¼¼°èÀÇ ±¤ Æ®·£½Ã¹ö ½ÃÀå
Optical Transceivers
»óǰÄÚµå : 1594928
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 11¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 81 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,233,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,701,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼¼°èÀÇ ±¤ Æ®·£½Ã¹ö ½ÃÀåÀº 2030³â±îÁö 301¾ï ´Þ·¯¿¡ µµ´Þ

2023³â¿¡ 117¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ ±¤ Æ®·£½Ã¹ö ½ÃÀåÀº ºÐ¼® ±â°£ÀÎ 2023-2030³â¿¡ CAGR 14.4%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 301¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» ¸®Æ÷Æ®¿¡¼­ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ ½Ì±Û ¸ðµå ÆÄÀ̹ö´Â CAGR 11.3%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 154¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¸ÖƼ ¸ðµå ÆÄÀ̹ö ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 18.6%·Î ÃßÁ¤µÇ°í ÀÖ½À´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 30¾ï ´Þ·¯, Áß±¹Àº CAGR 18.4%·Î ¼ºÀå ¿¹Ãø

¹Ì±¹ÀÇ ±¤ Æ®·£½Ã¹ö ½ÃÀåÀº 2023³â¿¡ 30¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 73¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2023-2030³âÀÇ CAGRÀº 18.4%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 10.1%¿Í 11.8%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ CAGR 10.8%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°èÀÇ ±¤ Æ®·£½Ã¹ö ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®

¿Ö ±¤ Æ®·£½Ã¹ö´Â Çö´ë Åë½Å ³×Æ®¿öÅ©¿¡ ÇʼöÀûÀΰ¡?

±¤ Æ®·£½Ã¹ö´Â ¿À´Ã³¯ÀÇ µ¥ÀÌÅÍ Áý¾àÀû ¿ëµµ¸¦ Áö¿øÇÏ´Â µ¥ ÇÊ¿äÇÑ °í¼Ó µ¥ÀÌÅÍ Àü¼ÛÀ» °¡´ÉÇÏ°Ô ÇÏ´Â Çö´ë Åë½Å ³×Æ®¿öÅ©ÀÇ ±âº» ÄÄÆ÷³ÍÆ®ÀÔ´Ï´Ù. ±¤ Æ®·£½Ã¹ö´Â Àü±â ½ÅÈ£¸¦ ±¤ ½ÅÈ£·Î º¯È¯Çϰųª ¹Ý´ë·Î ±¤ ½ÅÈ£¸¦ Àü±â ½ÅÈ£·Î º¯È¯ÇÏ¿© ¼Õ½Ç, °£¼· ¹× Áö¿¬À» ÃÖ¼ÒÈ­Çϸ鼭 ±¤¼¶À¯ ÄÉÀ̺íÀ» ÅëÇØ Àå°Å¸® µ¥ÀÌÅÍ Àü¼ÛÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ, ½ºÆ®¸®¹Ö ¼­ºñ½º, Ä¿³ØÆ¼µå µð¹ÙÀ̽ºÀÇ ±ÞÁõÀ¸·Î µ¥ÀÌÅÍ ¼Òºñ°¡ ±ÞÁõÇϸ鼭 ±¤ Æ®·£½Ã¹ö¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. Åë½Å »ç¾÷ÀÚ, µ¥ÀÌÅͼ¾ÅÍ ¹× ±â¾÷Àº ³×Æ®¿öÅ© ¿ë·®À» °­È­ÇÏ°í ºü¸£°í ¾ÈÁ¤ÀûÀÎ ¿¬°á¿¡ ´ëÇÑ »ç¿ëÀÚÀÇ ±â´ë¿¡ ºÎÀÀÇϱâ À§ÇØ ±¤ Æ®·£½Ã¹ö¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖÀ¸¸ç, 5G ³×Æ®¿öÅ©·ÎÀÇ ÀüȯÀº °í±Þ Æ®·£½Ã¹ö ±â¼ú¿¡ ´ëÇÑ ¿ä±¸¸¦ ´õ¿í Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. 5G´Â ºñµð¿À ½ºÆ®¸®¹Ö, °ÔÀÓ, IoT ¿ëµµ°ú °°Àº ±¤´ë¿ª ¼­ºñ½º¿¡¼­ »ý¼ºµÇ´Â ¹æ´ëÇÑ µ¥ÀÌÅÍ Æ®·¡ÇÈÀ» ó¸®Çϱâ À§ÇØ »ó´çÇÑ ¹éȦ ¿ë·®ÀÌ ÇÊ¿äÇϱ⠶§¹®ÀÔ´Ï´Ù. ±¤ Æ®·£½Ã¹ö´Â ÀÌ·¯ÇÑ °í¼Ó ´ë¿ë·® µ¥ÀÌÅÍ Àü¼ÛÀ» °¡´ÉÇÏ°Ô Çϰí, Çö´ë µðÁöÅÐ Åë½Å ÀÎÇÁ¶óÀÇ ¹éº»À» Áö¿øÇÏ´Â Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù.

°í¼º´É ±¤ Æ®·£½Ã¹öÀÇ Çʿ伺Àº Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ ¹× ½ºÅ丮Áö ¼­ºñ½º¿¡ ÇÊ¿äÇÑ ºü¸£°í È¿À²ÀûÀÎ µ¥ÀÌÅÍ Àü¼ÛÀ» °¡´ÉÇÏ°Ô ÇÏ´Â µ¥ÀÌÅͼ¾ÅÍ¿¡¼­ ƯÈ÷ µÎµå·¯Áý´Ï´Ù. µ¥ÀÌÅͼ¾ÅÍ´Â ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅ͸¦ ¼ö¿ëÇÏ°í ¹æ´ëÇÑ ¾çÀÇ Æ®·¡ÇÈÀ» ó¸®ÇϹǷΠ°í¼Ó, ÀúÁö¿¬ ¿¬°á ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇÕ´Ï´Ù. ±¤ Æ®·£½Ã¹ö´Â ¼­¹ö ·¢, Ä÷³, Ŭ·¯½ºÅ͸¦ ¿¬°áÇÏ´Â µ¥ ÇÊ¿äÇÑ È®À强À» Á¦°øÇÏ´Â µ¿½Ã¿¡ ¿¡³ÊÁö ¼Òºñ¸¦ ÃÖ¼ÒÈ­ÇÕ´Ï´Ù. ¶ÇÇÑ ¿¡Áö ÄÄÇ»ÆÃÀÇ ºÎ»óÀ¸·Î ÀÎÇØ µ¥ÀÌÅ͸¦ ´õ °¡±î¿î °÷¿¡¼­ ó¸®Çϰí Áö¿¬ ½Ã°£À» ÁÙÀ̱â À§ÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó ±¤ Æ®·£½Ã¹ö´Â ºÐ»êµÈ µ¥ÀÌÅͼ¾ÅÍ¿¡¼­ °í¼Ó µ¥ÀÌÅÍ Àü¼ÛÀ» °¡´ÉÇÏ°Ô Çϰí Áß¾Ó µ¥ÀÌÅÍ Çãºê¿Í ÁÖº¯ »çÀÌÆ®¸¦ È¿°úÀûÀ¸·Î ¿¬°áÇÏ´Â µ¥¿¡µµ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ·¯ÇÑ È®À强°ú ÀûÀÀ¼ºÀ¸·Î ÀÎÇØ ±¤ Æ®·£½Ã¹ö´Â Ŭ¶ó¿ìµå ¹× µ¥ÀÌÅͼ¾ÅÍ »ê¾÷¿¡¼­ ÇʼöÀûÀÎ Á¸Àç°¡ µÇ¾î ºü¸¥ µ¥ÀÌÅÍ ±³È¯À» ÃËÁøÇÏ°í º¹ÀâÇØÁö´Â ³×Æ®¿öÅ©¸¦ È¿À²ÀûÀ¸·Î °ü¸®ÇÒ ¼ö ÀÖ½À´Ï´Ù.

¶ÇÇÑ Åë½Å ¹× ±â¾÷ ³×Æ®¿öÅ©¿¡¼­ ³×Æ®¿öÅ© °¡»óÈ­ ¹× SDN(Software-Defined Networking)¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ¿ªµ¿ÀûÀ̰í À¯¿¬ÇÑ ÀÎÇÁ¶ó¸¦ Áö¿øÇÏ´Â ±¤ Æ®·£½Ã¹öÀÇ Á߿伺ÀÌ Ä¿Áö°í ÀÖ½À´Ï´Ù. °¡»óÈ­µÈ ³×Æ®¿öÅ©´Â ½Å¼ÓÇÑ ÇÁ·ÎºñÀú´×°ú À籸¼ºÀÌ °¡´ÉÇÏÁö¸¸, ¹æ´ëÇÑ µ¥ÀÌÅÍ ºÎÇϸ¦ ó¸®ÇÒ ¼ö ÀÖ´Â °ß°íÇÑ Çϵå¿þ¾î¿¡ ÀÇÁ¸ÇÕ´Ï´Ù. ±¤ Æ®·£½Ã¹ö´Â ´Ù¾çÇÑ µ¥ÀÌÅÍ ¼Óµµ, °Å¸® ¹× ÀÎÅÍÆäÀ̽º¸¦ Áö¿øÇÏ´Â À¯¿¬ÇÏ°í ¸ðµâÈ­µÈ ¿¬°á ¿É¼ÇÀ» Á¦°øÇÔÀ¸·Î½á ÀÌ·¯ÇÑ °¡»óÈ­ ¹× SDN ȯ°æÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. »ê¾÷°è°¡ È®À强°ú ¹Îø¼ºÀ» Çâ»ó½Ã۱â À§ÇØ °¡»óÈ­ ³×Æ®¿öÅ© ¸ðµ¨À» °è¼Ó äÅÃÇÔ¿¡ µû¶ó ÀûÀÀÇü ±¤ Æ®·£½Ã¹ö¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, ¹Ì·¡ ÁöÇâÀûÀÎ ³×Æ®¿öÅ© ÀÎÇÁ¶ó¸¦ ±¸ÇöÇÏ´Â µ¥ ÀÖÀ¸¸ç, Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

µ¥ÀÌÅÍ ¼ÓµµÀÇ °í¼ÓÈ­´Â ±¤ Æ®·£½Ã¹ö ½ÃÀåÀ» ¾î¶»°Ô Çü¼ºÇϰí Àִ°¡?

³×Æ®¿öÅ© ÀÎÇÁ¶ó¿¡¼­ ´õ ³ôÀº µ¥ÀÌÅÍ ¼Óµµ·ÎÀÇ ÀüȯÀº ±¤ Æ®·£½Ã¹ö ½ÃÀåÀÇ Áß¿äÇÑ ÃËÁøÁ¦À̸ç, Áõ°¡ÇÏ´Â µ¥ÀÌÅÍ Æ®·¡ÇÈÀ» Áö¿øÇϱâ À§ÇØ 100G, 400G, ½ÉÁö¾î 800G Æ®·£½Ã¹ö¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ ¼Óµµ Áõ°¡´Â ÀÎÅÍ³Ý ¼Óµµ Çâ»ó¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ±â´ë°¡ ³ô¾ÆÁö°í ÀΰøÁö´É(AI), ¸Ó½Å·¯´×(ML), »ç¹°ÀÎÅͳÝ(IoT) µî »ó´çÇÑ ´ë¿ªÆøÀ» ÇÊ¿ä·Î ÇÏ´Â ±â¼úÀÇ ¹ßÀüÀ¸·Î ÀÎÇØ µ¥ÀÌÅÍ ¼Óµµ Çâ»ó¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÇѶ§ ¾÷°è Ç¥ÁØÀ̾ú´ø 100G Æ®·£½Ã¹ö´Â ÇöÀç ÇÏÀÌÆÛ½ºÄÉÀÏ µ¥ÀÌÅͼ¾ÅÍ¿Í ´ëµµ½Ã ³×Æ®¿öÅ©ÀÇ µ¥ÀÌÅÍ ¿ä±¸»çÇ×À» °ü¸®Çϱâ À§ÇØ 400G ÀÌ»óÀÇ °í¼Ó Æ®·£½Ã¹ö·Î ºü¸£°Ô º¸°­µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Æ®·£½Ã¹ö´Â ÃÊ´ç ´õ ¸¹Àº µ¥ÀÌÅ͸¦ ó¸®ÇÒ ¼ö ÀÖÀ¸¸ç, ³×Æ®¿öÅ© ¼º´ÉÀ» Çâ»ó½ÃŰ°í µ¿ÀÏÇÑ ¹°¸®Àû ÀÎÇÁ¶ó¿¡¼­ ´õ Å« ¿ë·®À» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. µ¥ÀÌÅÍ ¼Óµµ°¡ °è¼Ó Áõ°¡ÇÔ¿¡ µû¶ó ±¤ Æ®·£½Ã¹ö´Â ÀÌ·¯ÇÑ ¿ä±¸ »çÇ×À» ÃæÁ·Çϱâ À§ÇØ ¿¡³ÊÁö È¿À²À» À¯ÁöÇϰí Áö¿¬ ½Ã°£À» ÁÙÀ̸鼭 ´õ ³ôÀº ¼º´ÉÀ» Á¦°øÇϵµ·Ï ÁøÈ­Çϰí ÀÖ½À´Ï´Ù.

¾Æ¸¶Á¸, ±¸±Û, ¸¶ÀÌÅ©·Î¼ÒÇÁÆ®¿Í °°Àº Ŭ¶ó¿ìµå ÀÚÀÌ¾ðÆ®µéÀÇ ¹æ´ëÇÑ µ¥ÀÌÅÍ ¼ö¿ä¸¦ ÃæÁ·½ÃŰ´Â ÇÏÀÌÆÛ½ºÄÉÀÏ µ¥ÀÌÅͼ¾ÅÍ¿¡¼­´Â È¿À²ÀûÀÎ ³×Æ®¿öÅ© °ü¸®¸¦ À§ÇØ °í¼Ó ±¤ Æ®·£½Ã¹ö°¡ ÇʼöÀûÀÔ´Ï´Ù. Àü·Ê ¾ø´Â ¾çÀÇ µ¥ÀÌÅ͸¦ ó¸®ÇÏ´Â ÀÌ·¯ÇÑ ½Ã¼³¿¡¼­ 400G ¹× 800G Æ®·£½Ã¹ö´Â µ¥ÀÌÅͼ¾ÅÍ »ç¾÷ÀÚ°¡ Áõ°¡ÇÏ´Â Æ®·¡ÇÈ ¼ö¿ä¸¦ ÃæÁ·½ÃŰ¸é¼­ °ø°£°ú Àü·Â »ç¿ëÀ» ÃÖÀûÈ­ÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù. ÀÌ ´ë¿ë·® Æ®·£½Ã¹ö´Â °í¹Ðµµ ÆÄÀå ºÐÇÒ ´ÙÁßÈ­(DWDM) ¹× Á¶¹Ð ÆÄÀå ºÐÇÒ ´ÙÁßÈ­(CWDM) ±â¼úÀ» Áö¿øÇϸç, ¿©·¯ µ¥ÀÌÅÍ Ã¤³ÎÀÌ µ¿ÀÏÇÑ ÆÄÀ̹ö¸¦ °øÀ¯ÇÒ ¼ö ÀÖÀ¸¹Ç·Î ÀÎÇÁ¶ó¸¦ Ãß°¡ÇÏÁö ¾Ê°íµµ ¿ë·®À» Å©°Ô ´Ã¸± ¼ö ÀÖ½À´Ï´Ù. µ¥ÀÌÅͼ¾ÅͰ¡ ¿î¿µ ºñ¿ëÀ» ÁÙÀ̸鼭 ¼ö¿ä¿¡ ´ëÀÀÇϱâ À§ÇØ ³ë·ÂÇÏ´Â °¡¿îµ¥, °í¼Ó Æ®·£½Ã¹ö´Â ±Þ°ÝÇÑ µ¥ÀÌÅÍ Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇØ ÇÊ¿äÇÑ ÀÎÇÁ¶ó È®ÀåÀ» Áö¿øÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ¾Ò½À´Ï´Ù.

¶ÇÇÑ ÄÚÈ÷·±Æ® ±¤±â¼úÀÇ ¹ßÀüÀ¸·Î Àå°Å¸® °í¼Ó µ¥ÀÌÅÍ Àü¼ÛÀÌ °¡´ÉÇØÁö¸é¼­ °í¼Ó Æ®·£½Ã¹ö ½ÃÀåÀÌ ´õ¿í È®´ëµÇ°í ÀÖ½À´Ï´Ù. ÄÚÈ÷·±Æ® ±¤ ±â¼úÀ» ÅëÇØ Æ®·£½Ã¹ö´Â ´õ ³ôÀº ½ºÆåÆ®·³ È¿À²·Î º¹ÀâÇÑ ½ÅÈ£¸¦ ó¸®ÇÒ ¼ö ÀÖÀ¸¸ç, ÀÌ´Â µ¥ÀÌÅͼ¾ÅÍ, µµ½Ã, ½ÉÁö¾î ´ë·úÀ» ¿¬°áÇÏ´Â Àå°Å¸® ³×Æ®¿öÅ© ¹× ¸ÞÆ®·Î ³×Æ®¿öÅ©¿¡ ƯÈ÷ À¯¿ëÇÕ´Ï´Ù. ÄÚÈ÷·±Æ® ±¤ ±â¼úÀº ´ÜÀÏ ÆÄÀåÀ¸·Î Àü¼ÛÇÒ ¼ö ÀÖ´Â µ¥ÀÌÅÍÀÇ ¾çÀ» Áõ°¡½ÃÅ´À¸·Î½á Àç»ýÀ̳ª ÁõÆø ¾øÀ̵µ Àå°Å¸®¿¡¼­ 400G ÀÌ»óÀÇ ¼Óµµ¸¦ ´Þ¼ºÇÒ ¼ö ÀÖÀ¸¸ç, ºñ¿ë Àý°¨°ú ³×Æ®¿öÅ© È¿À²¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ÀÌ ±â´ÉÀº ´õ ³ôÀº ´ë¿ªÆø ¿ä±¸ »çÇ×À» Áö¿øÇϱâ À§ÇØ ¹éº» ³×Æ®¿öÅ©¸¦ ¾÷±×·¹À̵åÇÏ´Â Åë½Å »ç¾÷ÀÚ¿¡°Ô ¸Å¿ì Áß¿äÇϸç, ÄÚÈ÷·±Æ® ±¤ ±â¼úÀÌ ¹ßÀüÇÔ¿¡ µû¶ó ±¤ Æ®·£½Ã¹ö ½ÃÀåÀÇ Áö¼ÓÀûÀÎ ¼ºÀå°ú Çõ½Å¿¡ ¹ÚÂ÷¸¦ °¡ÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

±¤ Æ®·£½Ã¹ö°¡ 5G¿Í ±× ÀÌÈÄÀÇ ¿ªÇÒÀº ¹«¾ùÀΰ¡?

±¤ Æ®·£½Ã¹ö´Â 5G ³×Æ®¿öÅ©ÀÇ ¼º°øÀûÀÎ ±¸Ãà¿¡ ÇʼöÀûÀ̸ç, 6G °³¹ßÀÌ ÁøÇàµÊ¿¡ µû¶ó ´õ¿í Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¸ð¹ÙÀÏ ³×Æ®¿öÅ©°¡ 5G·Î ÀüȯµÊ¿¡ µû¶ó ³ôÀº µ¥ÀÌÅÍ ¼Óµµ¸¦ ó¸®ÇÏ°í ±âÁö±¹°ú ÄÚ¾î ³×Æ®¿öÅ© °£ ÀúÁö¿¬ ¿¬°áÀÌ °¡´ÉÇÑ ¹éȦ ÀÎÇÁ¶ó¿¡ ´ëÇÑ ¼ö¿ä°¡ ±× ¾î´À ¶§º¸´Ù ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ±¤ Æ®·£½Ã¹ö, ƯÈ÷ Àå°Å¸® °í¼Ó µ¥ÀÌÅÍ Àü¼ÛÀÌ °¡´ÉÇÑ ±¤ Æ®·£½Ã¹ö´Â 5GÀÇ ³ÐÀº ´ë¿ªÆø°ú ÃÊÀúÁö¿¬ Ư¼ºÀ» Áö¿øÇÏ´Â µ¥ ÇÊ¿äÇÑ °ß°íÇÏ°í ¾ÈÁ¤ÀûÀÎ ¿¬°á¼ºÀ» Á¦°øÇÕ´Ï´Ù. ³×Æ®¿öÅ©, Àü¼Û ³×Æ®¿öÅ©, ÄÚ¾î ³×Æ®¿öÅ© µî ´Ù¾çÇÑ ³×Æ®¿öÅ© ºÎ¹®À» ¿¬°áÇÏ¿© Áõ°­Çö½Ç(AR), °¡»óÇö½Ç(VR), ½Ç½Ã°£ IoT ¼­ºñ½º¿Í °°Àº °í¼Ó ¿ëµµ¿¡ ÇʼöÀûÀÎ ¿øÈ°ÇÑ µ¥ÀÌÅÍ Àü¼ÛÀ» °¡´ÉÇÏ°Ô ÇÏ´Â µ¥ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù.

¶ÇÇÑ 5G ³×Æ®¿öÅ©ÀÇ ½º¸ô¼¿ ¾ÆÅ°ÅØÃ³´Â °í¹Ðµµ ±âÁö±¹ ³×Æ®¿öÅ©¸¦ ÅëÇØ ±¹ÁöÀûÀÎ ´ë¿ë·® Ä¿¹ö¸®Áö¸¦ Á¦°øÇϸç, ¼¿ °£ ¿¬°áÀ» À§ÇØ ±¤ Æ®·£½Ã¹ö¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ½º¸ô¼¿Àº 5G¿¡¼­ ¿ä±¸µÇ´Â ³ôÀº µ¥ÀÌÅÍ ¼Óµµ¿Í Ä¿¹ö¸®Áö ¹Ðµµ¸¦ ´Þ¼ºÇÏ´Â µ¥ ÇʼöÀûÀÌÁö¸¸, °¢ ¼¿À» ÄÚ¾î ³×Æ®¿öÅ©·Î ¿¬°áÇϱâ À§Çؼ­´Â ±¤¹üÀ§ÇÑ ±¤¼¶À¯ ÀÎÇÁ¶ó°¡ ÇÊ¿äÇÕ´Ï´Ù. ±¤ Æ®·£½Ã¹ö´Â ÀÌ·¯ÇÑ ¿¬°á¼ºÀ» ÃËÁøÇÏ°í ½ÅÈ£ ÀúÇÏ ¾øÀÌ ´Ù¼öÀÇ ½º¸ô¼¿ °£¿¡ µ¥ÀÌÅ͸¦ È¿À²ÀûÀ¸·Î Àü¼ÛÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ¸ð¹ÙÀÏ ³×Æ®¿öÅ©°¡ ƯÈ÷ µµ½Ã¿Í ±³¿Ü Áö¿ª¿¡¼­ 5GÀÇ ¿µ¿ªÀ» È®ÀåÇÔ¿¡ µû¶ó ±¤ Æ®·£½Ã¹ö¿¡ ´ëÇÑ ¼ö¿ä´Â °è¼Ó Áõ°¡ÇÒ °ÍÀÔ´Ï´Ù.

ÇâÈÄ ±¤ Æ®·£½Ã¹ö´Â 5Gº¸´Ù ´õ ³ôÀº µ¥ÀÌÅÍ ¼Óµµ, ´õ ºü¸¥ ¼Óµµ, ´õ ³ÐÀº Ä¿¹ö¸®Áö¸¦ ¾à¼ÓÇÏ´Â 6G ³×Æ®¿öÅ©¿¡ ÇÊ¿äÇÑ ÀÎÇÁ¶ó¸¦ ±¸ÇöÇÏ´Â µ¥ ÀÖÀ¸¸ç, ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀÔ´Ï´Ù. ÷´Ü ¿ëµµ¸¦ Áö¿øÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, À̸¦ À§Çؼ­´Â ¸·´ëÇÑ ´ë¿ªÆø°ú ÃÊÀúÁö¿¬ÀÌ ¿ä±¸µË´Ï´Ù. ±¤ Æ®·£½Ã¹ö´Â ÃÊ´ç Å×¶óºñÆ® µ¥ÀÌÅÍ ¼Óµµ¸¦ ó¸®Çϰí, ÄÚÈ÷·±Æ® ±¤ ±â¼ú, ÆÄÀå ºÐÇÒ ´ÙÁßÈ­, ¾çÀÚ Åë½Å ±â´ÉÀ» °®Ãá Â÷¼¼´ë ÀÎÇÁ¶ó¸¦ Áö¿øÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 5G°¡ °è¼Ó È®ÀåµÇ°í 6GÀÇ ºñÀüÀÌ ±¸Ã¼È­µÊ¿¡ µû¶ó ±¤ Æ®·£½Ã¹ö´Â ¹«¼± ³×Æ®¿öÅ©ÀÇ ÁøÈ­ÀÇ Áß½ÉÀÌ µÉ °ÍÀÔ´Ï´Ù. ¹«¼± ³×Æ®¿öÅ© ÁøÈ­ÀÇ Áß½ÉÀÌ µÉ °ÍÀ̸ç, ¹Ì·¡ÀÇ °í¼Ó ´ë¿ë·® ³×Æ®¿öÅ©¸¦ Áö¿øÇÒ °ÍÀÔ´Ï´Ù.

±¤ Æ®·£½Ã¹ö ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

±¤ Æ®·£½Ã¹ö ½ÃÀåÀÇ ¼ºÀåÀº µ¥ÀÌÅͼ¾ÅÍÀÇ È®Àå, 5G ³×Æ®¿öÅ©ÀÇ ±¸Ãà, Åë½Å ¹× ±â¾÷ ³×Æ®¿öÅ©ÀÇ µ¥ÀÌÅÍ ¼Óµµ Áõ°¡ µî ¸î °¡Áö Áß¿äÇÑ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ¼­ºñ½º¿Í ½ºÆ®¸®¹Ö ÄÁÅÙÃ÷¿¡ ´ëÇÑ ¼ö¿ä·Î ÀÎÇØ Àü ¼¼°è¿¡¼­ µ¥ÀÌÅͼ¾ÅÍ °Ç¼³ÀÌ Æø¹ßÀûÀ¸·Î Áõ°¡Çϰí ÀÖÀ¸¸ç, ƯÈ÷ ¹æ´ëÇÑ µ¥ÀÌÅÍ È帧À» °ü¸®Çϱâ À§ÇØ ±¤¹üÀ§ÇÏ°í ºü¸¥ ¿¬°á¼ºÀ» ÇÊ¿ä·Î ÇÏ´Â ÇÏÀÌÆÛ½ºÄÉÀÏ ½Ã¼³ÀÇ °Ç¼³ÀÌ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ±¤ Æ®·£½Ã¹ö´Â ÀÌ·¯ÇÑ È¯°æ¿¡¼­ ÇʼöÀûÀÎ ¿ä¼Ò·Î, µ¥ÀÌÅͼ¾ÅͰ¡ ¿¡³ÊÁö È¿À²¼º°ú ºñ¿ë °ü¸®¸¦ À¯ÁöÇϸ鼭 Áõ°¡ÇÏ´Â ¼ö¿ä¿¡ ´ëÀÀÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ°ú ¿§Áö ÀÎÇÁ¶ó·Î ÀÎÇØ µ¥ÀÌÅͼ¾ÅͰ¡ °è¼Ó È®ÀåµÊ¿¡ µû¶ó ´ë¿ë·® ÀúÁö¿¬ µ¥ÀÌÅÍ Àü¼ÛÀ» Áö¿øÇÏ´Â ±¤ Æ®·£½Ã¹ö ½ÃÀåÀº ¾ÕÀ¸·Îµµ °è¼Ó È®´ëµÉ °ÍÀÔ´Ï´Ù.

5G ³×Æ®¿öÅ©ÀÇ Àü ¼¼°è È®»êÀº ±¤ Æ®·£½Ã¹öÀÇ Å« ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ±¤ Æ®·£½Ã¹ö´Â 5GÀÇ µ¥ÀÌÅÍ Áý¾àÀû ¿ëµµ¸¦ Áö¿øÇÏ´Â µ¥ ÇʼöÀûÀÎ °í¼Ó ¹éȦ ¿¬°áÀ» Á¦°øÇÕ´Ï´Ù. ±¤ Æ®·£½Ã¹ö´Â 5G ³×Æ®¿öÅ©¿¡¼­ ¿ø°ÝÀÇ·á, ÀÚÀ²ÁÖÇàÂ÷, ½º¸¶Æ® ½ÃƼ ÀÎÇÁ¶ó µî ½Ç½Ã°£ ¿ëµµ¿¡ ÇÊ¿äÇÑ ¼Óµµ¿Í ½Å·Ú¼ºÀ» 5G ³×Æ®¿öÅ©¿¡¼­ ±¸ÇöÇϸç, 5G ¾ÆÅ°ÅØÃ³¿¡ ÇʼöÀûÀÎ ½º¸ô¼¿(small cell) ¹èÆ÷¸¦ ÅëÇØ °í¹Ðµµ·Î ¹èÄ¡µÈ ³×Æ®¿öÅ© ³ëµå °£ Åë½ÅÀ» ÃËÁøÇÏ´Â ±¤¼¶À¯ ¿¬°á Æ®·£½Ã¹ö¸¦ Á¦°øÇÕ´Ï´Ù. 5G°¡ È®»êµÇ°í ´õ ºü¸£°í ¾ÈÁ¤ÀûÀÎ ¸ð¹ÙÀÏ ³×Æ®¿öÅ©¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó ±¤ Æ®·£½Ã¹ö´Â ÀÌ·¯ÇÑ ¿ä±¸¸¦ ÃæÁ·½ÃŰ´Â µ¥ ÇʼöÀûÀÎ ¿ªÇÒÀ» ¼öÇàÇÏ¿© ½ÃÀå ¼ºÀåÀ» Áö¼ÓÇÒ °ÍÀÔ´Ï´Ù.

µ¥ÀÌÅÍ ¼Óµµ Áõ°¡ Ãß¼¼, ƯÈ÷ 400G ¹× 800G Æ®·£½Ã¹öÀÇ Ã¤Åõµ ±¤ Æ®·£½Ã¹ö ½ÃÀåÀ» ¹ßÀü½Ã۰í ÀÖ½À´Ï´Ù. Åë½Å »ç¾÷ÀÚ¿Í µ¥ÀÌÅͼ¾ÅÍ´Â AI, IoT ¹× ±âŸ ´ë¿ªÆøÀ» ¸¹ÀÌ »ç¿ëÇÏ´Â ¿ëµµ¿¡¼­ ¹ß»ýÇÏ´Â Æ®·¡ÇÈ Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇØ ÀÌ·¯ÇÑ °í¼Ó µ¥ÀÌÅÍ ¼Óµµ¸¦ Áö¿øÇϵµ·Ï ³×Æ®¿öÅ©¸¦ ¾÷±×·¹À̵åÇϰí ÀÖ½À´Ï´Ù. Àå°Å¸®¿¡¼­ È¿À²ÀûÀÎ µ¥ÀÌÅÍ Àü¼ÛÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ÄÚÈ÷·±Æ® ¿ÉƼÄà ±â¼úÀÇ Ã¤ÅÃÀº ¼º´ÉÀ» Çâ»ó½ÃŰ¸é¼­ ³×Æ®¿öÅ© ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ´Â ÄÚÈ÷·±Æ® ¿ÉƼÄà ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Á¶Á÷ÀÌ ´õ ³ôÀº ¼öÁØÀÇ ´ë¿ë·® ³×Æ®¿öÅ©·Î ÀüȯÇÔ¿¡ µû¶ó ´õ ³ôÀº µ¥ÀÌÅÍ Àü¼Û·üÀ» Áö¿øÇÒ ¼ö ÀÖ´Â ±¤ Æ®·£½Ã¹ö¿¡ ´ëÇÑ ¼ö¿ä´Â ²ÙÁØÈ÷ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ÀÌ´Â ¼¼°è Åë½Å ³×Æ®¿öÅ©ÀÇ Áö¼ÓÀûÀÎ È®Àå¿¡ ÀÖÀ¸¸ç, ±¤ Æ®·£½Ã¹öÀÇ Á߿伺À» °­Á¶ÇÕ´Ï´Ù.

ºÎ¹®

¼¶À¯ À¯Çü(½Ì±Û ¸ðµå, ¸ÖƼ ¸ðµå), µ¥ÀÌÅÍ ·¹ÀÌÆ®(10Gbps ¹Ì¸¸, 10Gbps-40Gbps, 41 Gbps-100Gbps, 100Gbps ÀÌ»ó), ¾ÖÇø®ÄÉÀ̼Ç(µ¥ÀÌÅͼ¾ÅÍ, Åë½Å, ±â¾÷)

Á¶»ç ´ë»ó ±â¾÷ÀÇ ¿¹(ÁÖ¸ñ 18»ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå °³¿ä

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

KSA
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Optical Transceivers Market to Reach US$30.1 Billion by 2030

The global market for Optical Transceivers estimated at US$11.7 Billion in the year 2023, is expected to reach US$30.1 Billion by 2030, growing at a CAGR of 14.4% over the analysis period 2023-2030. Single-Mode Fiber, one of the segments analyzed in the report, is expected to record a 11.3% CAGR and reach US$15.4 Billion by the end of the analysis period. Growth in the Multimode Fiber segment is estimated at 18.6% CAGR over the analysis period.

The U.S. Market is Estimated at US$3.0 Billion While China is Forecast to Grow at 18.4% CAGR

The Optical Transceivers market in the U.S. is estimated at US$3.0 Billion in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$7.3 Billion by the year 2030 trailing a CAGR of 18.4% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 10.1% and 11.8% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 10.8% CAGR.

Global Optical Transceivers Market - Key Trends & Drivers Summarized

Why Are Optical Transceivers Vital for Modern Communication Networks?

Optical transceivers have become foundational components in modern communication networks, enabling the high-speed data transmission required to support today’s data-intensive applications. These devices convert electrical signals to optical signals and vice versa, allowing data to travel long distances over fiber optic cables with minimal loss, interference, and latency. As data consumption grows exponentially due to cloud computing, streaming services, and the proliferation of connected devices, the demand for optical transceivers has surged. Telecommunications providers, data centers, and enterprises rely heavily on optical transceivers to enhance their network capacity and meet user expectations for fast and reliable connectivity. The migration to 5G networks has further intensified the need for advanced transceiver technologies, as 5G requires substantial backhaul capacity to handle the massive data traffic generated by high-bandwidth services like video streaming, gaming, and IoT applications. Optical transceivers play a critical role in making this high-speed, high-capacity data transmission possible, supporting the backbone of modern digital communication infrastructure.

The need for high-performance optical transceivers is particularly pronounced in data centers, where they enable the fast, efficient data transfer required for cloud computing and storage services. Data centers house vast amounts of data and process enormous volumes of traffic, necessitating rapid, low-latency connectivity solutions. Optical transceivers provide the scalability needed to connect racks, rows, and clusters of servers while minimizing energy consumption, which is crucial for managing the operational costs and environmental impact of these facilities. With the rise of edge computing, where data is processed closer to the source to reduce latency, optical transceivers are also essential in enabling high-speed data transmission in distributed data centers, effectively linking central data hubs with peripheral sites. This scalability and adaptability make optical transceivers indispensable in the cloud and data center industry, facilitating rapid data exchange and enabling efficient management of increasingly complex networks.

Additionally, the increasing focus on network virtualization and software-defined networking (SDN) in both telecommunications and enterprise networks has highlighted the importance of optical transceivers in supporting dynamic, flexible infrastructure. Virtualized networks allow for rapid provisioning and reconfiguration, but they rely on robust underlying hardware that can handle substantial data loads. Optical transceivers enable these virtualized and SDN environments by providing flexible and modular connectivity options that support various data rates, distances, and interfaces. As industries continue to adopt virtualized network models to improve scalability and agility, the demand for adaptable optical transceivers grows, underscoring their critical role in enabling future-ready network infrastructure.

How Is the Shift to Higher Data Rates Shaping the Optical Transceiver Market?

The shift toward higher data rates in network infrastructure is a significant driver in the optical transceiver market, with growing demand for 100G, 400G, and even 800G transceivers to support increasing data traffic. The push for higher data rates is fueled by rising consumer expectations for faster internet speeds, as well as by technological advancements that require substantial bandwidth, such as artificial intelligence (AI), machine learning (ML), and the Internet of Things (IoT). The 100G transceivers, once the industry standard, are now being rapidly augmented by 400G and higher-speed transceivers to manage the data requirements of hyperscale data centers and metropolitan networks. These transceivers can process more data per second, improving network performance and enabling greater capacity in the same physical infrastructure. As data rates continue to increase, optical transceivers are evolving to meet these requirements, offering higher performance while maintaining energy efficiency and reducing latency.

In hyperscale data centers, which serve the vast data needs of cloud giants like Amazon, Google, and Microsoft, high-speed optical transceivers have become essential for efficient network management. With these facilities processing unprecedented data volumes, 400G and 800G transceivers allow data center operators to optimize space and power usage while meeting growing traffic demands. These high-capacity transceivers support dense wave division multiplexing (DWDM) and coarse wave division multiplexing (CWDM) technologies, which allow multiple data channels to share the same fiber, significantly increasing capacity without additional infrastructure. As data centers strive to keep pace with demand while controlling operational costs, high-speed transceivers have become critical in supporting the scaling of infrastructure necessary to handle exponential data growth.

Moreover, advancements in coherent optical technology are enabling even faster data transmission over long distances, further shaping the high-speed transceiver market. Coherent optical technology allows transceivers to process complex signals with greater spectral efficiency, which is particularly valuable for long-haul and metro networks that connect data centers, cities, and even continents. By increasing the amount of data that can be transmitted over a single wavelength, coherent optics make it possible to achieve 400G and higher speeds over extensive distances without the need for regeneration or amplification, which reduces costs and enhances network efficiency. This capability is crucial for telecommunications providers upgrading their backbone networks to support higher bandwidth requirements, and as coherent optical technology advances, it is likely to spur continued growth and innovation within the optical transceiver market.

What Role Do Optical Transceivers Play in 5G and Beyond?

Optical transceivers are integral to the successful deployment of 5G networks and are expected to play an even more critical role as 6G development advances. As mobile networks transition to 5G, there is an unprecedented demand for backhaul infrastructure that can handle high data rates and provide low-latency connections between base stations and the core network. Optical transceivers, especially those capable of high-speed data transmission over long distances, provide the robust and reliable connectivity required to support 5G’s high bandwidth and ultra-reliable low latency characteristics. In 5G networks, transceivers are widely used to connect various network segments, including the radio access network (RAN), transport network, and core network, enabling seamless data transfer that is crucial for high-speed applications such as augmented reality (AR), virtual reality (VR), and real-time IoT services.

Furthermore, the small cell architecture in 5G networks, which involves a dense network of base stations to provide localized, high-capacity coverage, relies heavily on optical transceivers for inter-cell connectivity. Small cells are essential for achieving the high data rates and coverage density required by 5G, but they also demand extensive fiber infrastructure to connect each cell back to the core network. Optical transceivers facilitate this connectivity, enabling data to be transmitted efficiently across numerous small cells without signal degradation. As mobile networks expand their 5G footprint, especially in urban and suburban areas, the demand for optical transceivers will continue to rise, driven by the need for a high-capacity, low-latency backhaul network that supports a growing array of 5G-enabled devices and applications.

Looking toward the future, optical transceivers will be critical in enabling the infrastructure required for 6G networks, which promise even higher data rates, faster speeds, and wider coverage than 5G. 6G is anticipated to support advanced applications such as holographic communication, digital twins, and pervasive AI, which will necessitate massive bandwidth and ultra-low latency. Optical transceivers are expected to evolve to handle terabit-per-second data rates, supporting next-generation infrastructure with coherent optical technology, wavelength division multiplexing, and potentially even quantum communication capabilities. As 5G continues to expand and the vision for 6G takes shape, optical transceivers will remain at the heart of wireless network evolution, supporting the high-speed, high-capacity networks of the future.

What Is Fueling the Growth in the Optical Transceiver Market?

The growth in the optical transceiver market is driven by several key factors, including the expansion of data centers, the roll-out of 5G networks, and the shift toward higher data rates in telecommunications and enterprise networks. The demand for cloud services and streaming content has led to an explosion in data center construction worldwide, particularly hyperscale facilities that require extensive, high-speed connectivity to manage massive data flows. Optical transceivers are indispensable in these environments, enabling data centers to meet escalating demands while maintaining energy efficiency and cost control. As data centers continue to expand, driven by cloud computing and edge infrastructure, the market for optical transceivers that can support high-capacity, low-latency data transfer will continue to grow.

The ongoing global deployment of 5G networks is another significant driver for optical transceivers, which provide the crucial high-speed backhaul connections necessary to support 5G’s data-intensive applications. Optical transceivers enable 5G networks to achieve the required speed and reliability for real-time applications like remote healthcare, autonomous vehicles, and smart city infrastructure. Small cell deployments, an essential part of 5G architecture, further increase the need for fiber-connected transceivers to facilitate communication across densely packed network nodes. As 5G roll-outs progress and the demand for faster, more reliable mobile networks intensifies, optical transceivers will play an integral role in meeting these requirements, sustaining market growth.

The trend toward higher data rates, particularly the adoption of 400G and 800G transceivers, is also propelling the optical transceiver market forward. Telecommunications providers and data centers are upgrading their networks to support these high data rates to manage the growing traffic generated by AI, IoT, and other bandwidth-heavy applications. The adoption of coherent optical technology, which enables efficient data transmission over long distances, is further driving demand as it reduces network costs while enhancing performance. With organizations moving toward more advanced, high-capacity networks, the demand for optical transceivers capable of supporting these higher data rates is expected to increase steadily, underscoring their importance in the ongoing expansion of global communication networks.

SCOPE OF STUDY:

The report analyzes the Optical Transceivers market in terms of US$ Million by the following Application; Data Rate; Fiber Type, and Geographic Regions/Countries:

Segments:

Fiber Type (Single-Mode, Multimode); Data Rate (Less than 10 Gbps, 10 Gbps to 40 Gbps, 41 Gbps to 100 Gbps, More than 100 Gbps); Application (Data Center, Telecommunication, Enterprise)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 18 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â