎ À§Çù°ú Ãë¾àÁ¡À» ÆÄ¾ÇÇϱâ À§ÇØ ±×·¡ÇÁ ±â¼úÀ» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ±×·¡ÇÁ ±â¹Ý ¸ð´ÏÅ͸µ ½Ã½ºÅÛÀº °ø°ÝÀÚÀÇ ÇൿÀ» ¸ÅÇÎÇϰí, ħÀÔÀ» ¿¹ÃøÇϰí, ½Ç½Ã°£À¸·Î ¹æ¾î¸¦ °­È­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¸¶Âù°¡Áö·Î IoT »ýŰ迡¼­µµ ±×·¡ÇÁ´Â »óÈ£ ¿¬°áµÈ Àåºñ¸¦ °ü¸®Çϰí, µ¥ÀÌÅÍ È帧À» ºÐ¼®Çϸç, ½Ã½ºÅÛ °£ÀÇ È¿À²ÀûÀÎ Åë½ÅÀ» º¸ÀåÇÏ´Â µ¥ ÀÖÀ¸¸ç, ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¿ëµµ´Â ±×·¡ÇÁ ±â¼úÀÌ ±âÁ¸ ÇÁ·Î¼¼½º¸¦ Áö¿øÇÒ »Ó¸¸ ¾Æ´Ï¶ó ºü¸£°Ô ÁøÈ­ÇÏ´Â ±â¼ú ȯ°æ¿¡¼­ ¹®Á¦ ÇØ°á¿¡ ´ëÇÑ ¿ÏÀüÈ÷ »õ·Î¿î Á¢±Ù ¹æ½ÄÀ» °¡´ÉÇÏ°Ô ÇÑ´Ù´Â °ÍÀ» º¸¿©ÁÝ´Ï´Ù.

±×·¡ÇÁ ±â¼ú ½ÃÀå È®´ë ¿äÀÎÀº?

±×·¡ÇÁ ±â¼ú ½ÃÀåÀÇ ¼ºÀåÀº ºòµ¥ÀÌÅÍÀÇ Æø¹ßÀûÀÎ Áõ°¡, AI¿Í ¸Ó½Å·¯´×¿¡ ´ëÇÑ ÀÇÁ¸µµ Áõ°¡, ½Ç½Ã°£ ÀÇ»ç°áÁ¤ ±â´ÉÀÇ Çʿ伺 µî ¸î °¡Áö Áß¿äÇÑ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ±â¾÷ÀÌ º¹ÀâÇÑ µ¥ÀÌÅͼ¼Æ®¸¦ ºÐ¼®Çϰí Á¶Ä¡¸¦ ÃëÇØ¾ß ÇÑ´Ù´Â ¾Ð¹Ú¿¡ Á÷¸éÇϸ鼭, ±×·¡ÇÁ ±â¼úÀº ½ÇÇà °¡´ÉÇÑ ÀλçÀÌÆ®¸¦ µµÃâÇÏ´Â µ¥ ÇʼöÀûÀÎ Åø·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ±ÝÀ¶, ÇコÄɾî, ¼Ò¸Å, ¹°·ù µî ´Ù¾çÇÑ »ê¾÷¿¡¼­ ¿öÅ©Ç÷οì ÃÖÀûÈ­, ºñÈ¿À²¼º °¨Áö, °³ÀÎÈ­µÈ °í°´ °æÇè âÃâÀ» À§ÇØ ±×·¡ÇÁ ¼Ö·ç¼ÇÀ» µµÀÔÇϰí ÀÖ½À´Ï´Ù.

È®À强 ¹× ¼Óµµ Çâ»ó, Ŭ¶ó¿ìµå Ç÷§Æû°úÀÇ ÅëÇÕ µî ±×·¡ÇÁ µ¥ÀÌÅͺ£À̽º ±â¼úÀÇ ¹ßÀüÀ¸·Î ¸ðµç ±Ô¸ðÀÇ ±â¾÷ÀÌ ÀÌ·¯ÇÑ ¼Ö·ç¼ÇÀ» »ç¿ëÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ ¿¹Ãø ºÐ¼®ÀÇ È®»êÀº ±×·¡ÇÁ ±â¹Ý ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í Áõ°¡½ÃÄÑ ±â¾÷ÀÌ µ¿ÇâÀ» ¿¹ÃøÇÏ°í ±×¿¡ µû¶ó Àü·«À» Á¶Á¤ÇÒ ¼ö ÀÖµµ·Ï µ½°í ÀÖ½À´Ï´Ù. ¼Óµµ, Á¤È®¼º, °³ÀÎÈ­¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ±â´ëÄ¡°¡ ³ô¾ÆÁü¿¡ µû¶ó Çõ½Å°ú È¿À²¼ºÀ» ÃËÁøÇÏ´Â ±×·¡ÇÁ ±â¼úÀÇ ¿ªÇÒÀº ´õ¿í È®´ëµÉ °ÍÀ̸ç, ¼¼°è µ¥ÀÌÅÍ ºÐ¼® »ê¾÷À» º¯È­½ÃŰ´Â ÈûÀ¸·Î È®°íÈ÷ ÀÚ¸®¸Å±èÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

ºÎ¹®

ÄÄÆ÷³ÍÆ®(±×·¡ÇÁ ¼ÒÇÁÆ®¿þ¾î, ±×·¡ÇÁ ¼­ºñ½º), µ¥ÀÌÅͺ£À̽º À¯Çü(°ü°èÇü(SQL) µ¥ÀÌÅͺ£À̽º, ºñ°ü°èÇü(ºñSQL) µ¥ÀÌÅͺ£À̽º), ±×·¡ÇÁ À¯Çü(¼Ó¼º ±×·¡ÇÁ, ÇÏÀÌÆÛ±×·¡ÇÁ, ¸®¼Ò½º ±â¼ú ÇÁ·¹ÀÓ¿öÅ©(RDF) ±×·¡ÇÁ), ¹èÆ÷(¿ÂÇÁ·¹¹Ì½º ¹èÆ÷, Ŭ¶ó¿ìµå ±â¹Ý ¹èÆ÷), ÃÖÁ¾ ¿ëµµ(IT ¹× Åë½Å ÃÖÁ¾ ¿ëµµ, °ø±Þ¸Á ¹× ¹°·ù ÃÖÁ¾ ¿ëµµ, ¼Ò¸Å ¹× E-Commerce ÃÖÁ¾ ¿ëµµ, BFSI ÃÖÁ¾ ¿ëµµ, ÇコÄÉ¾î ¹× »ý¸í°úÇÐ ÃÖÁ¾ ¿ëµµ, Á¤ºÎ ¹× °ø°ø ºÎ¹® ÃÖÁ¾ ¿ëµµ, ±âŸ ÃÖÁ¾ ¿ëµµ)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹(ÃÑ 48°Ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Graph Technology Market to Reach US$16.9 Billion by 2030

The global market for Graph Technology estimated at US$5.4 Billion in the year 2024, is expected to reach US$16.9 Billion by 2030, growing at a CAGR of 20.7% over the analysis period 2024-2030. Graph Technology Software, one of the segments analyzed in the report, is expected to record a 19.2% CAGR and reach US$11.0 Billion by the end of the analysis period. Growth in the Graph Technology Services segment is estimated at 24.1% CAGR over the analysis period.

The U.S. Market is Estimated at US$1.4 Billion While China is Forecast to Grow at 19.7% CAGR

The Graph Technology market in the U.S. is estimated at US$1.4 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$2.6 Billion by the year 2030 trailing a CAGR of 19.7% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 18.7% and 18.0% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 14.4% CAGR.

Global Graph Technology Market – Key Trends & Drivers Summarized

How Is Graph Technology Revolutionizing Data Relationships and Analytics?

Graph technology is transforming how organizations analyze and interpret data by enabling seamless mapping and exploration of complex relationships within datasets. Traditional relational databases, while efficient for structured data, fall short when analyzing dynamic, interconnected information. Graph databases solve this challenge by prioritizing relationships, allowing users to uncover patterns, dependencies, and connections that are otherwise difficult to detect. This capability makes graph technology invaluable for diverse applications such as fraud detection, customer relationship management, and supply chain optimization.

In fraud detection, for example, graph technology uncovers subtle, hidden links between entities, helping organizations mitigate risks proactively. Similarly, in the healthcare sector, graph databases are used to track patient journeys, map disease progression, and optimize clinical trials. Retailers and e-commerce platforms are leveraging graphs to improve recommendation engines, offering hyper-personalized product suggestions to boost customer engagement. By focusing on relationships rather than isolated data points, graph technology provides businesses with deeper insights, enabling more informed decisions and fostering innovation across industries.

Why Are Enterprises Rapidly Adopting Graph Technology Across Sectors?

Organizations in various industries are embracing graph technology due to its unparalleled ability to handle complex, interconnected data. In the financial services sector, graph databases are instrumental in analyzing transaction patterns, identifying fraud, and ensuring compliance with regulatory requirements. These systems efficiently process vast datasets to detect anomalies and link suspicious activities, providing financial institutions with a robust fraud mitigation tool. Similarly, in supply chain management, graph technology allows businesses to map intricate logistics networks, monitor inventory in real time, and predict disruptions, thereby streamlining operations and minimizing costs.

In the telecommunications sector, graph-based analytics are used to optimize network infrastructure, reduce downtime, and enhance service quality. Meanwhile, in marketing and customer experience, businesses leverage graph models to gain a 360-degree view of customers, offering personalized experiences that increase loyalty and retention. The ability to scale with increasing data volumes and adapt to diverse use cases has positioned graph technology as a cornerstone for modern enterprises seeking efficiency, innovation, and competitive advantage.

How Is Graph Technology Driving Innovation in Emerging Fields?

Graph technology is catalyzing innovation in emerging domains such as artificial intelligence (AI), cybersecurity, and the Internet of Things (IoT). By integrating graph databases with machine learning, organizations can build more intelligent systems capable of understanding intricate relationships within datasets. AI applications in drug discovery and genomics, for example, use graph models to identify new drug candidates or understand genetic interactions. In natural language processing, graphs enable semantic understanding, enhancing search engines, chatbots, and language models.

In the realm of cybersecurity, graph technology is being adopted to analyze vast networks of activity, identifying potential threats and vulnerabilities. Graph-based monitoring systems can map the behavior of attackers, anticipate breaches, and fortify defenses in real time. Similarly, in IoT ecosystems, graphs are pivotal in managing the web of interconnected devices, analyzing data flows, and ensuring efficient communication between systems. These applications demonstrate how graph technology is not just supporting existing processes but enabling entirely new approaches to problem-solving in rapidly evolving technological landscapes.

What Factors Are Driving the Expansion of the Graph Technology Market?

The growth in the Graph Technology market is driven by several critical factors, including the explosion of big data, the increasing reliance on AI and machine learning, and the need for real-time decision-making capabilities. As organizations face mounting pressure to analyze and act on complex datasets, graph technology has emerged as an essential tool for deriving actionable insights. Industries such as finance, healthcare, retail, and logistics are adopting graph solutions to optimize workflows, detect inefficiencies, and create personalized customer experiences.

Advancements in graph database technology, such as improved scalability, speed, and integration with cloud platforms, have made these solutions accessible to enterprises of all sizes. Additionally, the rising adoption of predictive analytics has further fueled the demand for graph-based systems, enabling businesses to anticipate trends and align strategies accordingly. As consumer expectations for speed, accuracy, and personalization continue to grow, graph technology’s role in fostering innovation and efficiency will only expand, cementing its place as a transformative force in the global data analytics landscape.

SCOPE OF STUDY:

The report analyzes the Graph Technology market in terms of units by the following Segments, and Geographic Regions/Countries:

Segments:

Component (Graph Software, Graph Services); Database Type (Relational (SQL) Database, Non-Relational (No SQL) Database); Graph Type (Property Graphs, Hypergraphs, Resource Description Framework (RDF) Graphs); Deployment (On-Premise Deployment, Cloud-based Deployment); End-Use (IT & Telecom End-Use, Supply Chain & Logistics End-Use, Retail & E-Commerce End-Use, BFSI End-Use, Healthcare & Life Science End-Use, Government & Public Sector End-Use, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 48 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â