¼¼°èÀÇ ±¤ÇÐ ÀüÀÓ»ó À̹Ì¡ ½ÃÀå
Optical Preclinical Imaging
»óǰÄÚµå : 1594892
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 11¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 93 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,056,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,169,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

±¤ÇÐ ÀüÀÓ»ó À̹Ì¡ ¼¼°è ½ÃÀå ±Ô¸ð´Â 2030³â±îÁö 9¾ï 3,690¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î Àü¸Á

2023³â 6¾ï 2,740¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ±¤ÇÐ ÀüÀÓ»ó À̹Ì¡ ¼¼°è ½ÃÀåÀº 2030³â¿¡´Â 9¾ï 3,690¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2023-2030³â µ¿¾È 5.9%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ »ý¹°¹ß±¤/Çü±¤ À̹Ì¡ ½Ã½ºÅÛÀº CAGR 7.0%¸¦ ±â·ÏÇÏ¿© ºÐ¼® ±â°£ Á¾·á ½ÃÁ¡¿¡ 5¾ï 3,690¸¸ ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. µ¶¸³Çü Çü±¤ À̹Ì¡ ½Ã½ºÅÛ ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 5.0%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 1¾ï 6,400¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 9.2%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»ó

¹Ì±¹ÀÇ ±¤ÇÐ ÀüÀÓ»ó À̹Ì¡ ½ÃÀåÀº 2023³â 1¾ï 6,400¸¸ ´Þ·¯ ±Ô¸ð·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2023-2030³âÀÇ ºÐ¼® ±â°£ µ¿¾È 9.2%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³»°í, 2030³â±îÁö 2¾ï 2,070¸¸ ´Þ·¯ ±Ô¸ð¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ª ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ µ¿¾È °¢°¢ 3.5%¿Í 4.7%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ 4.3%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.

¼¼°è ±¤ÇÐ ÀüÀÓ»ó À̹Ì¡ ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ ¿ä¾à

±¤ÇÐ ÀüÀÓ»ó À̹Ì¡Àº ¾î¶»°Ô »ý¹°ÀÇÇÐ ¿¬±¸¸¦ º¯È­½ÃÄ×À»±î?

±¤ÇÐ ÀüÀÓ»ó À̹Ì¡Àº »ý¹° ÀÇÇÐ ¿¬±¸¿¡¼­ Çõ½ÅÀûÀÎ µµ±¸·Î µîÀåÇÏ¿© °úÇÐÀÚµéÀÌ »ì¾ÆÀÖ´Â µ¿¹° ¸ðµ¨¿¡¼­ ¼¼Æ÷¿Í ºÐÀÚ °úÁ¤À» ±× ¾î´À ¶§º¸´Ù »ó¼¼ÇÏ°Ô ½Ã°¢È­ÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ±âÁ¸¿¡´Â ¿¬±¸ÀÚµéÀÌ Áúº´ÀÇ ÁøÇà°ú Ä¡·á È¿°ú¸¦ °üÂûÇϱâ À§ÇØ Ä§½ÀÀûÀÎ ¹æ¹ý¿¡ ÀÇÁ¸ÇßÁö¸¸, ±¤ÇÐ À̹Ì¡ ±â¼úÀÇ ¹ßÀüÀº ºñħ½ÀÀûÀÌ°í ½Ç½Ã°£ ÅëÂû·ÂÀ» Á¦°øÇÔÀ¸·Î½á ÀüÀÓ»ó ¿¬±¸¿¡ Çõ¸íÀ» ÀÏÀ¸Ä×½À´Ï´Ù. Çü±¤ ¹× »ý¹°¹ß±¤ À̹Ì¡°ú °°Àº ±â¼úÀ» ÅëÇØ ¿¬±¸ÀÚµéÀº ¼¼Æ÷ ¹× ÇÏÀ§ ¼¼Æ÷ ¼öÁØ¿¡¼­ »ý¹°ÇÐÀû º¯È­¸¦ ¸ð´ÏÅ͸µÇÒ ¼ö ÀÖ°Ô µÇ¾î º¹ÀâÇÑ »ý¹°ÇÐÀû ¸ÞÄ¿´ÏÁòÀ» ´õ ±íÀÌ ÀÌÇØÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ´É·ÂÀº ¾Ï ¿¬±¸¿¡ ƯÈ÷ À¯¿ëÇϸç, ºû À̹Ì¡À» ÅëÇØ ¿©·¯ ¹øÀÇ Ä§½ÀÀû ½Ã¼ú ¾øÀ̵µ Á¾¾çÀÇ ¼ºÀå, ÀüÀÌ, Ä¡·á¿¡ ´ëÇÑ ¹ÝÀÀÀ» ÃßÀûÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¬±¸ÀÚµéÀÌ µ¿ÀÏÇÑ ÇÇÇèÀÚ¸¦ ´ë»óÀ¸·Î Àå±âÀûÀÎ ¿¬±¸¸¦ ¼öÇàÇÒ ¼ö ÀÖ°Ô ÇÔÀ¸·Î½á ±¤ÇÐ À̹Ì¡Àº ½ÇÇè¿¡ ÇÊ¿äÇÑ µ¿¹°ÀÇ ¼ö¸¦ ÃÖ¼ÒÈ­ÇÏ¿© »ý¹° ÀÇÇÐ ¿¬±¸ÀÇ À±¸®Àû °í·Á»çÇ׿¡ ºÎÇÕÇÕ´Ï´Ù.

±¤ÇÐ ÀüÀÓ»ó À̹Ì¡Àº ¾Ï ¿¬±¸¸¦ °­È­ÇÏ´Â °Í ¿Ü¿¡µµ ¸é¿ªÇÐ, ½Å°æ°úÇÐ, °¨¿°¼º Áúȯ ¿¬±¸¸¦ ¹ßÀü½ÃÄѿԽÀ´Ï´Ù. ¸é¿ª¼¼Æ÷ÀÇ °Åµ¿°ú º´¿øÃ¼¿Í ¼÷ÁÖÀÇ »óÈ£ÀÛ¿ëÀ» ½Ç½Ã°£À¸·Î ½Ã°¢È­ÇÒ ¼ö ÀÖ´Â ´É·ÂÀº »õ·Î¿î Ä¡·á¹ýÀ» ¹ß°ßÇÒ ¼ö ÀÖ´Â Áß¿äÇÑ µ¥ÀÌÅ͸¦ Á¦°øÇÕ´Ï´Ù. ¿¹¸¦ µé¾î, Çü±¤ À̹Ì¡Àº °¨¿°À̳ª Á¾¾ç¿¡ ¹ÝÀÀÇÏ´Â ¸é¿ª¼¼Æ÷¸¦ ÃßÀûÇÒ ¼ö ÀÖ¾î Ä¡·á °á°ú¸¦ °³¼±Çϱâ À§ÇØ ¸é¿ª¹ÝÀÀÀ» ¾î¶»°Ô Á¶ÀýÇÒ ¼ö ÀÖ´ÂÁö¿¡ ´ëÇÑ ÅëÂû·ÂÀ» Á¦°øÇÕ´Ï´Ù. ¸¶Âù°¡Áö·Î, ±¤ÇÐ À̹Ì¡ ±â¼úÀº ½Å°æ°úÇÐ ¿¬±¸¿¡¼­ ½Å°æ Ȱµ¿°ú ³ú ±â´ÉÀ» ¸ð´ÏÅ͸µÇÏ´Â µ¥ µµ¿òÀÌ µÇ°í ÀÖ½À´Ï´Ù. Áúº´ ¸ðµ¨¿¡¼­ ´º·±ÀÇ Àü´Þ°ú ÅðÈ­¸¦ ½Ã°¢È­ÇÔÀ¸·Î½á ¿¬±¸ÀÚµéÀº ¾ËÃ÷ÇÏÀ̸Ӻ´À̳ª ÆÄŲ½¼º´°ú °°Àº ½Å°æ ÅðÇ༺ Áúȯ¿¡ ´ëÇÑ ÀÌÇØ¸¦ ³ôÀ̰í Ç¥Àû Ä¡·áÀÇ ±æÀ» ¿­¾îÁÙ ¼ö ÀÖ½À´Ï´Ù. ÀÌó·³ ±¤ÇÐ ÀüÀÓ»ó À̹Ì¡Àº Çö´ë »ý¹°ÀÇÇÐ ¿¬±¸ÀÇ ÃÖÀü¼±¿¡¼­ ´Ù¾çÇÑ º´Å»ý¸®¸¦ ÀÌÇØÇÏ´Â µ¥ ÇʼöÀûÀÎ µµ±¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

¶ÇÇÑ, ±¤ÇÐ À̹Ì¡°ú MRI ¹× CT¿Í °°Àº ´Ù¸¥ À̹Ì¡ ±â¼úÀ» °áÇÕÇÑ ¸ÖƼ¸ð´Þ À̹Ì¡ ½Ã½ºÅÛÀÇ °³¹ß·Î ÀüÀÓ»ó ¿¬±¸ÀÇ ¿ª·®ÀÌ ´õ¿í Çâ»óµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº »ý¹°ÇÐÀû ÅëÂû·ÂÀÇ Á¤È®¼º°ú ±íÀ̸¦ ³ôÀÌ´Â º¸¿ÏÀûÀÎ µ¥ÀÌÅ͸¦ Á¦°øÇÕ´Ï´Ù. ¿¹¸¦ µé¾î, ±¤ÇÐ À̹Ì¡Àº ƯÁ¤ ¹ÙÀÌ¿À¸¶Ä¿¸¦ °¨ÁöÇÏ´Â ³ôÀº ¹Î°¨µµ¸¦ Á¦°øÇÏ´Â ¹Ý¸é, CT¿Í MRI´Â ÀÌ·¯ÇÑ °á°ú¸¦ ÇÇÇèÀÚÀÇ ÇØºÎÇÐÀû Ʋ ¾È¿¡¼­ ¸Æ¶ôÈ­ÇÒ ¼ö ÀÖ´Â ±¸Á¶Àû Á¤º¸¸¦ Ãß°¡ÇÕ´Ï´Ù. ÀÌ·¸°Ô ±â´ÉÀû µ¥ÀÌÅÍ¿Í ÇØºÎÇÐÀû µ¥ÀÌÅ͸¦ ÅëÇÕÇÔÀ¸·Î½á ¿¬±¸ÀÚµéÀº Áúº´ÀÇ ÁøÇà°ú Ä¡·á¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ ´ëÇÑ º¸´Ù Á¾ÇÕÀûÀÎ À̹ÌÁö¸¦ ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù. ¸ÖƼ¸ð´Þ À̹Ì¡À» ÅëÇØ ±¤ÇÐ ÀüÀÓ»ó À̹Ì¡Àº »õ·Î¿î ¿µ¿ªÀ¸·Î ³ª¾Æ°¡°í ÀÖÀ¸¸ç, ÀüÀÓ»ó Áö½Ä°ú ÀÓ»ó Àû¿ë »çÀÌÀÇ °£±ØÀ» ¸Þ¿ì´Â °ÍÀ» ¸ñÇ¥·Î ÇÏ´Â Áß°³¿¬±¸¿¡¼­ ¸Å¿ì Áß¿äÇÑ ±â¼ú·Î¼­ ±× ¿ªÇÒÀ» È®°íÈ÷ Çϰí ÀÖ½À´Ï´Ù.

±¤ÇÐ À̹Ì¡ÀÌ ÀǾàǰ °³¹ß¿¡ ¼±È£µÇ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî¿ä?

±¤ÇÐ ÀüÀÓ»ó À̹Ì¡Àº Á¦¾àȸ»ç°¡ ¾à¹° Èĺ¸¹°ÁúÀÇ È¿´É, ºÐÆ÷ ¹× ¾ÈÀü¼ºÀ» »ýü ³»¿¡¼­ ¹Î°¨ÇÏ°Ô Æò°¡ÇÒ ¼ö ÀÖ°Ô ÇÔÀ¸·Î½á ÀǾàǰ °³¹ß¿¡¼­ ¼±È£µÇ´Â ±â¼úÀÌ µÇ¾ú½À´Ï´Ù. ÀÌ ºñħ½ÀÀû ±â¼úÀº ½Å¾à °³¹ß ¹× ÀüÀÓ»ó½ÃÇè¿¡¼­ º¸´Ù ½Å¼ÓÇÏ°í ºñ¿ë È¿À²ÀûÀÎ ¹æ¹ýÀ» Á¦°øÇÏ¿© »õ·Î¿î Ä¡·á¹ýÀ» ½ÇÇè½Ç¿¡¼­ ÀÓ»ó½ÃÇèÀ¸·Î °¡Á®°¡´Â ½Ã°£À» Å©°Ô ´ÜÃà½Ãŵ´Ï´Ù. Çü±¤ ¹× »ý¹°¹ß±¤ À̹Ì¡Àº ¾à¹°À̳ª »ý¹°ÇÐÀû ¸¶Ä¿¿¡ ƯÁ¤ Çü±¤ ¶Ç´Â ¹ß±¤ ÇÁ·Îºê¸¦ ű×ÇÏ¿© Ç¥Àû ¼¼Æ÷³ª ´Ü¹éÁú°ú »óÈ£ÀÛ¿ëÇÒ ¶§ ¹ß±¤Çϵµ·Ï ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ½ÅÈ£´Â ¾à¹°ÀÌ Æ¯Á¤ »ý¹°ÇÐÀû Ç¥Àû°ú ¾î¶»°Ô »óÈ£ÀÛ¿ëÇÏ´ÂÁö¿¡ ´ëÇÑ ½Ç½Ã°£ Á¤º¸¸¦ Á¦°øÇÏ¿© Ä¡·á È¿°ú¸¦ Æò°¡Çϰí ÀáÀçÀûÀÎ ºÎÀÛ¿ëÀ» ½±°Ô ÆÄ¾ÇÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ±¤ À̹Ì¡À» ÅëÇØ ¿¬±¸ÀÚµéÀº ¿©·¯ ¾à¹° È常¦ ½Å¼ÓÇÏ°Ô ½ºÅ©¸®´×Çϰí, À¯¸ÁÇÑ È­ÇÕ¹°À» È¿À²ÀûÀ¸·Î ¼±º°Çϰí, ºñ¿ëÀÌ ¸¹ÀÌ µå´Â ÀÓ»ó ´Ü°è·Î ³Ñ¾î°¡±â Àü¿¡ ¿ë·®°ú Àü´Þ ¹æ¹ýÀ» °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù.

±¤ À̹Ì¡Àº ¾à¹°ÀÌ Ã¼³»¿¡¼­ ¾î¶»°Ô À̵¿ÇÏ°í ¾î¶² ¿µÇâÀ» ¹ÌÄ¡´ÂÁö ÃßÀûÇÏ´Â ¾àµ¿ÇÐ ¹× ¾à·ÂÇÐ ¿¬±¸¿¡µµ À¯¿ëÇÏ°Ô È°¿ëµÇ°í ÀÖ½À´Ï´Ù. Çü±¤ ¸¶Ä¿¸¦ ÅëÇØ °úÇÐÀÚµéÀº »ýü ³» ¾à¹°ÀÇ Èí¼ö, ºÐÆ÷, ´ë»ç ¹× ¹è¼³(ADME) °úÁ¤À» ½Ã°¢È­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ µ¥ÀÌÅÍ´Â ÃÖÀûÀÇ Åõ¿© ¿ä¹ýÀ» °áÁ¤ÇÏ°í ¾à¹°ÀÇ È­ÇÐÀû Ư¼ºÀÌ »ýü ÀÌ¿ë·ü°ú È¿´É¿¡ ¾î¶² ¿µÇâÀ» ¹ÌÄ¡´ÂÁö ÀÌÇØÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ±¤ÇÐ À̹Ì¡ÀÇ ½Ç½Ã°£ Çǵå¹éÀº Á¤È®ÇÑ Å¸°ÙÆÃ°ú ¸ð´ÏÅ͸µÀÌ ÇÊ¿äÇÑ Ç×ü ¹× À¯ÀüÀÚ Ä¡·áÁ¦¿Í °°Àº »ý¹°ÇÐÀû Á¦Á¦ÀÇ °Åµ¿À» ÀÌÇØÇÏ´Â µ¥ ƯÈ÷ À¯¿ëÇÕ´Ï´Ù. ¶ÇÇÑ, ±¤ÇÐ À̹Ì¡Àº ½ÅüÀÇ Æ¯Á¤ ºÎÀ§¿¡¼­ ¾à¹°ÀÇ »ýü ³» ºÐÆ÷¸¦ ÃøÁ¤ÇÒ ¼ö ÀÖ¾î ¿¬±¸ÀÚµéÀÌ ¾à¹°ÀÌ µ¶¼ºÀ» À¯¹ßÇÒ ¼ö ÀÖ´Â ºñÇ¥Àû Àå±â¿¡ ÃàÀûµÇÁö ¾Ê°í ÀǵµÇÑ Ç¥Àû¿¡ È¿°úÀûÀ¸·Î µµ´ÞÇÏ´ÂÁö ¿©ºÎ¸¦ ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼¼ºÎ ¼öÁØÀº ´Ù¸¥ À̹Ì¡ ±â¼ú·Î´Â ´Þ¼ºÇϱ⠾î·Á¿î ¼öÁØÀ¸·Î, ÀǾàǰ °³¹ß¿¡¼­ ±¤ÇÐ À̹Ì¡ÀÇ °íÀ¯ ÇÑ ÀÌÁ¡À» °­Á¶ÇÕ´Ï´Ù.

±¤ÇÐ ÀüÀÓ»ó À̹Ì¡Àº ¾Ï, °¨¿°¼º Áúȯ, ´ë»ç¼º Áúȯ µî ´Ù¾çÇÑ Áúº´ ¸ðµ¨¿¡ À¯¿¬ÇÏ°Ô ´ëÀÀÇÒ ¼ö ÀÖ¾î Áß°³¿¬±¸¿¡ ÇʼöÀûÀÎ µµ±¸°¡ µÇ°í ÀÖ½À´Ï´Ù. ±¤ÇÐ À̹Ì¡À» ÅëÇØ Á¦¾àȸ»ç´Â ¿¬±¸ ´ë»ó Áúȯ°ú °ü·ÃµÈ ƯÁ¤ ¸¶Ä¿¸¦ ¹ßÇöÇÏ´Â À¯ÀüÀÚ º¯Çü »ý¹°À» »ç¿ëÇÏ¿© ´Ù¾çÇÑ º´Å»ý¸® ¸ðµ¨¿¡¼­ ¾à¹° Èĺ¸¹°ÁúÀ» ¾ö°ÝÇÏ°Ô Å×½ºÆ®ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ´ë»ç Àå¾Ö¸¦ ¿¬±¸ÇÏ´Â ¿¬±¸ÀÚµéÀº ±¤À̹Ì¡À» ÅëÇØ Æ÷µµ´ç ¼·Ãë¿Í ÁöÁú ´ë»çÀÇ º¯È­¸¦ ½Ç½Ã°£À¸·Î °üÂûÇÒ ¼ö ÀÖ¾î ½Å¾àÀÇ Ä¡·á È¿°ú¿¡ ´ëÇÑ ±ÍÁßÇÑ ÅëÂû·ÂÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Áúº´ ¸ðµ¨°ú ¿¬±¸ ¸ñÀû¿¡ ´ëÇÑ ±¤ÇÐ À̹Ì¡ÀÇ ÀûÀÀ¼ºÀº ¿¬±¸ÀÚµéÀÌ È¿°úÀûÀÌ°í ¾ÈÀüÇÑ Ä¡·á¹ý ¹ß°ßÀ» °¡¼ÓÈ­ÇÒ ¼ö ÀÖ´Â µ¥ÀÌÅÍ ±â¹Ý ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖ°Ô ÇØÁÖ¸ç, R&D ÆÄÀÌÇÁ¶óÀο¡¼­ ±¤ÇÐ À̹Ì¡ÀÇ Áß¿äÇÑ ¿ªÇÒÀ» °­Á¶ÇÕ´Ï´Ù.

±¤ÇÐ ÀüÀÓ»ó À̹Ì¡Àº ¾î¶»°Ô Á¤¹ÐÀǷḦ ¹ßÀü½Ã۰í Àִ°¡?

°³°³ÀÎÀÇ È¯ÀÚ Æ¯¼º¿¡ µû¶ó ¸ÂÃãÇü Ä¡·á¸¦ ¸ñÇ¥·Î ÇÏ´Â Á¤¹ÐÀÇ·á ºÐ¾ß´Â ±¤ÇÐ ÀüÀÓ»ó À̹Ì¡ÀÇ ¹ßÀüÀ¸·Î Å« ÇýÅÃÀ» ´©¸®°í ÀÖ½À´Ï´Ù. ±¤ÇÐ À̹Ì¡Àº ¸Å¿ì »ó¼¼ÇÑ ºÐÀÚ ¹× ¼¼Æ÷¿¡ ´ëÇÑ ÅëÂû·ÂÀ» Á¦°øÇÔÀ¸·Î½á ¿¬±¸ÀÚµéÀÌ Áúº´ÀÇ ±Ùº»ÀûÀÎ ¸ÞÄ¿´ÏÁòÀ» °³º°È­µÈ ¼öÁØ¿¡¼­ ÀÌÇØÇÒ ¼ö ÀÖ°Ô ÇØÁÖ¸ç, À̴ ǥÀû Ä¡·á¹ý °³¹ß¿¡ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ ´É·ÂÀº ƯÈ÷ Á¾¾çÇп¡¼­ ȯÀÚ¸¶´Ù Ä¡·á¿¡ ´ëÇÑ ¹ÝÀÀÀÌ ´Ù¸¥ ÀÌÁúÀûÀÎ Á¾¾çÇп¡¼­ ƯÈ÷ À¯¿ëÇÕ´Ï´Ù. ±¤ÇÐ À̹Ì¡À» ÅëÇØ ¿¬±¸ÀÚµéÀº »ì¾ÆÀÖ´Â ¸ðµ¨¿¡¼­ Á¾¾çÀÇ ºÐÀÚ ÇÁ·ÎÆÄÀÏÀ» ºÐ¼®ÇÏ¿© ¾î¶² ȯÀÚ°¡ ƯÁ¤ Ä¡·á¿¡ ¹ÝÀÀÇÏ´ÂÁö¸¦ ³ªÅ¸³»´Â ¹ÙÀÌ¿À¸¶Ä¿¸¦ ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¤¹Ð¼º Áß½ÉÀÇ Á¢±Ù ¹æ½ÄÀº Ä¡·á °èȹÀ» ¸ÂÃãÈ­ÇÏ¿© ºÒÇÊ¿äÇÑ ºÎÀÛ¿ëÀ» ÃÖ¼ÒÈ­Çϸ鼭 Ä¡·á °á°ú¸¦ ±Ø´ëÈ­ÇÏ´Â °ÍÀÌ Á¤¹ÐÀÇ·áÀÇ ÇÙ½É ¸ñÇ¥ÀÔ´Ï´Ù.

±¤ À̹Ì¡Àº ¶ÇÇÑ Áúº´ °¨¼ö¼º ¹× Ä¡·á È¿°ú¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â À¯ÀüÀû ¿äÀÎÀ» ÀÌÇØÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¿¹¸¦ µé¾î, À¯ÀüÀÚ ÆíÁý ¿¬±¸´Â Çü±¤ ¸¶Ä¿¸¦ »ç¿ëÇÏ¿© À¯ÀüÀÚ º¯ÇüÀÇ ¿µÇâÀ» ½Ç½Ã°£À¸·Î ÃßÀûÇÏ¿© ƯÁ¤ À¯ÀüÀÚ º¯ÇüÀÌ Áúº´ÀÇ ÁøÇà°ú ¾àÈ¿¿¡ ¾î¶² ¿µÇâÀ» ¹ÌÄ¡´ÂÁö º¸¿©ÁÙ ¼ö ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ ¿¬±¸ÀÚµéÀº À¯ÀüÀÚ Ä¡·áÀÇ °¡´É¼ºÀ» Ž»öÇϰí CRISPR ±â¹Ý Ä¡·áÀÇ ¾ÈÀü¼º°ú È¿´ÉÀ» Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±¤ÇÐ À̹Ì¡À» ÅëÇØ ƯÁ¤ À¯ÀüÀÚ º¯À̰¡ ¼¼Æ÷ °æ·Î¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ½Ã°¢È­ÇÒ ¼ö Àֱ⠶§¹®¿¡ °úÇÐÀÚµéÀº Èñ±ÍÁúȯÀ̳ª º¹ÀâÇÑ ÁúȯÀÇ ÀáÀçÀû Ä¡·á Ç¥ÀûÀ» ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼öÁØÀÇ ÅëÂû·ÂÀº ȯÀÚº° À¯ÀüÀÚ ÇÁ·ÎÆÄÀϰú Áúº´ Ư¼º¿¡ µû¶ó Ä¡·á¸¦ Á¶Á¤ÇÏ´Â °ÍÀ» ¸ñÇ¥·Î ÇÏ´Â Á¤¹ÐÀǷḦ ¹ßÀü½ÃŰ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.

¸é¿ª Ä¡·á ºÐ¾ß¿¡¼­ ±¤ÇÐ ÀüÀÓ»ó À̹Ì¡Àº Á¾¾ç°ú ½Î¿ì±â À§ÇØ ½ÅüÀÇ ¸é¿ª ü°è¸¦ Ȱ¿ëÇÏ´Â ¸ÂÃãÇü ¾Ï Ä¡·á¹ýÀ» °³¹ßÇÒ ¼ö ÀÖ´Â »õ·Î¿î °¡´É¼ºÀ» ¿­¾îÁÖ¾ú½À´Ï´Ù. »ý¹° ¹ß±¤ À̹Ì¡°ú °°Àº ±¤ÇÐ À̹Ì¡ ±â¼úÀ» ÅëÇØ ¿¬±¸ÀÚµéÀº ¸é¿ª ¼¼Æ÷¿Í Á¾¾çÀÇ »óÈ£ ÀÛ¿ëÀ» °üÂûÇÏ¿© »ýü ³»¿¡¼­ ¸é¿ª ¿ä¹ýÀÌ ¾î¶»°Ô ÁøÇàµÇ´ÂÁö¿¡ ´ëÇÑ ±ÍÁßÇÑ µ¥ÀÌÅ͸¦ ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. ¸é¿ª¼¼Æ÷ÀÇ ¿òÁ÷ÀÓ°ú Ȱµ¿À» ÃßÀûÇÔÀ¸·Î½á ¿¬±¸ÀÚµéÀº ¾î¶² À¯ÇüÀÇ ¸é¿ª¼¼Æ÷°¡ ƯÁ¤ Á¾¾ç À¯ÇüÀ» Ç¥ÀûÀ¸·Î »ï´Â µ¥ °¡Àå È¿°úÀûÀÎÁö È®ÀÎÇϰí, Á¾¾çÀÌ ¾î¶»°Ô ¸é¿ª¹ÝÀÀÀ» ȸÇÇÇÏ´ÂÁö ¸ð´ÏÅ͸µÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ Á¤º¸´Â °³º° ȯÀÚÀÇ ¸é¿ª ÇÁ·ÎÆÄÀÏ¿¡ ¸Â´Â º¸´Ù È¿°úÀûÀÎ ¸é¿ª ¿ä¹ýÀ» ¼³°èÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇϸç, ÀÌ´Â Á¤¹Ð ÀÇÇÐÀÇ ¸ñÇ¥¿Íµµ ÀÏÄ¡ÇÕ´Ï´Ù. ±¤ÇÐ ÀüÀÓ»ó À̹Ì¡Àº º¹ÀâÇÑ »ý¹°ÇÐÀû ¸ÞÄ¿´ÏÁòÀ» ¹àÈ÷´Â ´É·ÂÀ» ÅëÇØ °³ÀÎ ¸ÂÃãÇü Ä¡·á¹ý °³¹ßÀ» ÃËÁøÇÒ »Ó¸¸ ¾Æ´Ï¶ó À¯Àü, ¸é¿ª ¹× Áúº´ °£ÀÇ º¹ÀâÇÑ »óÈ£ ÀÛ¿ëÀ» ÀÌÇØÇÏ´Â µ¥¿¡µµ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

±¤ÇÐ ÀüÀÓ»ó À̹Ì¡ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀϱî?

±¤ÇÐ ÀüÀÓ»ó À̹Ì¡ ½ÃÀåÀÇ ¼ºÀåÀº À̹Ì¡ ±â¼úÀÇ ¹ßÀü, ½Å¾à°³¹ß¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡, Á¤¹ÐÀÇ·áÀÇ ºÎ»ó µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÀüÀÓ»ó ¿¬±¸¿¡¼­ º¸´Ù Á¤È®ÇÏ°í ºñħ½ÀÀûÀÌ¸ç ºñ¿ë È¿À²ÀûÀÎ À̹Ì¡ ±â¼ú¿¡ ´ëÇÑ ¿ä±¸´Â ±¤ÇÐ À̹Ì¡ ½Ã½ºÅÛ, ƯÈ÷ Çü±¤, »ý¹° ¹ß±¤ ¹× ¸ÖƼ¸ð´Þ À̹Ì¡ÀÇ ±â¼ú Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀ» ÅëÇØ ¿¬±¸ÀÚµéÀº Áúº´ ¸ÞÄ¿´ÏÁò, ¾àÈ¿ ¹× ¹ÙÀÌ¿À¸¶Ä¿ ¹ßÇö¿¡ ´ëÇÑ ¸Å¿ì »ó¼¼ÇÑ ¿¬±¸¸¦ ¼öÇàÇÒ ¼ö ÀÖÀ¸¸ç, ÀÌ´Â Çмú ¿¬±¸¿Í ÀǾàǰ °³¹ßÀ» ÃËÁøÇÏ´Â Áß¿äÇÑ µ¥ÀÌÅ͸¦ Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ±¤ÇÐ À̹Ì¡ÀÇ Á¢±Ù¼º°ú ¹Î°¨µµ, ±×¸®°í ½Ç½Ã°£ Çǵå¹éÀ» Á¦°øÇÏ´Â ´É·ÂÀº ÀǾàǰ °³¹ßÀÌ Á¡Á¡ ´õ º¹ÀâÇØÁö°í µ¥ÀÌÅÍ Áß½ÉÈ­µÊ¿¡ µû¶ó Á¡Á¡ ´õ È®´ëµÇ°í ÀÖ´Â ÀüÀÓ»ó ¿¬±¸¿¡ ¸Å¿ì Áß¿äÇÑ µµ±¸°¡ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Å¾à °³¹ß ¹× Áúº´ ¿¬±¸¿¡¼­ÀÇ Ã·´Ü À̹Ì¡ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¿ä±¸´Â ±¤ÇÐ ÀüÀÓ»ó À̹Ì¡ ½ÃÀåÀ» ¹ßÀü½ÃŰ´Â Áß¿äÇÑ ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ ÃËÁø¿äÀÎÀº Á¤¹ÐÀÇ·á¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖÀ¸¸ç, ±¤ÇÐ ÀüÀÓ»ó À̹Ì¡Àº °³º° ȯÀÚ ÇÁ·ÎÆÄÀÏÀ» ±â¹ÝÀ¸·Î ÇÑ Ç¥Àû Ä¡·á¹ýÀ» °³¹ßÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. Á¤¹Ð ÀÇÇÐÀº ºÐÀÚ ¼öÁØ¿¡¼­ Áúº´À» ÀÌÇØÇÏ·Á´Â °ÍÀ̱⠶§¹®¿¡ ±¤ÇÐ À̹Ì¡Àº Áúº´ ¸ðµ¨¿¡¼­ ¼¼Æ÷¿Í À¯ÀüÀû °úÁ¤À» Á¶»çÇÏ´Â µ¥ ÇÊ¿äÇÑ µµ±¸¸¦ Á¦°øÇÏ¿© ¿¬±¸ÀÚµéÀÌ ¹ÙÀÌ¿À¸¶Ä¿¸¦ ½Äº°ÇÏ°í ±×¿¡ µû¶ó Ä¡·á¹ýÀ» Á¶Á¤ÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. »ýü ¸ðµ¨¿¡¼­ ¹ÙÀÌ¿À¸¶Ä¿ÀÇ È°¼ºÀ» ½Ã°¢È­Çϰí Á¤·®È­ÇÏ´Â ´É·ÂÀº Á¤¹ÐÀÇ·áÀÇ ¸ñÇ¥¿Í ÀÏÄ¡Çϸç, ÀüÀÓ»ó ¿¬±¸ °á°ú¸¦ °³ÀÎ ¸ÂÃãÇü Ä¡·á·Î ¿¬°áÇϱâ À§ÇØ ±¤ÇÐ À̹Ì¡ÀÌ ÇʼöÀûÀÔ´Ï´Ù. ¿¬±¸¿Í ÀÓ»ó ¸ðµÎ¿¡¼­ Á¤¹ÐÀÇ·á·ÎÀÇ Áö¼ÓÀûÀÎ ÀüȯÀº ±¤ÇÐ À̹Ì¡ ±â¼úÀÇ ¼ºÀå¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ¿¬±¸ÀÚµéÀº °³ÀÎ ¼öÁØÀÇ µ¥ÀÌÅÍ ¼öÁý ¹× ºÐ¼®À» ¿ëÀÌÇÏ°Ô ÇÏ´Â µµ±¸°¡ ÇÊ¿äÇϸç, ÀÌ´Â ±Ã±ØÀûÀ¸·Î º¸´Ù È¿°úÀûÀÌ°í °³ÀÎÈ­µÈ Ä¡·á ¿É¼ÇÀ» âÃâÇÏ´Â µ¥ µµ¿òÀÌ µÉ °ÍÀÔ´Ï´Ù.

¶ÇÇÑ, ÀüÀÓ»ó ¿¬±¸¿¡¼­ ÃÖ¼Ò Ä§½ÀÀû ±â¼ú¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ µ¿¹° »ç¿ë·®À» ÁÙÀÌ°í µ¥ÀÌÅÍÀÇ Àϰü¼ºÀ» Çâ»ó½ÃŰ´Â Á¾´ÜÀû ¿¬±¸¸¦ °¡´ÉÇÏ°Ô ÇÏ´Â ±¤ÇÐ À̹Ì¡ÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ±¤ÇÐ À̹Ì¡ÀÇ ºñħ½ÀÀû Ư¼ºÀº µ¿ÀÏÇÑ ÇÇÇèÀÚ¸¦ ´ë»óÀ¸·Î ¹Ýº¹ÀûÀÎ ÃøÁ¤¿¡ ƯÈ÷ À¯¿ëÇϸç, ´ë±Ô¸ð »ùÇà ũ±âÀÇ Çʿ伺À» ÁÙÀÌ°í µ¿¹° ¿¬±¸ÀÇ À±¸® ±âÁØ¿¡ ºÎÇÕÇÕ´Ï´Ù. Á¦¾àȸ»ç¿Í Çмú ±â°üÀº ÀüÀÓ»ó½ÃÇèÀ» ÃÖÀûÈ­Çϱâ À§ÇØ ±¤ÇÐ À̹Ì¡À» Á¡Á¡ ´õ ¸¹ÀÌ Ã¤ÅÃÇϰí ÀÖ½À´Ï´Ù. À±¸®Àû ¿¬±¸ °üÇà¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ Áö¿ø°ú È¿À²ÀûÀÎ ÀǾàǰ °³¹ß ÆÄÀÌÇÁ¶óÀÎÀÇ Çʿ伺À¸·Î ÀÎÇØ ±¤ÇÐ ÀüÀÓ»ó À̹Ì¡ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä´Â ²ÙÁØÈ÷ Áõ°¡ÇÏ¿© »ý¹° ÀÇÇÐ ¿¬±¸ÀÇ ¹ßÀüÀ» Áö¿øÇÏ°í ±¤ÇÐ À̹Ì¡ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ºÎ¹®

¾ç½Ä(»ý¹° ¹ß±¤/Çü±¤ À̹Ì¡ ½Ã½ºÅÛ, µ¶¸³Çü Çü±¤ À̹Ì¡ ½Ã½ºÅÛ, ±¤ÇÐ+X¼±/±¤ÇÐ+CT), ÃÖÁ¾ »ç¿ëÀÚ(Á¦¾à/»ý¸í°øÇÐ ±â¾÷, ¿¬±¸±â°ü, ±âŸ ÃÖÁ¾ »ç¿ëÀÚ)

Á¶»ç ´ë»ó ±â¾÷ ¿¹½Ã(ÃÑ 42°Ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Optical Preclinical Imaging Market to Reach US$936.9 Million by 2030

The global market for Optical Preclinical Imaging estimated at US$627.4 Million in the year 2023, is expected to reach US$936.9 Million by 2030, growing at a CAGR of 5.9% over the analysis period 2023-2030. Bioluminescence / Fluorescence Imaging Systems, one of the segments analyzed in the report, is expected to record a 7.0% CAGR and reach US$536.9 Million by the end of the analysis period. Growth in the Standalone Fluorescence Imaging Systems segment is estimated at 5.0% CAGR over the analysis period.

The U.S. Market is Estimated at US$164.0 Million While China is Forecast to Grow at 9.2% CAGR

The Optical Preclinical Imaging market in the U.S. is estimated at US$164.0 Million in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$220.7 Million by the year 2030 trailing a CAGR of 9.2% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 3.5% and 4.7% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 4.3% CAGR.

Global Optical Preclinical Imaging Market - Key Trends & Drivers Summarized

How Has Optical Preclinical Imaging Transformed Biomedical Research?

Optical preclinical imaging has emerged as a transformative tool in biomedical research, enabling scientists to visualize cellular and molecular processes in live animal models with unprecedented detail. Traditionally, researchers relied on invasive methods to observe disease progression and treatment efficacy, but advancements in optical imaging technology have revolutionized preclinical studies by offering non-invasive, real-time insights. Techniques such as fluorescence and bioluminescence imaging allow researchers to monitor biological changes at cellular and subcellular levels, facilitating a deeper understanding of complex biological mechanisms. This capability is especially valuable in cancer research, where optical imaging can track tumor growth, metastasis, and responses to therapies without the need for multiple invasive procedures. By allowing researchers to conduct longitudinal studies on the same subject, optical imaging minimizes the number of animals required for experiments, which aligns with ethical considerations in biomedical research.

In addition to enhancing cancer research, optical preclinical imaging has advanced studies in immunology, neuroscience, and infectious diseases. The ability to visualize immune cell behavior and pathogen-host interactions in real-time provides critical data that can drive new therapeutic discoveries. For example, fluorescence imaging can track immune cells as they respond to infections or tumors, providing insights into how immune responses could be modulated to improve treatment outcomes. Similarly, optical imaging techniques are instrumental in neuroscience research, where they are used to monitor neural activity and brain function. By visualizing how neurons communicate or degenerate in disease models, researchers can better understand neurodegenerative diseases like Alzheimer’s and Parkinson’s, paving the way for targeted therapies. Thus, optical preclinical imaging has established itself as an indispensable tool for advancing our understanding of a wide array of medical conditions, positioning it at the forefront of modern biomedical research.

Moreover, the development of multimodal imaging systems, which combine optical imaging with other imaging techniques such as MRI or CT, has further extended the capabilities of preclinical studies. These systems provide complementary data that enhance the accuracy and depth of biological insights. For instance, while optical imaging offers high sensitivity for detecting specific biomarkers, CT and MRI add structural information that contextualizes those findings within the anatomical framework of the subject. This integration of functional and anatomical data enables researchers to build a more comprehensive picture of disease progression and therapeutic impact. With multimodal imaging, optical preclinical imaging is entering new realms of sophistication, solidifying its role as a pivotal technology for translational research aimed at bridging the gap between preclinical findings and clinical applications.

What Makes Optical Imaging a Preferred Technique in Drug Development?

Optical preclinical imaging has become a preferred technique in drug development, allowing pharmaceutical companies to evaluate the efficacy, distribution, and safety of drug candidates in vivo with high sensitivity. This non-invasive technique offers a faster and more cost-effective method for drug discovery and preclinical testing, significantly reducing the time it takes to bring new treatments from the laboratory to clinical trials. In fluorescence and bioluminescence imaging, drugs or biological markers are tagged with specific fluorescent or luminescent probes that emit light when interacting with target cells or proteins. These signals provide real-time information on how drugs interact with specific biological targets, making it easier to assess therapeutic effectiveness and identify potential side effects. With optical imaging, researchers can quickly screen multiple drug candidates, streamline the selection of promising compounds, and refine dosage and delivery methods before moving into costly clinical stages.

Furthermore, optical imaging is instrumental in pharmacokinetics and pharmacodynamics studies, which track how drugs move through and affect the body. By using fluorescent markers, scientists can visualize drug absorption, distribution, metabolism, and excretion (ADME) processes within living organisms. This data is essential for determining optimal dosing regimens and understanding how a drug's chemical properties impact its bioavailability and efficacy. Optical imaging's real-time feedback is especially valuable in understanding the behavior of biologics, such as antibodies and gene therapies, which often require precise targeting and monitoring. In addition, optical imaging can measure drug biodistribution at specific sites within the body, helping researchers determine if a drug effectively reaches its intended target without accumulating in non-targeted organs, which could lead to toxicity. This level of detail is difficult to achieve with other imaging techniques, highlighting the unique advantages of optical imaging in drug development.

The flexibility of optical preclinical imaging to work across various disease models, including cancer, infectious diseases, and metabolic disorders, has made it an essential tool in translational research. Optical imaging enables pharmaceutical companies to conduct rigorous testing of drug candidates in a wide range of pathological models, often using genetically modified organisms that express specific markers relevant to the disease being studied. For instance, researchers studying metabolic disorders can use optical imaging to observe changes in glucose uptake or lipid metabolism in real-time, providing valuable insights into the therapeutic effects of new drugs. This adaptability of optical imaging across disease models and research goals underscores its vital role in the drug development pipeline, empowering researchers to make data-driven decisions that accelerate the discovery of effective and safe treatments.

How Is Optical Preclinical Imaging Advancing Precision Medicine?

The field of precision medicine, which aims to customize treatments based on individual patient characteristics, has greatly benefited from advancements in optical preclinical imaging. By providing highly detailed molecular and cellular insights, optical imaging enables researchers to understand the underlying mechanisms of diseases at a personalized level, which is essential for developing targeted therapies. This capability is particularly valuable in oncology, where the heterogeneity of tumors means that different patients respond to treatments differently. With optical imaging, researchers can analyze the molecular profile of tumors in live models, identifying biomarkers that indicate which patients may respond to specific therapies. This precision-driven approach allows for the customization of treatment plans, maximizing therapeutic outcomes while minimizing unnecessary side effects, which is the core objective of precision medicine.

Optical imaging also plays a critical role in understanding genetic factors that influence disease susceptibility and treatment responses. In gene-editing studies, for example, fluorescent markers can be used to track the effects of gene modifications in real-time, showing how certain genetic alterations impact disease progression or drug efficacy. This allows researchers to explore potential gene therapies and assess the safety and effectiveness of CRISPR-based treatments. Additionally, optical imaging can visualize how specific genetic mutations affect cellular pathways, enabling scientists to identify potential therapeutic targets for rare and complex diseases. This level of insight is essential for advancing precision medicine, where the goal is to tailor treatments based on a patient’s unique genetic profile and disease characteristics.

In the realm of immunotherapy, optical preclinical imaging has opened up new possibilities for developing personalized cancer treatments that harness the body’s immune system to fight tumors. Optical imaging techniques, such as bioluminescence imaging, allow researchers to observe immune cell interactions with tumors, providing valuable data on how immunotherapies perform within a living organism. By tracking the movement and activity of immune cells, researchers can identify which types of immune cells are most effective in targeting specific tumor types and monitor how tumors evade immune responses. This information is crucial for designing more effective immunotherapies tailored to individual patients' immune profiles, aligning with the goals of precision medicine. Through its ability to reveal intricate biological mechanisms, optical preclinical imaging is not only advancing the development of personalized treatments but also helping to unravel the complex interactions between genetics, immunity, and disease.

What Is Fueling the Growth in the Optical Preclinical Imaging Market?

The growth in the optical preclinical imaging market is driven by several factors, including advancements in imaging technology, increased investment in drug discovery, and the rise of precision medicine. The demand for more accurate, non-invasive, and cost-effective imaging techniques in preclinical studies has fueled innovation in optical imaging systems, particularly in fluorescence, bioluminescence, and multimodal imaging. These technologies allow researchers to conduct highly detailed studies on disease mechanisms, drug efficacy, and biomarker expression, providing critical data that drive both academic research and pharmaceutical development. The accessibility and sensitivity of optical imaging, combined with its ability to deliver real-time feedback, make it a valuable tool for preclinical studies, which continue to expand as drug development becomes more complex and data-driven. This need for sophisticated imaging solutions in drug discovery and disease research is a key factor propelling the optical preclinical imaging market forward.

Another significant driver is the increasing emphasis on precision medicine, where optical preclinical imaging is essential for developing targeted therapies based on individual patient profiles. As precision medicine seeks to understand diseases at a molecular level, optical imaging provides the tools necessary to study cellular and genetic processes within disease models, enabling researchers to identify biomarkers and tailor therapies accordingly. The ability to visualize and quantify biomarker activity in live models aligns with the goals of precision medicine, making optical imaging indispensable for translating preclinical findings into personalized treatments. The ongoing shift toward precision medicine in both research and clinical practice has spurred growth in optical imaging technologies, as researchers require tools that can facilitate data collection and analysis on an individual level, ultimately helping to create more effective and personalized treatment options.

Furthermore, the growing focus on minimally invasive techniques in preclinical research is driving the adoption of optical imaging, as it allows for longitudinal studies with reduced animal usage and improved data consistency. Optical imaging’s non-invasive nature is particularly valuable for conducting repeated measures on the same subject, reducing the need for large sample sizes and aligning with ethical standards in animal research. Pharmaceutical companies and academic institutions are increasingly adopting these methods to optimize their preclinical studies, as optical imaging reduces costs and enhances experimental efficiency. With continued support for ethical research practices and the need for efficient drug development pipelines, the demand for optical preclinical imaging solutions is expected to rise steadily, supporting advancements in biomedical research and driving the growth of the optical imaging market.

SCOPE OF STUDY:

The report analyzes the Optical Preclinical Imaging market in terms of US$ Thousand by the following End-Use; Modality, and Geographic Regions/Countries:

Segments:

Modality (Bioluminescence / Fluorescence Imaging Systems, Standalone Fluorescence Imaging Systems, Optical + X-Ray / Optical + CT); End-Use (Pharma & Biotech Companies, Research Institutes, Other End-Uses)

Geographic Regions/Countries:

World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; Spain; Russia; and Rest of Europe); Asia-Pacific (Australia; India; South Korea; and Rest of Asia-Pacific); Latin America (Argentina; Brazil; Mexico; and Rest of Latin America); Middle East (Iran; Israel; Saudi Arabia; United Arab Emirates; and Rest of Middle East); and Africa.

Select Competitors (Total 42 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â