¼¼°èÀÇ Á¤¹Ð ÀÓ¾÷ ½ÃÀå
Precision Forestry
»óǰÄÚµå : 1594949
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 11¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 89 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,263,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,789,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ Á¤¹Ð ÀÓ¾÷ ½ÃÀåÀº 2030³â±îÁö 116¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á

2023³â¿¡ 70¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ Á¤¹Ð ÀÓ¾÷ ½ÃÀåÀº 2023-2030³â CAGR 7.5%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 116¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ Çϵå¿þ¾î ÄÄÆ÷³ÍÆ®´Â CAGR 7.0%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 58¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼ÒÇÁÆ®¿þ¾î ÄÄÆ÷³ÍÆ® ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ Áß CAGR 7.9%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 19¾ï ´Þ·¯, Áß±¹Àº CAGR 7.0%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹Ãø

¹Ì±¹ÀÇ Á¤¹Ð ÀÓ¾÷ ½ÃÀåÀº 2023³â¿¡ 19¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 18¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2023-2030³âÀÇ CAGRÀº 7.0%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 6.9%¿Í 6.0%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR ¾à 6.0%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ Á¤¹Ð ÀÓ¾÷ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

Á¤¹Ð ÀÓ¾÷Àº ±âÁ¸ ÀÓ¾÷À» ¾î¶»°Ô º¯ÇõÇϰí Àִ°¡?

Á¤¹Ð ÀÓ¾÷Àº, ¿ø°ÝŽ»ç, GPS, Áö¸®Á¤º¸½Ã½ºÅÛ(GIS), µå·Ð, µ¥ÀÌÅÍ ºÐ¼® µî ÷´Ü ±â¼úÀ» µµÀÔÇÏ¿© »ê¸² °ü¸®¸¦ ÃÖÀûÈ­ÇÏ°í »ý»ê¼ºÀ» Çâ»ó½ÃÅ´À¸·Î½á ÀÓ¾÷À» ºü¸£°Ô º¯È­½Ã۰í ÀÖ½À´Ï´Ù. ÀüÅëÀûÀÎ ÀÓ¾÷Àº ¿À·§µ¿¾È ¼öÀÛ¾÷¿¡ ÀÇÁ¸ÇØ Á¶¸², »ýÀå ¸ð´ÏÅ͸µ, ¹úä¿¡ ÀÇÁ¸ÇØ ¿ÔÀ¸¸ç, ÀÌ´Â Á¾Á¾ ºñÈ¿À²°ú ȯ°æ ¹®Á¦¸¦ ÀÏÀ¸Ä×½À´Ï´Ù. ±×·¯³ª Á¤¹Ð ÀÓ¾÷Àº »ê¸² »óŸ¦ ½Ç½Ã°£À¸·Î ÆÄ¾ÇÇÏ¿© º¸´Ù µ¥ÀÌÅÍ¿¡ ±â¹ÝÇÑ Áö¼Ó°¡´ÉÇÑ »ê¸² ÀÚ¿ø °ü¸®¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.

°íÇØ»óµµ À§¼º À̹ÌÁö, µå·Ð, LiDAR(Light Detection and Ranging) ±â¼úÀ» ÅëÇØ »ê¸² °ü¸®ÀÚ´Â »ê¸² Áö¿ªÀ» Á¤¹ÐÇÏ°Ô ¸ÅÇÎÇϰí, ³ª¹«ÀÇ ¼ºÀåÀ» ¸ð´ÏÅ͸µÇϰí, »ê¸²ÀÇ °Ç°­ »óŸ¦ Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀ» ÅëÇØ ½ºÆ®·¹½º¸¦ ¹Þ°í ÀÖ´Â Áö¿ª, ÇØÃæ ¹ß»ý, Áúº´ ¹ß»ýÀ» Á¶±â¿¡ ÆÄ¾ÇÇÒ ¼ö ÀÖÀ¸¸ç, °æÁ¦Àû ¼Õ½Ç°ú ȯ°æ ÆÄ±«¸¦ ÁÙÀ̱â À§ÇØ Àû½Ã¿¡ °³ÀÔÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ Á¤¹Ð ÀÓ¾÷Àº ȯ°æ ÆÄ±«¸¦ ÃÖ¼ÒÈ­Çϸ鼭 ¹úä¿¡ °¡Àå ÀûÇÕÇÑ ½Ã±â¸¦ Á¤È®È÷ ÆÄ¾ÇÇÏ¿© ¸ñÀç ¹ú並 ÃÖÀûÈ­ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. Àü ¼¼°è¿¡¼­ ¸ñÀç Á¦Ç°¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí Áö¼Ó°¡´ÉÇÑ »ê¸² °ü¸®°¡ ¿ä±¸µÇ´Â °¡¿îµ¥, Á¤¹Ð ÀÓ¾÷Àº º¸´Ù È¿À²ÀûÀ̰í ȯ°æ ģȭÀûÀÎ »ê¸² °ü¸® ¹æ¹ýÀ» Á¦°øÇÏ¿© °æÁ¦Àû ÀÌÀͰú »ýŰ迡 ´ëÇÑ Ã¥ÀÓÀÇ ±ÕÇüÀ» ¸ÂÃß´Â µ¥ µµ¿òÀ» ÁÙ ¼ö ÀÖ½À´Ï´Ù.

¾î¶² ±â¼ú Çõ½ÅÀÌ Á¤¹Ð ÀÓ¾÷ ½ÃÀåÀ» Çü¼ºÇϰí Àִ°¡?

±â¼úÀÇ ¹ßÀüÀº Á¤¹Ð ÀÓ¾÷ÀÇ ÇÙ½ÉÀ̸ç, ¿ø°Ý °¨Áö, µå·Ð, ºòµ¥ÀÌÅÍ ºÐ¼®ÀÇ Çõ½ÅÀÌ ÁÖµµÇϰí ÀÖ½À´Ï´Ù. Á¤¹Ð ÀÓ¾÷ÀÇ °¡Àå Áß¿äÇÑ ¹ßÀü Áß Çϳª´Â ·¹ÀÌÀú ÆÞ½º¸¦ »ç¿ëÇÏ¿© »ê¸² Áö¿ªÀÇ »ó¼¼ÇÑ 3D Áöµµ¸¦ ¸¸µå´Â ¿ø°Ý °¨Áö ±â¼úÀÎ LiDARÀÇ »ç¿ëÀ¸·Î, LiDAR´Â ³ª¹«ÀÇ ³ôÀÌ, ¼ö°ü ±¸Á¶ ¹× ¹ÙÀÌ¿À ¸Å½º ÃøÁ¤¿¡ ƯÈ÷ À¯¿ëÇÏ¿© »ê¸² °ü¸®ÀÚ°¡ »ê¸² ÀÚ¿øÀ» Á¤È®ÇÏ°Ô Æò°¡ÇÏ°í ¹úä, º¸Àü ¹× ÀçÁ¶¸²¿¡ ´ëÇÑ Á¤º¸¿¡ ÀÔ°¢ ÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù, ¹úä, º¸Àü, ÀçÁ¶¸²¿¡ ´ëÇÑ Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ±¤¹üÀ§ÇÑ ½ºÆåÆ®·³ÀÇ ºûÀ» Æ÷ÂøÇÏ´Â ÇÏÀÌÆÛ½ºÆåÆ®·³ À̹ÌÁö´Â ¿µ¾ç ºÎÁ·À̳ª Áúº´ÀÇ Ãʱâ Áõ»ó°ú °°ÀÌ À°¾ÈÀ¸·Î º¼ ¼ö ¾ø´Â ³ª¹«ÀÇ °Ç°­ »óÅÂÀÇ ¹Ì¹¦ÇÑ º¯È­¸¦ °¨ÁöÇÏ´Â µ¥¿¡µµ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù.

¹«ÀÎÇ×°ø±â(UAV), Áï µå·ÐÀÇ µµÀÔµµ Á¤¹Ð ÀÓ¾÷¿¡ Çõ¸íÀ» ºÒ·¯ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ÷´Ü Ä«¸Þ¶ó¿Í ¼¾¼­¸¦ ÀåÂøÇÑ µå·ÐÀº ±¤È°ÇÑ »ê¸²Áö¿ª »ó°øÀ» ºñÇàÇÏ¸ç ³ª¹«ÀÇ ¹Ðµµ, »ýÀå ÆÐÅÏ, Åä¾ç »óÅ µîÀÇ µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î ¼öÁýÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ µ¥ÀÌÅÍ´Â »ê¸² °ü¸®ÀÚ°¡ ¼Ô¾Æ³»±â, Àç½ÄÀç, ¹úä Àå¼Ò¸¦ Á¤È®ÇÏ°Ô ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µÇ¾î ÀÛ¾÷ È¿À²À» Å©°Ô Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. µå·ÐÀº ƯÈ÷ ¼ÕÀÌ ´ê±â ¾î·Á¿î °÷¿¡¼­ À¯¿ëÇÏ°Ô »ç¿ëµÇ¾î ¼öÀÛ¾÷ °Ë»çÀÇ Çʿ伺À» ÁÙÀ̰í ÀΰǺñ¸¦ Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ·¯ÇÑ ¿ø°ÝŽ»ç ±â¼ú ¿Ü¿¡µµ ºòµ¥ÀÌÅÍ ºÐ¼®°ú ¸Ó½Å·¯´×Àº »ê¸²¿¡¼­ ¼öÁýÇÑ ¹æ´ëÇÑ µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ´Â µ¥ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÅøÀ» ÅëÇØ »ê¸² °ü¸®ÀÚ´Â ¼ºÀå ÆÐÅÏÀ» ¿¹ÃøÇϰí, ±âÈÄ º¯È­ÀÇ ¿µÇâÀ» Æò°¡Çϰí, ÀÚ¿ø ¹èºÐÀ» ÃÖÀûÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î AI ±â¹Ý ¸ðµ¨Àº ´Ù¾çÇÑ »ê¸² °ü¸® Àü·«ÀÌ Àå±âÀûÀ¸·Î ¸ñÀç ¼öÈ®·®°ú ź¼Ò Èí¼ö·®¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ¿¹ÃøÇÒ ¼ö ÀÖÀ¸¸ç, ±â¾÷°ú Á¤ºÎ°¡ º¸´Ù Áö¼Ó°¡´ÉÇÑ »ê¸² ÀÛ¾÷À» ¼öÇàÇÏ´Â µ¥ µµ¿òÀ» ÁÙ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ã·´Ü ±â¼úÀÇ Á¶ÇÕÀ» ÅëÇØ »ê¸² °ü¸®ÀÚ´Â ÀÓ¾÷¿¡ º¸´Ù Á¤È®ÇÏ°í °úÇÐÀûÀÎ Á¢±Ù ¹æ½ÄÀ» µµÀÔÇÏ¿© °æÁ¦Àû ¼º°ú¿Í ȯ°æÀû ûÁö±â Á¤½ÅÀ» ¸ðµÎ Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.

Áö¼Ó°¡´É¼ºÀº ¾î¶»°Ô Á¤¹Ð ÀÓ¾÷ÀÇ Ã¤ÅÃÀ» ÃËÁøÇϴ°¡?

Áö¼Ó°¡´É¼ºÀº Á¤¹Ð ÀÓ¾÷ÀÇ Ã¤ÅÃÀ» ÃËÁøÇÏ´Â ÁÖ¿ä ¿äÀÎÀÔ´Ï´Ù. Àü ¼¼°è ÀÓ¾÷ ºÎ¹®Àº ¸ñÀç ¹× Àӻ깰¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇÏ´Â µ¿½Ã¿¡ ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÁÙ¿©¾ß ÇÑ´Ù´Â ¾Ð¹Ú¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. »ï¸² °¨¼Ò, ¼­½ÄÁö ¼Õ½Ç, ±âÈÄ º¯È­·Î ÀÎÇØ º¸´Ù Ã¥ÀÓ°¨ ÀÖ´Â »ê¸² °ü¸®ÀÇ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Á¤¹Ð ÀÓ¾÷Àº »ê¸² °æ¿µÀÇ È¿À²¼º°ú Áö¼Ó°¡´É¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ´Â ÅøÀ» Á¦°øÇÔÀ¸·Î½á ÀÌ·¯ÇÑ µµÀü¿¡ ´ëÀÀÇϰí ÀÖ½À´Ï´Ù. Á¤¹Ð ÀÓ¾÷Àº »ê¸²ÀÇ °Ç°­, ¼ºÀå·ü, »ý¹° ´Ù¾ç¼º¿¡ ´ëÇÑ Á¤È®ÇÑ µ¥ÀÌÅ͸¦ Á¦°øÇÔÀ¸·Î½á »ê¸² °ü¸®ÀÚ°¡ ÀÚ¿ø À̿뿡 ´ëÇØ º¸´Ù Çö¸íÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï µ½°í, ȯ°æ ÆÄ±«¸¦ ÃÖ¼ÒÈ­Çϰí ÀçÁ¶¸²À» ÃËÁøÇÏ´Â ¹æ½ÄÀ¸·Î ¹úä°¡ ÀÌ·ç¾îÁú ¼ö ÀÖµµ·Ï º¸ÀåÇÕ´Ï´Ù.

Á¤¹Ð ÀÓ¾÷ÀÇ ÁÖ¿ä ÀåÁ¡ Áß Çϳª´Â »ê¸² ÀÚ¿øÀÇ È°¿ëÀ» ÃÖÀûÈ­ÇÏ¿© Áö¼Ó°¡´ÉÇÑ »ê¸² °ü¸®¸¦ °­È­ÇÒ ¼ö ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ¿¹¸¦ µé¾î Á¤¹Ð ±â¼úÀ» ÅëÇØ ¼±ÅÃÀû ¹úä°¡ °¡´ÉÇØÁ® ¼º¼÷ÇÑ ³ª¹«¸¸ ¹úäÇÏ°í ¾î¸° ³ª¹«¿Í ÁÖº¯ »ýŰ踦 ±×´ë·Î ³²°ÜµÑ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀº »ý¹° ´Ù¾ç¼º À¯Áö¿¡ µµ¿òÀÌ µÇ¸ç, ¹úäÀÇ ÀϹÝÀûÀÎ ºÎÀÛ¿ëÀÎ Åä¾ç ħ½Ä°ú ¼öÁú ¿À¿°À» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ Á¤¹Ð ÀÓ¾÷Àº »ê¸²ÀÇ Åº¼Ò ÀúÀå·®À» ¸ð´ÏÅ͸µÇÒ ¼ö ÀÖÀ¸¸ç, Àå±âÀûÀ¸·Î »ê¸²ÀÌ ¾ó¸¶³ª ¸¹Àº ź¼Ò¸¦ Èí¼öÇÏ´ÂÁö¿¡ ´ëÇÑ Á¤È®ÇÑ µ¥ÀÌÅ͸¦ Á¦°øÇÔÀ¸·Î½á ±âÈÄ º¯È­¿¡ ´ëÀÀÇÏ´Â ³ë·ÂÀ» Áö¿øÇÒ ¼ö ÀÖ½À´Ï´Ù.

Áö¼Ó°¡´ÉÇÑ ¸ñÀç Á¦Ç°À» ã´Â ¼ÒºñÀÚµéÀÇ ¸ñ¼Ò¸®°¡ ³ô¾ÆÁö¸é¼­ ÀÓ¾÷ ȸ»çµéÀÌ Á¤¹Ð ÀÓ¾÷À» µµÀÔÇϵµ·Ï À¯µµÇϰí ÀÖ½À´Ï´Ù. »ê¸²°ü¸®ÇùÀÇȸ(FSC)¿Í »ê¸²ÀÎÁõÇÁ·Î±×·¥(PEFC)°ú °°Àº ÀÎÁõÀº ±â¾÷ÀÌ Áö¼Ó°¡´ÉÇÑ »ê¸² °ü¸®¸¦ Áõ¸íÇÒ °ÍÀ» ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. Á¤¹Ð ÀÓ¾÷ ±â¼úÀº »ê¸² °ü¸® °üÇàÀ» ÃßÀûÇϰí Ã¥ÀÓ°¨ ÀÖ´Â ¹ú並 º¸ÀåÇϸç Áö¼Ó°¡´É¼º ¿ä°Ç Áؼö¸¦ Áõ¸íÇÏ´Â µ¥ ÇÊ¿äÇÑ µ¥ÀÌÅ͸¦ Á¦°øÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ÀÎÁõ ±âÁØÀ» ½±°Ô ÁؼöÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ¼¼°è ½ÃÀåÀÌ Á¡Á¡ ´õ ģȯ°æ Á¦Ç°À» ¼±È£ÇÔ¿¡ µû¶ó Á¤¹Ð ÀÓ¾÷Àº ÀÓ¾÷ÀÌ ¼öÀͼºÀ» À¯ÁöÇϸ鼭 Áö¼Ó°¡´É¼º ¸ñÇ¥¸¦ ´Þ¼ºÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀÔ´Ï´Ù.

Á¤¹Ð ÀÓ¾÷ ½ÃÀåÀÇ ¼ºÀå ÃËÁø¿äÀÎÀº?

Á¤¹Ð ÀÓ¾÷ ½ÃÀåÀÇ ¼ºÀåÀº ±â¼ú ¹ßÀü, º¸´Ù È¿À²ÀûÀÎ »ê¸² °ü¸®ÀÇ Çʿ伺, ȯ°æ ÀÎ½Ä Áõ°¡ µî ¸î °¡Áö Áß¿äÇÑ ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁý´Ï´Ù. ÁÖ¿ä ÃËÁø¿äÀÎ Áß Çϳª´Â LiDAR, µå·Ð, À§¼º À̹ÌÁö¿Í °°Àº ¿ø°Ý °¨Áö ±â¼úÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀ¸·Î »ê¸² °ü¸®ÀÚ¿¡°Ô »ê¸² »óÅ¿¡ ´ëÇÑ »ó¼¼Çϰí Á¤È®ÇÑ µ¥ÀÌÅ͸¦ Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úµéÀÌ º¸´Ù Àú·ÅÇÏ°í ½±°Ô ÀÌ¿ëÇÒ ¼ö ÀÖ°Ô µÇ¸é¼­ ÀÓ¾÷ ȸ»çµéÀÌ Á¤¹Ð ÀÓ¾÷ ¼Ö·ç¼ÇÀ» äÅÃÇϱ⠽¬¿öÁ³°í, AI¿Í ¸Ó½Å·¯´×ÀÌ ÀÓ¾÷ ¾÷¹«¿¡ ÅëÇյǸ鼭 ¹æ´ëÇÑ µ¥ÀÌÅͼ¼Æ®¸¦ ºÐ¼®ÇÒ ¼ö ÀÖ´Â ´É·ÂÀÌ °­È­µÇ¾î »ê¸² °ü¸®ÀÚ°¡ °á°ú¸¦ ¿¹ÃøÇϰí ÀÚ¿ø Ȱ¿ëÀ» ÃÖÀûÈ­ÇÏ´Â µ¥ µµ¿òÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¿¹ÃøÇϰí ÀÚ¿ø Ȱ¿ëÀ» ÃÖÀûÈ­ÇÒ ¼ö ÀÖµµ·Ï µ½°í ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ ÁÖ¿ä ¼ºÀå ¿äÀÎÀº ¸ñÀç ¹× Àӻ깰¿¡ ´ëÇÑ Àü ¼¼°è ¼ö¿ä Áõ°¡À̸ç, Àα¸ Áõ°¡¿Í µµ½ÃÈ­·Î ÀÎÇØ ÀÌ ¼ö¿ä´Â °è¼Ó Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ¼ö¿ä¿¡ Áö¼ÓÀûÀ¸·Î ´ëÀÀÇϱâ À§ÇØ ÀÓ¾÷Àº ȯ°æ ÇÇÇØ¸¦ ÃÖ¼ÒÈ­Çϸ鼭 ¼öÈ®·®À» ±Ø´ëÈ­ÇÒ ¼ö ÀÖ´Â º¸´Ù È¿À²ÀûÀ̰í Á¤¹ÐÇÑ °ü¸® ¹æ½ÄÀ» äÅÃÇØ¾ß ÇÕ´Ï´Ù. Á¤¹Ð ÀÓ¾÷ ±â¼úÀº »ê¸² °ü¸®ÀÚ°¡ ¹úä ÀÏÁ¤À» ÃÖÀûÈ­Çϰí, ÀçÁ¶¸² ³ë·ÂÀ» °³¼±Çϰí, Æó±â¹°À» ÁÙ¿© º¸´Ù Áö¼Ó°¡´ÉÇÏ°í ¼öÀͼº ³ôÀº °æ¿µÀ¸·Î À̲ø ¼ö ÀÖ½À´Ï´Ù.

Áö¼Ó°¡´ÉÇÑ »ê¸² °ü¸®¸¦ ÃËÁøÇϱâ À§ÇÑ È¯°æ ±ÔÁ¦¿Í Á¤Ã¥µµ Á¤¹Ð ÀÓ¾÷ÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. °¢±¹ Á¤ºÎ¿Í ±¹Á¦±â±¸´Â »ï¸² ÆÄ±«¸¦ ¹æÁöÇϰí, »ý¹° ´Ù¾ç¼ºÀ» º¸È£Çϸç, ź¼Ò ÀúÀåÀ» ÃËÁøÇϱâ À§ÇØ ´õ¿í ¾ö°ÝÇÑ ±ÔÁ¦¸¦ ½ÃÇàÇϰí ÀÖ½À´Ï´Ù. Á¤¹Ð ÀÓ¾÷ ±â¼úÀº º¸´Ù Ã¥ÀÓ°¨ ÀÖ´Â µ¥ÀÌÅͺ£À̽º »ê¸² ÀÚ¿ø °ü¸®¸¦ °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ±ÔÁ¦¸¦ ÁؼöÇÏ´Â µ¥ ÇÊ¿äÇÑ ÅøÀ» Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ Á¤¹Ð ÀÓ¾÷Àº ±âÈÄ º¯È­°¡ ½ÉÈ­µÊ¿¡ µû¶ó »ê¸²¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ¸ð´ÏÅ͸µÇÏ°í ¿ÏÈ­ÇÒ ¼ö ÀÖ´Â ¹æ¹ýÀ» Á¦°øÇÏ¿© »ê¸² »ýŰèÀÇ º¹¿ø·ÂÀ» ³ôÀÌ´Â µ¥ µµ¿òÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. Á¤¹Ð ÀÓ¾÷ÀÇ °æÁ¦Àû ÀÌÁ¡¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö¸é¼­ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù. Á¤¹Ð ÀÓ¾÷ ±â¼úÀº ÀÛ¾÷ ºñ¿ëÀ» Àý°¨Çϰí, ÀÚ¿ø ¹èºÐÀ» °³¼±Çϸç, ȯ°æÀû À§ÇèÀ» ÃÖ¼ÒÈ­ÇÔÀ¸·Î½á ÀÓ¾÷ÀÇ ¼öÀͼºÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÅøÀº ¸ñÀç ¼öÈ®·®À» ´Ã¸®°í, ³¶ºñ¸¦ ÁÙÀ̰í, Àå±âÀûÀÎ Áö¼Ó°¡´É¼ºÀ» º¸ÀåÇÏ´Â µ¥ µµ¿òÀÌ µÇ¹Ç·Î »ê¸² °ü¸®ÀÚµéÀº Á¤¹Ð ±â¼úÀ» äÅÃÇÔÀ¸·Î½á ¾òÀ» ¼ö ÀÖ´Â ÅõÀÚ ¸ÅÃâÀ» Á¡Á¡ ´õ ¸¹ÀÌ ÀνÄÇϰí ÀÖ½À´Ï´Ù. ÀÓ¾÷ÀÌ ¼¼°è ȯ°æ ¹× °æÁ¦ ¹®Á¦¿¡ ´ëÀÀÇϱâ À§ÇØ °è¼Ó ÁøÈ­ÇÏ´Â °¡¿îµ¥, Á¤¹Ð ÀÓ¾÷Àº »ê¸² °ü¸®ÀÇ ¹Ì·¡¸¦ Çü¼ºÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀ¸·Î ±â´ëµË´Ï´Ù.

ºÎ¹®

ÄÄÆ÷³ÍÆ®(Çϵå¿þ¾î, ¼ÒÇÁÆ®¿þ¾î, ¼­ºñ½º), Å×Å©³î·¯Áö(Àý´Ü ±æÀÌ, Áö¸®°ø°£, È­Àç °¨Áö), ¾ÖÇø®ÄÉÀ̼Ç(¼öÈ® °ü¸®, À¯ÀüÇÐ ¹× ¹¦¸ñ °ü¸®, À°¸² ¹× È­Àç °ü¸®, Àç°í ¹× ¹°·ù °ü¸®)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹(ÇÕ°è 34»ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Precision Forestry Market to Reach US$11.6 Billion by 2030

The global market for Precision Forestry estimated at US$7.0 Billion in the year 2023, is expected to reach US$11.6 Billion by 2030, growing at a CAGR of 7.5% over the analysis period 2023-2030. Hardware Component, one of the segments analyzed in the report, is expected to record a 7.0% CAGR and reach US$5.8 Billion by the end of the analysis period. Growth in the Software Component segment is estimated at 7.9% CAGR over the analysis period.

The U.S. Market is Estimated at US$1.9 Billion While China is Forecast to Grow at 7.0% CAGR

The Precision Forestry market in the U.S. is estimated at US$1.9 Billion in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$1.8 Billion by the year 2030 trailing a CAGR of 7.0% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 6.9% and 6.0% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 6.0% CAGR.

Global Precision Forestry Market - Key Trends & Drivers Summarized

How Is Precision Forestry Transforming Traditional Forestry Practices?

Precision forestry is rapidly transforming the forestry industry by incorporating advanced technologies like remote sensing, GPS, geographic information systems (GIS), drones, and data analytics to optimize forest management and increase productivity. Traditional forestry practices have long relied on manual methods for tree planting, growth monitoring, and harvesting, often leading to inefficiencies and environmental concerns. However, precision forestry allows for more data-driven and sustainable management of forest resources by providing real-time insights into forest conditions.

By using high-resolution satellite imagery, drones, and LiDAR (Light Detection and Ranging) technology, forest managers can map forest areas with great accuracy, monitor tree growth, and assess forest health. These technologies enable the identification of stressed areas, pest infestations, or disease outbreaks early on, allowing for timely interventions that reduce economic losses and environmental damage. Furthermore, precision forestry helps in optimizing timber harvests by pinpointing the most suitable times for cutting while minimizing environmental disruption. As global demand for wood products increases, along with the need for sustainable forest management, precision forestry offers a more efficient and environmentally conscious way of managing forests, helping to strike a balance between economic benefits and ecological responsibility.

What Technological Innovations Are Shaping The Precision Forestry Market?

Technological advancements are at the heart of precision forestry, with innovations in remote sensing, drones, and big data analytics leading the way. One of the most significant developments in precision forestry is the use of LiDAR, a remote sensing technology that uses laser pulses to create detailed 3D maps of forest areas. LiDAR is particularly valuable for measuring tree height, canopy structure, and biomass, enabling forest managers to accurately assess forest resources and make informed decisions about harvesting, conservation, and reforestation. In addition, hyperspectral imaging, which captures light across a wide spectrum, is being used to detect subtle changes in tree health, such as nutrient deficiencies or early signs of disease, that are not visible to the naked eye.

The adoption of unmanned aerial vehicles (UAVs), or drones, is also revolutionizing precision forestry. Drones equipped with advanced cameras and sensors can fly over vast forest areas to collect real-time data on tree density, growth patterns, and soil conditions. This data helps forest managers make precise decisions about where to thin forests, replant, or harvest, significantly improving operational efficiency. Drones are particularly useful in hard-to-reach areas, reducing the need for manual inspections and lowering labor costs.

In addition to these remote sensing technologies, big data analytics and machine learning are being used to analyze the vast amounts of data collected from forests. These tools allow forest managers to predict growth patterns, assess the impact of climate change, and optimize resource allocation. For example, AI-driven models can forecast how different forest management strategies will impact long-term timber yields and carbon sequestration, helping businesses and governments implement more sustainable forest practices. The combination of these advanced technologies is enabling forest managers to adopt a more precise, scientific approach to forestry, improving both economic outcomes and environmental stewardship.

How Is Sustainability Driving The Adoption Of Precision Forestry?

Sustainability is a major factor driving the adoption of precision forestry, as the global forestry sector faces increasing pressure to reduce its environmental impact while meeting the rising demand for wood and forest products. Deforestation, habitat loss, and climate change have heightened the need for more responsible forest management practices. Precision forestry addresses these challenges by offering tools that improve the efficiency and sustainability of forest operations. By providing accurate data on forest health, growth rates, and biodiversity, precision forestry enables forest managers to make more informed decisions about resource use, ensuring that timber harvesting is done in a way that minimizes environmental degradation and promotes forest regeneration.

One of the key benefits of precision forestry is its ability to enhance sustainable forest management by optimizing the use of forest resources. For example, precision technologies allow for selective harvesting, where only mature trees are removed while younger trees and surrounding ecosystems are left intact. This approach helps maintain biodiversity and reduces soil erosion and water pollution, which are common side effects of clear-cutting practices. Moreover, precision forestry can monitor carbon sequestration in forests, supporting efforts to combat climate change by providing accurate data on how much carbon is being absorbed by forests over time.

The growing consumer demand for sustainably sourced wood products is also encouraging forestry companies to adopt precision forestry practices. Certifications such as the Forest Stewardship Council (FSC) or the Programme for the Endorsement of Forest Certification (PEFC) require companies to demonstrate sustainable forest management. Precision forestry technologies make it easier to comply with these certification standards by providing the necessary data to track forest management practices, ensure responsible harvesting, and prove compliance with sustainability requirements. As global markets increasingly favor environmentally responsible products, precision forestry will play a vital role in helping the forestry industry meet sustainability goals while maintaining profitability.

What Are The Key Drivers Of Growth In The Precision Forestry Market?

The growth of the precision forestry market is driven by several key factors, including advancements in technology, the need for more efficient forest management practices, and increasing environmental awareness. One of the primary drivers is the rapid development of remote sensing technologies such as LiDAR, drones, and satellite imagery, which provide forest managers with detailed and accurate data on forest conditions. These technologies are becoming more affordable and accessible, making it easier for forestry companies to adopt precision forestry solutions. The increasing integration of AI and machine learning into forestry operations is also enhancing the ability to analyze vast datasets, helping forest managers predict outcomes and optimize resource use.

Another significant growth driver is the rising global demand for wood and forest products, which is expected to continue increasing as populations grow and urbanization expands. To meet this demand sustainably, the forestry industry must adopt more efficient and precise management practices that maximize yields while minimizing environmental harm. Precision forestry technologies allow forest managers to optimize harvesting schedules, improve reforestation efforts, and reduce waste, leading to more sustainable and profitable operations.

Environmental regulations and policies aimed at promoting sustainable forest management are also driving the adoption of precision forestry. Governments and international organizations are implementing stricter regulations to prevent deforestation, protect biodiversity, and promote carbon sequestration. Precision forestry technologies provide the tools needed to comply with these regulations by enabling more responsible and data-driven management of forest resources. Moreover, as climate change intensifies, precision forestry offers a way to monitor and mitigate its impact on forests, helping to build resilience in forest ecosystems. The growing awareness of the economic benefits of precision forestry is fueling market growth. By reducing operational costs, improving resource allocation, and minimizing environmental risks, precision forestry technologies can enhance the profitability of forestry operations. Forest managers are increasingly recognizing the return on investment that comes with adopting precision technologies, as these tools help increase timber yields, reduce waste, and ensure long-term sustainability. As the forestry industry continues to evolve in response to global environmental and economic challenges, precision forestry is expected to play a critical role in shaping the future of forest management.

SCOPE OF STUDY:

The report analyzes the Precision Forestry market in terms of US$ Million by the following Application; Component; Technology, and Geographic Regions/Countries:

Segments:

Component (Hardware, Software, Services); Technology (Cut-to-Length, Geospatial, Fire Detection); Application (Harvesting Management, Genetics & Nurseries, Silviculture & Fire Management, Inventory & Logistics Management)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.

Select Competitors (Total 34 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â