¼¼°èÀÇ ¼öÀÇÇÐ ºÐÀÚÁø´Ü ½ÃÀå
Veterinary Molecular Diagnostics
»óǰÄÚµå : 1579662
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 10¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 173 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,464,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 25,393,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¼öÀÇÇÐ ºÐÀÚÁø´Ü ¼¼°è ½ÃÀå ±Ô¸ð´Â 2030³â±îÁö 9¾ï 8,420¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î Àü¸Á

2023³â 5¾ï 9,650¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼öÀÇÇÐ ºÐÀÚÁø´Ü ¼¼°è ½ÃÀåÀº 2023³âºÎÅÍ 2030³â±îÁö ¿¬Æò±Õ 7.4% ¼ºÀåÇÏ¿© 2030³â¿¡´Â 9¾ï 8,420¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ±â±â ¹× ¼ÒÇÁÆ®¿þ¾î´Â CAGR 7.2%¸¦ ±â·ÏÇÏ¿© ºÐ¼® ±â°£ Á¾·á ½ÃÁ¡¿¡ 3¾ï 4,280¸¸ ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ŰƮ ¹× ½Ã¾à ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 8.3%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 1¾ï 5,670¸¸ ´Þ·¯·Î ÃßÁ¤ ¹× ¿¹Ãø, Áß±¹Àº CAGR 11.0%·Î ¼ºÀå Àü¸Á

¹Ì±¹ÀÇ ¼öÀÇÇÐ ºÐÀÚÁø´Ü ½ÃÀåÀº 2023³â 1¾ï 5,670¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 2¾ï 3,890¸¸ ´Þ·¯ ±Ô¸ð¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2023-2030³â°£ 11.0%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ª ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ µ¿¾È °¢°¢ 3.9%¿Í 6.6%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ ¿¬Æò±Õ 4.6%ÀÇ ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼¼°è ¼öÀÇÇÐ ºÐÀÚÁø´Ü ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ »ìÆìº¸±â

¼öÀÇÇÐ ºÐÀÚÁø´ÜÇÐÀÌ µ¿¹° °Ç°­°ü¸®¿¡ Çõ¸íÀ» ÀÏÀ¸Å³ ¼ö ÀÖ´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

¼öÀÇÇÐ ºÐÀÚÁø´ÜÀº ºÐÀÚ ¼öÁØ¿¡¼­ Á¤È®ÇÏ°í ½Å¼ÓÇÏ°Ô Áúº´À» °¨ÁöÇÒ ¼ö ÀÖ°Ô ÇÔÀ¸·Î½á µ¿¹° °Ç°­ °ü¸®ÀÇ Çõ½ÅÀûÀÎ µµ±¸·Î µîÀåÇß½À´Ï´Ù. ±×·¸´Ù¸é ¿Ö ÀÌ·± Áø´Ü¹ýÀÌ Çö´ë ¼öÀÇÇп¡ ÇʼöÀûÀÎ °ÍÀϱî? ¼öÀÇÇÐ ºÐÀÚÁø´ÜÇÐÀº µ¿¹°ÀÇ º´¿øÃ¼, Á¾¾ç, À¯ÀüÁúȯ¿¡¼­ DNA, RNA¿Í °°Àº À¯Àü¹°ÁúÀ» ½Äº°Çϴ ÷´Ü °Ë»ç ±â¼úÀÔ´Ï´Ù. ÀÌ·¯ÇÑ °Ë»ç¿¡´Â ÁßÇÕÈ¿¼Ò¿¬¼â¹ÝÀÀ(PCR), ½Ç½Ã°£ PCR, Â÷¼¼´ë¿°±â¼­¿­ºÐ¼®(NGS), ¸¶ÀÌÅ©·Î¾î·¹ÀÌ µîÀÌ ÀÖÀ¸¸ç, º´¿øÃ¼, À¯ÀüÀÚ µ¹¿¬º¯ÀÌ, ¹ÙÀÌ¿À¸¶Ä¿¸¦ ³ôÀº ¹Î°¨µµ¿Í ƯÀ̼ºÀ¸·Î °ËÃâÇϰí Á¤·®È­ÇÒ ¼ö ÀÖ½À´Ï´Ù. Áúº´ÀÇ À¯ÀüÀû ±â¹ÝÀ» Ç¥ÀûÀ¸·Î »ï´Â ÀÌ·¯ÇÑ Áø´ÜÀº ¼öÀǻ簡 ÀÓ»ó Áõ»óÀÌ ³ªÅ¸³ª±â Àü¿¡ Áúº´À» Á¶±â¿¡ Áø´ÜÇÏ¿© Àû½Ã¿¡ °³ÀÔÇϰí Ä¡·áÇÒ ¼ö ÀÖ´Â Áß¿äÇÑ Ã¢±¸¸¦ Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù.

¼öÀÇÇÐ ºÐÀÚÁø´Ü¿¡ ´ëÇÑ ¼ö¿ä´Â Àμö°øÅëÀü¿°º´ÀÇ È®»ê, µ¿¹°ÀÇ ¸¸¼º ¹× Àü¿°¼º ÁúȯÀÇ ¹ß»ý·ü Áõ°¡, ¿¹¹æÀû °Ç°­°ü¸®¿¡ ´ëÇÑ °ü½É Áõ°¡¿¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Áø´ÜÀº ÆÄº¸¹ÙÀÌ·¯½º, °í¾çÀÌ ¹éÇ÷º´, ¼Ò È£Èí±â Áúȯ°ú °°Àº °¨¿°¼º ÁúȯÀÇ °ËÃâ°ú À¯Àü¼º ÁúȯÀÇ Àü¿°À» ¿¹¹æÇϱâ À§ÇÑ ¹ø½Ä ÇÁ·Î±×·¥ÀÇ À¯ÀüÀÚ °Ë»ç¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ºÐÀÚÁø´ÜÇÐÀº ¾Ï Ä¡·á¸¦ À§ÇÑ Ç¥Àû Ä¡·áÀÇ ÁöħÀÌ µÇ´Â ƯÁ¤ µ¹¿¬º¯ÀÌ ¹× ¹ÙÀÌ¿À¸¶Ä¿¸¦ ½Äº°ÇÏ´Â µ¥ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ºÐÀÚÁø´ÜÀº ģô º´¿øÃ¼¸¦ ±¸º°Çϰí ÇÑ ¹øÀÇ °Ë»ç·Î ¿©·¯ º´¿øÃ¼¸¦ °ËÃâÇÒ ¼ö Àֱ⠶§¹®¿¡ ±âÁ¸ÀÇ °Ë»ç ¹æ¹ýÀ¸·Î´Â ÃæºÐÇÏÁö ¾ÊÀº º¹ÀâÇÑ »ç·Ê¿¡¼­ ¼±È£µÇ´Â ¼±ÅÃÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¹Ý·Áµ¿¹° º¸È£ÀÚ, °¡Ãà °ü¸®ÀÚ ¹× ¼öÀǻ簡 º¸´Ù Á¤È®ÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â Áø´Ü ¼Ö·ç¼ÇÀ» ¿ä±¸ÇÔ¿¡ µû¶ó ¼öÀÇÇÐ ºÐÀÚÁø´ÜÀº µ¿¹° °Ç°­ °ü¸®¿¡¼­ Á¡Á¡ ´õ Áß½ÉÀûÀÎ ¿ªÇÒÀ» ÇÏ°Ô µÉ °ÍÀÔ´Ï´Ù.

±â¼úÀÇ ¹ßÀüÀº ¼öÀÇÇÐ ºÐÀÚÁø´ÜÀÇ ¼º´ÉÀ» ¾î¶»°Ô Çâ»ó½Ã۰í Àִ°¡?

¼öÀÇÇÐ ºÐÀÚÁø´Ü ½ÃÀåÀº ÀÌ·¯ÇÑ Áø´Ü µµ±¸ÀÇ Á¤È®¼º, ¼Óµµ, Á¢±Ù¼ºÀ» Çâ»ó½ÃŰ´Â Áß¿äÇÑ ±â¼ú ¹ßÀüÀ» °æÇèÇß½À´Ï´Ù. ±×·¸´Ù¸é ÀÌ·¯ÇÑ ¹ßÀüÀÇ ¿øµ¿·ÂÀÌ µÈ ÁÖ¿ä ±â¼ú Çõ½ÅÀº ¹«¾ùÀϱî¿ä? °¡Àå ¿µÇâ·Â ÀÖ´Â ¹ßÀü Áß Çϳª´Â ½Ç½Ã°£ PCR(qPCR) ±â¼úÀÇ ¹ßÀüÀÔ´Ï´Ù. qPCRÀº ½Ç½Ã°£À¸·Î DNA ¶Ç´Â RNA ¼­¿­À» ÁõÆøÇϰí Á¤·®È­ÇÒ ¼ö ÀÖ´Â ´É·ÂÀ¸·Î ½Å¼ÓÇÏ°í ¹Î°¨ÇÑ °á°ú¸¦ Á¦°øÇÔÀ¸·Î½á µ¿¹° Áø´ÜÀÇ Ç¥ÁØÀÌ µÇ¾ú½À´Ï´Ù. ÃֽŠqPCR ½Ã½ºÅÛÀº ¸ÖƼÇ÷º½º ±â´ÉÀ» °®Ãß°í ÀÖ¾î ÇϳªÀÇ »ùÇÿ¡¼­ ¿©·¯ º´¿øÃ¼ ¹× À¯ÀüÀÚ ¸¶Ä¿¸¦ µ¿½Ã¿¡ °ËÃâÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀ¸·Î ÀÎÇØ °Ë»ç ½Ã°£ÀÌ Å©°Ô ´ÜÃàµÇ°í, ¿©·¯ ¹ø °Ë»çÇÒ Çʿ䰡 ¾ø¾îÁ® ¼öÀǻ簡 º¸´Ù ½Å¼ÓÇϰí Á¤È®ÇÑ ÆÇ´ÜÀ» ³»¸± ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ ÀÚµ¿ ½Ã·á Áغñ ½Ã½ºÅÛÀÇ ÅëÇÕÀº ¿öÅ©Ç÷ο츦 °£¼ÒÈ­Çϰí ÀÎÀû ¿À·ùÀÇ °¡´É¼ºÀ» ÁÙ¿© °Ë»ç °á°úÀÇ Àϰü¼º°ú ½Å·Ú¼ºÀ» Çâ»ó½ÃÄ×½À´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ Çõ½ÅÀº Â÷¼¼´ë ½ÃÄö½Ì(NGS) ±â¼úÀÇ µîÀåÀ¸·Î ¼öÀÇÇÐ À¯ÀüüÇÐ ºÐ¾ß¿¡ Çõ¸íÀ» ÀÏÀ¸Ä×À¸¸ç, NGS´Â Àüü À¯ÀüüÀ̳ª ƯÁ¤ ¿µ¿ªÀÇ ¿°±â¼­¿­À» °áÁ¤ÇÔÀ¸·Î½á Á¾ÇÕÀûÀÎ À¯ÀüÀÚ ºÐ¼®ÀÌ °¡´ÉÇØÁ® º¹ÀâÇÑ À¯ÀüÇüÁú, Áúº´ ¸ÞÄ¿´ÏÁò, ¹Ì»ý¹° ±ºÁý¿¡ ´ëÇÑ ÅëÂû·ÂÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. ¸ÞÄ¿´ÏÁò, ¹Ì»ý¹° ±ºÁý¿¡ ´ëÇÑ ÅëÂû·ÂÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. ÀÌ ±â¼úÀº º´¿øÃ¼ ¹ß°ß, Ç×±ÕÁ¦ ³»¼º ¸ð´ÏÅ͸µ, ¾Ï À¯ÀüÀÚÇü ºÐ¼® µî ¿¬±¸ ¹× ÀÓ»ó¿¡¼­ Á¡Á¡ ´õ ¸¹ÀÌ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÈÞ´ë¿ë ¹× ÇöÀå Áø·áÇü ºÐÀÚÁø´Ü ÀåºñÀÇ °³¹ß·Î ÀÌ·¯ÇÑ ±â¼úÀÇ È°¿ë ¹üÀ§°¡ ´õ¿í È®´ëµÇ¾î ¼öÀǻ簡 Áø·á¼Ò, ³óÀå, ÇöÀå µî ÇöÀå¿¡¼­ °Ë»ç¸¦ ½Ç½ÃÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ Àåºñ´Â »ç¿ëÀÚ Ä£È­ÀûÀ¸·Î ¼³°èµÇ¾î ÃÖ¼ÒÇÑÀÇ ±³À°À̳ª ÀÎÇÁ¶ó°¡ ÇÊ¿äÇϱ⠶§¹®¿¡ ¿ø°ÝÁö³ª ÀÚ¿øÀÌ Á¦ÇÑµÈ È¯°æ¿¡¼­µµ °í±Þ ºÐÀÚÁø´Ü¿¡ Á¢±ÙÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, »ý¹°Á¤º¸ÇÐ ¹× µ¥ÀÌÅÍ ºÐ¼®ÀÇ ¹ßÀüÀº ºÐÀÚÁø´Ü °á°úÀÇ ÇØ¼®À» °­È­ÇÏ¿© º¸´Ù Á¤È®ÇÏ°í ½Ç¿ëÀûÀÎ ÅëÂû·ÂÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº ¼öÀÇÇÐ ºÐÀÚÁø´ÜÀÇ ¼º´É°ú ½Ç¿ë¼ºÀ» Çâ»ó½ÃÄÑ Çö´ë ¼öÀÇÇп¡ ÇʼöÀûÀÎ µµ±¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

µ¿¹° °Ç°­°ü¸®¿¡¼­ ¼öÀÇÇÐ ºÐÀÚÁø´ÜÀÇ º¸±ÞÀ» ÃËÁøÇÏ´Â ½ÃÀå µ¿ÇâÀº ¹«¾ùÀΰ¡?

¼öÀÇ»ç, ¿¬±¸ÀÚ, º¸È£ÀÚÀÇ ÁøÈ­ÇÏ´Â ¿ä±¸¿Í ±â´ë¸¦ ¹Ý¿µÇÏ¿© ¸î °¡Áö »õ·Î¿î ½ÃÀå Æ®·»µå°¡ µ¿¹° °Ç°­ °ü¸® ºÐ¾ß¿¡¼­ ¼öÀÇÇÐ ºÐÀÚÁø´ÜÀÇ Ã¤ÅÃÀ» Çü¼ºÇϰí ÀÖ½À´Ï´Ù. °¡Àå µÎµå·¯Áø Æ®·»µå Áß Çϳª´Â ¿¹¹æ ÀÇ·á¿Í Áúº´ Á¶±â ¹ß°ß¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ¹Ý·Áµ¿¹° º¸È£ÀÚ¿Í °¡Ãà °ü¸®ÀÚµéÀÌ Á¶±â Áø´ÜÀÇ ÀÌÁ¡À» ´õ ¸¹ÀÌ ÀνÄÇÔ¿¡ µû¶ó, Áúº´ÀÌ Áõ»óÀÌ ³ªÅ¸³ª°Å³ª ´Ù¸¥ µ¿¹°¿¡°Ô Àü¿°µÇ±â Àü¿¡ ¹«Áõ»ó ´Ü°è¿¡¼­ Áúº´À» °¨ÁöÇÒ ¼ö ÀÖ´Â Áø´Ü µµ±¸¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ³ôÀº ¹Î°¨µµ¿Í ƯÀ̼ºÀ» °¡Áø ¼öÀÇÇÐ ºÐÀÚÁø´ÜÀº ÀÌ·¯ÇÑ ¸ñÀû¿¡ ÀûÇÕÇϸç, °¨¿°¼º º´¿øÃ¼, À¯ÀüÀû Áúȯ, ¾Ï¼¼Æ÷¸¦ Á¶±â¿¡ ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â Á¤±âÀûÀÎ °Ç°­°ËÁø°ú À£´Ï½º ÇÁ·Î±×·¥ÀÌ º¸ÆíÈ­µÇ°í ÀÖ´Â ¹Ý·Áµ¿¹° ºÐ¾ß¿¡¼­ ƯÈ÷ µÎµå·¯Áö°Ô ³ªÅ¸³ª°í ÀÖ½À´Ï´Ù. À¯ÀüÀû ¼ÒÀΰú °¨¿°À» Á¶±â¿¡ ¹ß°ßÇÒ ¼ö ÀÖ´Â ´É·ÂÀº ¼öÀǻ簡 ¸ÂÃãÇü ¿¹¹æ Á¶Ä¡¸¦ ½ÃÇàÇÏ°í ¸ÂÃã Ä¡·á °èȹÀ» ¼ö¸³ÇÒ ¼ö ÀÖ°Ô ÇÔÀ¸·Î½á °Ç°­ »óŸ¦ °³¼±Çϰí Àå±âÀûÀ¸·Î Ä¡·á ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ°Ô ÇÕ´Ï´Ù.

¼öÀÇÇÐ ºÐÀÚÁø´ÜÀÇ µµÀÔÀ» ÃËÁøÇÏ´Â ¶Ç ´Ù¸¥ Áß¿äÇÑ Ãß¼¼´Â Àμö°øÅëÀü¿°º´ Áõ°¡¿Í È¿°úÀûÀÎ Áúº´ °¨½ÃÀÇ Çʿ伺ÀÔ´Ï´Ù. µ¿¹°°ú »ç¶÷ »çÀÌ¿¡ Àü¿°µÇ´Â Àμö°øÅëÀü¿°º´Àº °øÁߺ¸°Ç»ó ½É°¢ÇÑ À§ÇèÀ̸ç, ¹ß»ýÀ» ¾ïÁ¦Çϰí Á¾°£ ÀüÆÄ¸¦ ¸·±â À§Çؼ­´Â Á¶±â¿¡ Á¤È®ÇÑ Áø´ÜÀÌ ÇʼöÀûÀ̸ç, Äڷγª19ÀÇ ´ëÀ¯ÇàÀº °­·ÂÇÑ Áúº´ °¨½Ã ½Ã½ºÅÛÀÇ Á߿伺À» °­Á¶Çϰí ÀÖÀ¸¸ç, ¹Ý·Áµ¿¹°°ú °¡ÃàÀÇ Áø´Ü ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ È®´ë·Î À̾îÁ³½À´Ï´Ù. ¼öÀÇÇÐ ºÐÀÚÁø´ÜÀº ¼öÀÇÇÐ ºÐÀÚÁø´ÜÀº Àμö°øÅëÀü¿°º´ º´¿øÃ¼¸¦ ½Å¼ÓÇϰí Á¤È®ÇÏ°Ô Å½ÁöÇÒ ¼ö ÀÖ´Â µµ±¸¸¦ Á¦°øÇÔÀ¸·Î½á Áúº´ È®»êÀ» ÃßÀûÇϰí ÅëÁ¦Çϱâ À§ÇÑ ³ë·ÂÀ» Áö¿øÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ºÏ¹Ì¿Í À¯·´ µî °¡ÃàÀÌ ¸¹Àº Áö¿ª¿¡¼­ ƯÈ÷ µÎµå·¯Áö°Ô ³ªÅ¸³ª°í ÀÖÀ¸¸ç, Á¶·ù ÀÎÇ÷翣ÀÚ, ¼Ò °áÇÙ, ¾ÆÇÁ¸®Ä«µÅÁö¿­º´ µîÀÇ Áúº´À» °¨½ÃÇÏ´Â µ¥ ºÐÀÚÁø´ÜÀÌ È°¿ëµÇ°í ÀÖ½À´Ï´Ù. Á¾ÇÕÀûÀÎ Áúº´ °¨½Ã ¹× ¹ÙÀÌ¿À º¸¾È Á¶Ä¡¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¹Î°ü ºÎ¹® ¸ðµÎ¿¡¼­ ºÐÀÚÁø´ÜÀÇ Ã¤ÅÃÀ» Áö¼ÓÀûÀ¸·Î ÃËÁøÇÏ°í µ¿¹° °Ç°­ °ü¸®ÀÇ Áß¿äÇÑ ¼ö´ÜÀ¸·Î¼­ÀÇ ¿ªÇÒÀ» °­È­ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼öÀÇÇÐ ºÐÀÚÁø´Ü ¼¼°è ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎÀº?

¼¼°è ¼öÀÇÇÐ ºÐÀÚÁø´Ü ½ÃÀåÀÇ ¼ºÀåÀº Áø´Ü ±â¼úÀÇ ¹ßÀü, µ¿¹° °Ç°­ °ü¸®¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡, Àμö°øÅëÀü¿°º´¿¡ ´ëÇÑ ÀÎ½Ä Áõ°¡ µî ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ¼ºÀå ¿äÀÎ Áß Çϳª´Â ¹Ý·Áµ¿¹° Àα¸ Áõ°¡¿Í ¹Ý·Áµ¿¹°ÀÇ Àΰ£È­À̸ç, ¹Ý·Áµ¿¹° º¸È£ÀÚµéÀº µ¿¹°À» °¡Á·ÀÇ ÀÏ¿øÀ¸·Î ¿©±â°í °í±Þ ÀÇ·á ¼­ºñ½º¿¡ ±â²¨ÀÌ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó ½Å¼ÓÇϰí Á¤È®ÇÑ °á°ú¸¦ Á¦°øÇÏ¿© Á¶±â Áø´Ü°ú È¿°úÀûÀÎ Ä¡·á¸¦ °¡´ÉÇÏ°Ô ÇÏ´Â Áø´Ü °Ë»ç¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. »ç¿ëÀÚ Ä£È­ÀûÀ̰í ÀÚµ¿È­µÈ ºÐÀÚÁø´Ü Ç÷§ÆûÀÇ °³¹ß·Î µ¿¹°º´¿ø ¹× Ŭ¸®´ÐÀº ÀÌ·¯ÇÑ °Ë»ç¸¦ ÀÏ»óÀûÀÎ Áø´Ü ¾÷¹«¿¡ ½±°Ô ÅëÇÕÇÒ ¼ö ÀÖ°Ô µÇ¾î ½ÃÀå ¼ºÀå¿¡ ´õ¿í ¹ÚÂ÷¸¦ °¡ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ³ó°¡¿Í »ý»êÀÚµéÀÌ °¡ÃàÀÇ °Ç°­, »ý»ê¼º ¹× Áúº´ °ü¸®¸¦ °³¼±Çϱâ À§ÇØ ³ë·ÂÇϸ鼭 °¡Ãà °ü¸®¿¡¼­ ºÐÀÚÁø´ÜÀÇ »ç¿ëÀÌ Áõ°¡Çϰí ÀÖ´Â °Íµµ ÁÖ¿ä ÃËÁø¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.

°¨¿°º´ ¹ß»ý·ü Áõ°¡¿Í È¿°úÀûÀÎ Áúº´ °ü¸® ¹× ÅëÁ¦ÀÇ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ´Â °Íµµ Áß¿äÇÑ ÃËÁø¿äÀÎÀÔ´Ï´Ù. Á¶·ùµ¶°¨, ¾ÆÇÁ¸®Ä«µÅÁö¿­º´, °³ ÆÄº¸¹ÙÀÌ·¯½º¿Í °°Àº Áúº´ÀÇ ¹ß»ýÀº Áúº´ÀÇ È®»êÀ» ¹æÁöÇÏ°í °æÁ¦Àû ¼Õ½ÇÀ» ÃÖ¼ÒÈ­Çϱâ À§ÇØ ½Å¼ÓÇϰí Á¤È®ÇÑ Áø´ÜÀÇ Á߿伺À» °­Á¶Çϰí ÀÖ½À´Ï´Ù. ¼öÀÇÇÐ ºÐÀÚÁø´ÜÇÐÀº º´¿øÃ¼ °ËÃâ ¹× °¨º°À» À§ÇÑ ½Å·ÚÇÒ ¼ö ÀÖ´Â ¼Ö·ç¼ÇÀ» Á¦°øÇÏ¿© ¼öÀǻ簡 Àû½Ã¿¡ ÀûÀýÇÑ °³ÀÔÀ» ÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. Ç×±ÕÁ¦ ³»¼º(AMR)¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁø °Íµµ ½ÃÀå ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ºÐÀÚÁø´ÜÀº ³»¼º À¯ÀüÀÚ¸¦ ½Äº°Çϰí Ç×»ýÁ¦ÀÇ ÀûÀýÇÑ »ç¿ëÀ» À¯µµÇÏ¿© ³»¼º ¹ßÇöÀÇ À§ÇèÀ» ÁÙÀÏ ¼ö Àֱ⠶§¹®ÀÔ´Ï´Ù. ¶ÇÇÑ, ƯÈ÷ ¾Æ½Ã¾ÆÅÂÆò¾ç°ú ¶óƾ¾Æ¸Þ¸®Ä« µî ½ÅÈï ½ÃÀå¿¡¼­ µ¿¹° Áø´Ü ½ÇÇè½Ç ¹× ¿¬±¸±â°üÀÇ È®ÀåÀº ½ÃÀå ¼ºÀåÀÇ »õ·Î¿î ±âȸ¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. À̵é Áö¿ª¿¡¼­´Â ¼öÀÇÇÐ ÀÎÇÁ¶ó Çö´ëÈ­¿Í ÷´Ü Áø´Ü ±â¼ú¿¡ ´ëÇÑ Á¢±Ù¼º °³¼±¿¡ ÅõÀÚÇϰí ÀÖ¾î, ±â¼ú Çõ½Å, ÁøÈ­ÇÏ´Â ÀÇ·á °üÇà, µ¿¹° ¹× °øÁߺ¸°Ç¿¡ ´ëÇÑ ÀνÄÀÌ ¿ªµ¿ÀûÀ¸·Î »óÈ£ÀÛ¿ëÇϸ鼭 ¼¼°è ¼öÀÇÇÐ ºÐÀÚÁø´Ü ½ÃÀåÀº Áö¼ÓÀûÀ¸·Î È®´ëµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ ¿¹½Ã(ÃÑ 42°Ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Veterinary Molecular Diagnostics Market to Reach US$984.2 Million by 2030

The global market for Veterinary Molecular Diagnostics estimated at US$596.5 Million in the year 2023, is expected to reach US$984.2 Million by 2030, growing at a CAGR of 7.4% over the analysis period 2023-2030. Instruments & Software, one of the segments analyzed in the report, is expected to record a 7.2% CAGR and reach US$342.8 Million by the end of the analysis period. Growth in the Kits & Reagents segment is estimated at 8.3% CAGR over the analysis period.

The U.S. Market is Estimated at US$156.7 Million While China is Forecast to Grow at 11.0% CAGR

The Veterinary Molecular Diagnostics market in the U.S. is estimated at US$156.7 Million in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$238.9 Million by the year 2030 trailing a CAGR of 11.0% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 3.9% and 6.6% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 4.6% CAGR.

Global Veterinary Molecular Diagnostics Market - Key Trends & Growth Drivers Explored

Why Are Veterinary Molecular Diagnostics Revolutionizing Animal Health Management?

Veterinary molecular diagnostics have emerged as a transformative tool in animal healthcare, enabling precise and rapid detection of diseases at the molecular level. But what makes these diagnostic methods so essential in modern veterinary practices? Veterinary molecular diagnostics are advanced testing techniques that identify genetic material, such as DNA and RNA, from pathogens, tumors, or genetic disorders in animals. These tests include polymerase chain reaction (PCR), real-time PCR, next-generation sequencing (NGS), and microarrays, among others, which can detect and quantify pathogens, genetic mutations, or biomarkers with high sensitivity and specificity. By targeting the genetic basis of diseases, these diagnostics allow veterinarians to diagnose conditions early, often before clinical symptoms appear, providing a crucial window for timely intervention and treatment.

The demand for veterinary molecular diagnostics is driven by the growing prevalence of zoonotic diseases, the rising incidence of chronic and infectious conditions in animals, and the increasing focus on preventive healthcare. These diagnostics are widely used in the detection of infectious diseases such as parvovirus, feline leukemia, and bovine respiratory disease, as well as for genetic screening in breeding programs to prevent the transmission of hereditary disorders. Molecular diagnostics have also become indispensable in the field of oncology, where they are used to identify specific mutations and biomarkers that can guide targeted therapies for cancer treatment. Furthermore, the ability to differentiate between closely related pathogens and detect multiple pathogens in a single test has made molecular diagnostics a preferred choice in complex cases where traditional testing methods may fall short. As pet owners, livestock managers, and veterinarians seek more accurate and reliable diagnostic solutions, veterinary molecular diagnostics are poised to play an increasingly central role in animal health management.

How Are Technological Advancements Elevating the Performance of Veterinary Molecular Diagnostics?

The veterinary molecular diagnostics market has experienced significant technological advancements that have enhanced the precision, speed, and accessibility of these diagnostic tools. But what are the key innovations driving these developments? One of the most impactful advancements is the evolution of real-time PCR (qPCR) technology. qPCR has become a gold standard in veterinary diagnostics due to its ability to amplify and quantify DNA or RNA sequences in real-time, providing rapid and highly sensitive results. Modern qPCR systems are equipped with multiplexing capabilities, allowing the simultaneous detection of multiple pathogens or genetic markers in a single sample. This innovation has significantly reduced turnaround times and the need for multiple tests, enabling veterinarians to make quicker and more informed decisions. Additionally, the integration of automated sample preparation systems has streamlined the workflow, reducing the potential for human error and increasing the consistency and reliability of test results.

Another critical innovation is the advent of next-generation sequencing (NGS) technology, which has revolutionized the field of veterinary genomics. NGS allows for comprehensive genetic analysis by sequencing entire genomes or targeted regions of interest, providing insights into complex genetic traits, disease mechanisms, and microbial communities. This technology is being increasingly used in research and clinical settings for applications such as pathogen discovery, antimicrobial resistance monitoring, and cancer genotyping. The development of portable and point-of-care molecular diagnostic devices has further expanded the reach of these technologies, enabling veterinarians to conduct testing on-site, whether in clinics, farms, or field settings. These devices are designed to be user-friendly, requiring minimal training and infrastructure, making advanced molecular diagnostics accessible even in remote or resource-limited environments. Furthermore, advancements in bioinformatics and data analytics have enhanced the interpretation of molecular diagnostic results, allowing for more accurate and actionable insights. These technological innovations have collectively elevated the performance and utility of veterinary molecular diagnostics, making them indispensable tools for modern veterinary medicine.

What Market Trends Are Driving the Adoption of Veterinary Molecular Diagnostics Across Animal Healthcare?

Several emerging market trends are shaping the adoption of veterinary molecular diagnostics across the animal healthcare sector, reflecting the evolving needs and expectations of veterinarians, researchers, and pet owners. One of the most prominent trends is the increasing focus on preventive care and early disease detection. As pet owners and livestock managers become more aware of the benefits of early diagnosis, there is a growing demand for diagnostic tools that can detect diseases at the subclinical stage, before they become symptomatic or spread to other animals. Veterinary molecular diagnostics, with their high sensitivity and specificity, are well-suited for this purpose, allowing for the early identification of infectious agents, genetic disorders, and cancerous cells. This trend is particularly strong in the companion animal sector, where regular health screenings and wellness programs are becoming more common. The ability to detect genetic predispositions and infectious diseases early enables veterinarians to implement targeted preventive measures and develop personalized treatment plans, improving health outcomes and reducing the long-term costs of care.

Another key trend driving the adoption of veterinary molecular diagnostics is the rising prevalence of zoonotic diseases and the need for effective disease surveillance. Zoonotic diseases, which are transmitted between animals and humans, pose a significant public health risk, making early and accurate diagnosis essential for controlling outbreaks and preventing cross-species transmission. The COVID-19 pandemic has underscored the importance of robust disease surveillance systems, leading to increased investment in diagnostic infrastructure for both companion animals and livestock. Veterinary molecular diagnostics are playing a critical role in this effort by providing tools that can detect zoonotic pathogens rapidly and accurately, supporting efforts to track and control disease spread. This trend is particularly evident in regions with large livestock populations, such as North America and Europe, where molecular diagnostics are used to monitor diseases like avian influenza, bovine tuberculosis, and African swine fever. The growing demand for comprehensive disease surveillance and biosecurity measures is expected to continue driving the adoption of molecular diagnostics in both the public and private sectors, reinforcing their role as key instruments in animal health management.

What Factors Are Driving the Growth of the Global Veterinary Molecular Diagnostics Market?

The growth in the global veterinary molecular diagnostics market is driven by several factors, including advancements in diagnostic technology, increasing investment in animal healthcare, and rising awareness of zoonotic diseases. One of the primary growth drivers is the expanding pet population and the humanization of pets, where owners treat their animals as family members and are willing to invest in advanced healthcare services. This has led to a surge in demand for diagnostic tests that provide quick and accurate results, enabling early diagnosis and effective treatment. The development of user-friendly and automated molecular diagnostic platforms has made it easier for veterinary clinics and hospitals to incorporate these tests into their routine diagnostic offerings, further boosting market growth. The increasing use of molecular diagnostics in livestock management is another key growth driver, as farmers and producers seek to improve herd health, productivity, and disease control.

Another significant growth driver is the rising incidence of infectious diseases and the growing need for effective disease management and control. Outbreaks of diseases like avian influenza, African swine fever, and canine parvovirus have highlighted the importance of rapid and accurate diagnostics for preventing disease spread and minimizing economic losses. Veterinary molecular diagnostics provide a reliable solution for detecting and differentiating pathogens, enabling veterinarians to implement timely and targeted interventions. The growing focus on antimicrobial resistance (AMR) is also contributing to market growth, as molecular diagnostics can identify resistance genes and guide the appropriate use of antibiotics, reducing the risk of resistance development. Furthermore, the expansion of veterinary diagnostic laboratories and research institutions, particularly in emerging markets such as Asia-Pacific and Latin America, is creating new opportunities for market growth. As these regions invest in modernizing their veterinary infrastructure and improving access to advanced diagnostic technologies, the global veterinary molecular diagnostics market is poised for sustained expansion, driven by a dynamic interplay of technological innovation, evolving healthcare practices, and increasing awareness of animal and public health.

Select Competitors (Total 42 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â