¼¼°èÀÇ °¡½ºÈ­ ½ÃÀå
Gasification
»óǰÄÚµå : 1579656
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 10¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 191 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,222,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,666,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

°¡½ºÈ­ ¼¼°è ½ÃÀåÀº 2030³â±îÁö 5,774¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù

2023³â 4,760¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°è °¡½ºÈ­ ½ÃÀåÀº 2023³âºÎÅÍ 2030³â±îÁö ¿¬Æò±Õ 2.8% ¼ºÀåÇÏ¿© 2030³â¿¡´Â 5,774¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ È­ÇÐ ÀÀ¿ë ºÐ¾ß´Â CAGR 3.5%¸¦ ±â·ÏÇÏ¿© ºÐ¼® ±â°£ Á¾·á ½ÃÁ¡¿¡ 2,085¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¾×ü ¿¬·á ÀÀ¿ë ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 2.3%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 1,297¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 5.6%·Î ¼ºÀå Àü¸Á

¹Ì±¹ÀÇ °¡½ºÈ­ ½ÃÀåÀº 2023³â 1,297¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 1,168¾ï ´Þ·¯ ±Ô¸ð¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2023-2030³â°£ 5.6%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ª ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ µ¿¾È °¢°¢ 0.8%¿Í 2.1%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ ¿¬Æò±Õ 1.4%ÀÇ ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼¼°è °¡½ºÈ­ ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ ¿ä¾à

¿Ö °¡½ºÈ­°¡ Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁö¿Í Æó±â¹° °ü¸®ÀÇ ÇÙ½ÉÀÌ µÇ°í Àִ°¡?

°¡½ºÈ­´Â Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö »ý»ê°ú Æó±â¹° °ü¸®¿¡¼­ Áß¿äÇÑ ±â¼ú·Î ºÎ»óÇϰí ÀÖÀ¸¸ç, ´Ù¾çÇÑ ¿ø·á¸¦ À¯¿ëÇÑ ¿¡³ÊÁö·Î ÀüȯÇÒ ¼ö ÀÖ´Â º¸´Ù ±ú²ýÇϰí È¿À²ÀûÀÎ ¹æ¹ýÀ» Á¦°øÇÕ´Ï´Ù. ±×·¸´Ù¸é ¿Ö Áö±Ý °¡½ºÈ­°¡ Áß¿äÇÑ °ÍÀϱî? °¡½ºÈ­´Â ¼®Åº, ¹ÙÀÌ¿À¸Å½º, ½ÉÁö¾î µµ½Ã °íÇü Æó±â¹°°ú °°Àº ź¼Ò ÇÔÀ¯ ¹°ÁúÀ» ¼ö¼Ò, ÀÏ»êȭź¼Ò ¹× ±âŸ °¡½ºÀÇ È¥ÇÕ¹°ÀÎ ÇÕ¼º °¡½º(ÇÕ¼º °¡½º)·Î º¯È¯ÇÏ´Â ¿­È­ÇÐ °øÁ¤ÀÔ´Ï´Ù. ÀÌ ÇÕ¼º °¡½º´Â ¹ßÀü, È­ÇÐ ¹°Áú »ý»ê ¹× »ê¾÷ °øÁ¤ÀÇ ¿¬·á·Î »ç¿ëÇÒ ¼ö ÀÖ¾î °¡½ºÈ­´Â ´Ù¿ëµµ·Î È¿À²ÀûÀÎ ¿¡³ÊÁö ¼Ö·ç¼ÇÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.

±âüȭ´Â ±âÁ¸ ¿¬¼Ò ¹æ½Ä°ú ´Þ¸® Àú»ê¼Ò ȯ°æ¿¡¼­ ÀÛµ¿Çϱ⠶§¹®¿¡ ÀÌ»êȭȲ, Áú¼Ò»êÈ­¹°, ¹Ì¸³ÀÚ ¹°Áú°ú °°Àº À¯ÇØÇÑ ¹èÃâ¹° ¹ß»ýÀ» ÃÖ¼ÒÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ´Â Æó±â¹° ¹× ¹ÙÀÌ¿À¸Å½º Ȱ¿ëÀ¸·Î ÀÎÇÑ È¯°æ ¿µÇâÀ» ÁÙÀ̱â À§ÇÑ ¸Å·ÂÀûÀÎ ´ë¾ÈÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °¡½ºÈ­´Â µµ½Ã °íÇü Æó±â¹° ¹× ³ó¾÷ ÀÜÀç¹°À» °¡Ä¡ ÀÖ´Â ¿¡³ÊÁö·Î ÀüȯÇÏ¿© ¸Å¸³Áö ºÎ´ãÀ» ÁÙÀÌ°í ¿Â½Ç°¡½º ¹èÃâÀ» ÁÙÀÓÀ¸·Î½á Àü ¼¼°è Æó±â¹° ¹®Á¦ ÇØ°á¿¡ ±â¿©ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¡³ÊÁö Áý¾àÀû »ê¾÷¿¡¼­ °¡½ºÈ­´Â ¼ö¼Ò ¹× ÇÕ¼ºÃµ¿¬°¡½º(SNG)¿Í °°Àº ûÁ¤ ¿¬·á »ý»ê¿¡ Á¡Á¡ ´õ ¸¹ÀÌ »ç¿ëµÇ¾î º¸´Ù Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö ½Ã½ºÅÛÀ¸·ÎÀÇ Àüȯ¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¿À¿°À» ÃÖ¼ÒÈ­Çϸ鼭 Æó±â¹°À» ¿¡³ÊÁö·Î ÀüȯÇÒ ¼ö ÀÖ´Â °¡½ºÈ­´Â º¸´Ù ±ú²ýÇϰí Áö¼Ó °¡´ÉÇÑ »ê¾÷ °øÁ¤°ú ¿¡³ÊÁö »ý»êÀ» Ãß±¸ÇÏ´Â µ¥ ÀÖ¾î Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

±â¼úÀº ¾î¶»°Ô °¡½ºÈ­ÀÇ È¿À²¼º°ú ´Ù¿ëµµ¼ºÀ» Çâ»ó½Ã۰í Àִ°¡?

±â¼úÀÇ ¹ßÀüÀº °¡½ºÈ­¿¡ Çõ¸íÀ» °¡Á®¿ÔÀ¸¸ç, º¸´Ù È¿À²ÀûÀ̰í À¯¿¬ÇÏ¸ç ´Ù¾çÇÑ ¿ëµµ¿¡ °æÁ¦ÀûÀ¸·Î »ç¿ëÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÃÖ±Ù °¡Àå Áß¿äÇÑ ¹ßÀü Ãß¼¼ Áß Çϳª´Â IGCC(Integrated Gasification Combined Cycle) ½Ã½ºÅÛÀÇ °³¹ß·Î, IGCC Ç÷£Æ®¿¡¼­´Â °¡½ºÈ­¸¦ °¡½º Åͺó ¹× Áõ±â Åͺó°ú °áÇÕÇÏ¿© ±âÁ¸ ¹ßÀü¼Òº¸´Ù ´õ ³ôÀº È¿À²·Î Àü±â¸¦ »ý»êÇÕ´Ï´Ù. °¡½ºÈ­¿¡¼­ ¹ß»ýÇÏ´Â ÇÕ¼º°¡½º¸¦ °¡½º ÅͺóÀÇ µ¿·ÂÀ¸·Î Ȱ¿ëÇϰí, °¡½º ÅͺóÀÇ ¹è±â¿­À» ȸ¼öÇÏ¿© Áõ±â ÅͺóÀÇ Áõ±â¸¦ »ý¼ºÇÔÀ¸·Î½á IGCC ½Ã½ºÅÛÀº 45% ÀÌ»óÀÇ ¿­È¿À²À» ´Þ¼ºÇÏ¿© ¿¬·á ¼Òºñ¿Í ¿Â½Ç°¡½º ¹èÃâÀ» Å©°Ô ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù.

°¡½ºÈ­ÀÇ ¶Ç ´Ù¸¥ Áß¿äÇÑ ±â¼úÀû Áøº¸´Â ¿ø·áÀÇ À¯¿¬¼º Çâ»óÀÔ´Ï´Ù. Ãֽа¡½ºÈ­ Ç÷£Æ®´Â ¼®Åº°ú ¼®À¯ ÄÚÅ©½ººÎÅÍ ¹ÙÀÌ¿À¸Å½º, ÀÏ¹Ý Æó±â¹°±îÁö ´Ù¾çÇÑ °ø±Þ ¿ø·á¿¡ ´ëÀÀÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ À¯¿¬¼ºÀ» ÅëÇØ »ê¾÷°è´Â °¡¿ë¼º, ºñ¿ë, ȯ°æÀû °í·Á»çÇ׿¡ µû¶ó ¿ø·á »ç¿ëÀ» ÃÖÀûÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÇöóÁ °¡½ºÈ­Çаú °°Àº ÷´Ü ¿øÀڷδ Ãʰí¿Â¿¡¼­ ÀÛµ¿ÇÒ ¼ö ÀÖ°í, ºÎ»ê¹°À» ÃÖ¼ÒÈ­Çϸ鼭 ¿ø·á¸¦ ¿ø¼Ò·Î ºÐÇØÇÒ ¼ö ÀÖ¾î º¹ÀâÇÑ Æó±â¹° È帧À» ó¸®ÇÏ´Â µ¥ ÀÌ»óÀûÀÔ´Ï´Ù.

¶ÇÇÑ, ź¼Ò ȸ¼ö ¹× ÀúÀå(CCS) ±â¼ú Çõ½ÅÀº °¡½ºÈ­¸¦ ´õ¿í ģȯ°æÀûÀ¸·Î ¸¸µé°í ÀÖÀ¸¸ç, CCS ±â¼úÀÌ Àû¿ëµÈ °¡½ºÈ­ Ç÷£Æ®´Â °øÁ¤ Áß ¹ß»ýÇÏ´Â ÀÌ»êȭź¼ÒÀÇ ÃÖ´ë 90%¸¦ ȸ¼ö ¹× °Ý¸®ÇÏ¿© ´ë±â ÁßÀ¸·Î ¹èÃâµÇ´Â °ÍÀ» ¹æÁöÇÒ ¼ö ÀÖ½À´Ï´Ù. À̴ ź¼Ò ¹èÃâÀ» ¾ø¾Ö±â ¾î·Á¿î ö°­ ¹× ½Ã¸àÆ® »ý»ê°ú °°Àº »ê¾÷¿¡ ƯÈ÷ À¯¿ëÇÕ´Ï´Ù. ¶ÇÇÑ, µðÁöÅÐ ¸ð´ÏÅ͸µ ½Ã½ºÅÛ°ú AI¸¦ Ȱ¿ëÇÑ °øÁ¤ Á¦¾î´Â ¹ÝÀÀ Á¶°ÇÀ» ÃÖÀûÈ­Çϰí, ÇÕ¼º °¡½º ¼öÀ²À» ³ôÀ̰í, ¿¡³ÊÁö ¼Õ½ÇÀ» ÃÖ¼ÒÈ­ÇÏ¿© °¡½ºÈ­ Ç÷£Æ®ÀÇ È¿À²À» ³ôÀ̰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº °¡½ºÈ­¸¦ º¸´Ù È¿À²ÀûÀÌ°í ´ÙÀç´Ù´ÉÇÏ°Ô ¸¸µé »Ó¸¸ ¾Æ´Ï¶ó, ¿¡³ÊÁö ¹× »ê¾÷ ºÎ¹®ÀÇ Å»Åº¼ÒÈ­¸¦ À§ÇÑ Áß¿äÇÑ ±â¼ú·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

Áö¼Ó°¡´É¼º°ú ¼øÈ¯ °æÁ¦ÀÇ ¿øÄ¢ÀÌ °¡½ºÈ­ äÅÃÀ» ÃËÁøÇÏ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî¿ä?

¼¼°è »ê¾÷°è°¡ Áö¼Ó°¡´É¼º°ú ¼øÈ¯ °æÁ¦¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö´Â °¡¿îµ¥, °¡½ºÈ­´Â Æó±â¹°À» ÁÙÀÌ°í ´õ ±ú²ýÇÑ ¿¡³ÊÁö¸¦ »ý»êÇÒ ¼ö ÀÖ´Â ´É·ÂÀ¸·Î ÁÖ¸ñ¹Þ°í ÀÖ½À´Ï´Ù. °¡½ºÈ­ÀÇ °¡Àå Å« Ư¡ Áß Çϳª´Â µµ½Ã ¾²·¹±â, ³ó¾÷ ÀÜÀç¹°, »ê¾÷ Æó±â¹° µîÀÇ Æó±â¹°À» ó¸®ÇÏ¿© °¡Ä¡ ÀÖ´Â ¿¡³ÊÁö¿øÀ¸·Î ÀüȯÇÒ ¼ö ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ÀÌ´Â ¸Å¸³Áö·Î º¸³»Áö´Â Æó±â¹°ÀÇ ¾çÀ» ÁÙÀÏ ¼ö ÀÖÀ» »Ó¸¸ ¾Æ´Ï¶ó, ÀϹÝÀûÀ¸·Î ¼Õ½ÇµÇ´Â ¿¡³ÊÁö¸¦ ȸ¼öÇÔÀ¸·Î½á Æó±â¹° 󸮷ΠÀÎÇÑ È¯°æ ¿µÇâÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ÀÌó·³ °¡½ºÈ­´Â Æó±â¹°À» ÀÚ¿øÀ¸·Î ÀüȯÇϰí Àç·á »ç¿ëÀÇ °í¸®¸¦ ´ÝÀ½À¸·Î½á ¼øÈ¯ °æÁ¦ÀÇ ¿ø¸®¸¦ Áö¿øÇÕ´Ï´Ù.

¶ÇÇÑ, °¡½ºÈ­´Â ±âÁ¸ÀÇ È­¼®¿¬·á¸¦ »ç¿ëÇÏ´Â ¹æ½Ä¿¡ ºñÇØ º¸´Ù Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö »ý»ê ¹æ¹ýÀ» Á¦°øÇÕ´Ï´Ù. °¡½ºÈ­¸¦ ¹ÙÀÌ¿À¸Å½º¿Í ÇÔ²² »ç¿ëÇϸé ÀÌ»êȭź¼Ò ¹èÃâ·®À» Å©°Ô ÁÙÀÎ Àç»ý °¡´É ¿¡³ÊÁö¸¦ »ý»êÇÒ ¼ö ÀÖ½À´Ï´Ù. ¹ÙÀÌ¿À¸Å½º °¡½ºÈ­´Â ź¼Ò Á߸³À¸·Î °£ÁֵǸç, ÀÌ °úÁ¤¿¡¼­ ¹èÃâµÇ´Â ÀÌ»êȭź¼Ò´Â ½Ä¹°ÀÇ ¼ºÀå °úÁ¤¿¡¼­ Èí¼öµÇ´Â ÀÌ»êȭź¼Ò¿¡ ÀÇÇØ »ó¼âµË´Ï´Ù. ÀÌ ¶§¹®¿¡ °¡½ºÈ­´Â Àç»ý °¡´ÉÇÑ Àü±â, ¿­, ¹ÙÀÌ¿À¿¬·á¸¦ »ý»êÇÏ´Â À¯¸ÁÇÑ ±â¼úÀÔ´Ï´Ù. ¶ÇÇÑ, °¡½ºÈ­´Â ¼ö¼Ò, ÇÕ¼ºÃµ¿¬°¡½º(SNG), ¾×ü ¿¬·á µî ûÁ¤ ÇÕ¼º ¿¬·á¸¦ »ý»êÇÒ ¼ö ÀÖ¾î ±âÁ¸ È­¼® ¿¬·á¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãß°í Àúź¼Ò ¿¡³ÊÁö ½Ã½ºÅÛÀ¸·ÎÀÇ ÀüȯÀ» Áö¿øÇÒ ¼ö ÀÖ½À´Ï´Ù.

°¡½ºÈ­´Â ¶ÇÇÑ »ê¾÷ ¹èÃâ·®À» ÁÙÀ̴µ¥µµ ÀÏÁ¶Çϰí ÀÖ½À´Ï´Ù. Á¦Ã¶, ½Ã¸àÆ® Á¦Á¶ µî ¸¹Àº »ê¾÷Àº ź¼Ò ¹èÃâ·®ÀÌ ¸¹½À´Ï´Ù. °¡½ºÈ­¸¦ ÀÌ·¯ÇÑ °øÁ¤¿¡ ÅëÇÕÇÔÀ¸·Î½á »ê¾÷°è´Â ¼®Åº°ú °°Àº ź¼Ò Áý¾àÀû ¿¬·á¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀÌ°í ¹èÃâ·®ÀÌ ÀûÀº ÇÕ¼º°¡½º³ª ¼ö¼Ò·Î ÀüȯÇÒ ¼ö ÀÖ½À´Ï´Ù. °¡½ºÈ­´Â Æó±â¹°À» ¿¡³ÊÁö·Î ÀüȯÇϰí, Àç»ý °¡´ÉÇÑ ¿¬·á¸¦ »ý»êÇϸç, ¹èÃâ°¡½º¸¦ ÁÙÀÌ´Â ±â´ÉÀ» °áÇÕÇÏ¿© Áö¼Ó°¡´É¼º ¸ñÇ¥¸¦ ´Þ¼ºÇÏ°í ´õ ¾ö°ÝÇÑ È¯°æ ±ÔÁ¦¸¦ ÁؼöÇϰíÀÚ ÇÏ´Â »ê¾÷°è¿¡ Á¡Á¡ ´õ ¸Å·ÂÀûÀÎ ¼±ÅÃÀÌ µÇ°í ÀÖ½À´Ï´Ù. ûÁ¤ ¿¡³ÊÁö ¹× Æó±â¹° °¨¼Ò ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó °¡½ºÈ­´Â ÀÌ·¯ÇÑ ¸ñÇ¥¸¦ ´Þ¼ºÇÏ´Â µ¥ ÀÖ¾î ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ°Ô µÉ °ÍÀÔ´Ï´Ù.

°¡½ºÈ­ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

°¡½ºÈ­ ½ÃÀåÀÇ ¼ºÀåÀº ûÁ¤ ¿¡³ÊÁö, Æó±â¹° °ü¸® ¼Ö·ç¼Ç, ±â¼ú ¹ßÀü¿¡ ´ëÇÑ Àü ¼¼°èÀûÀÎ ÃßÁø·Â µî ¸î °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ù°, ûÁ¤ ¿¡³ÊÁö¿ø¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â °¡½ºÈ­ ½ÃÀåÀÇ ÁÖ¿ä µ¿ÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. °¡½ºÈ­´Â ¹ßÀü, ¿î¼Û ¹× »ê¾÷ °øÁ¤¿¡ »ç¿ëÇÒ ¼ö ÀÖ´Â ÇÕ¼º °¡½º, ¼ö¼Ò ¹× ±âŸ ÇÕ¼º ¿¬·á¸¦ »ý»êÇÒ ¼ö ÀÖ¾î ±âÁ¸ È­¼® ¿¬·á¸¦ ´ëüÇÒ ¼ö Àִ ûÁ¤ ¿¬·á¸¦ Á¦°øÇÕ´Ï´Ù. °¢±¹ÀÌ Åº¼Ò ¹èÃâ·®À» ÁÙÀ̰í Àç»ý °¡´É ¿¡³ÊÁö·ÎÀÇ ÀüȯÀ̶ó´Â ¾ß½ÉÂù ¸ñÇ¥¸¦ ¼³Á¤ÇÔ¿¡ µû¶ó, °¡½ºÈ­´Â Àúź¼Ò ¿¬·á¿Í Àü·ÂÀ» »ý»êÇϱâ À§ÇÑ Áß¿äÇÑ ±â¼ú·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.

µÑ°, Æó±â¹° °ü¸®¿Í ¼øÈ¯ °æÁ¦¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ °¡½ºÈ­ äÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¸¹Àº »ê¾÷°è¿Í ÁöÀÚü´Â Æó±â¹°À» °ü¸®ÇÏ°í ¸Å¸³Áö »ç¿ëÀ» ÁÙÀ̱â À§ÇØ Áö¼Ó °¡´ÉÇÑ ¼Ö·ç¼ÇÀ» ã°í ÀÖ½À´Ï´Ù. °¡½ºÈ­´Â Æó±â¹°À» À¯¿ëÇÑ ¿¡³ÊÁö·Î ÀüȯÇÏ´Â È¿À²ÀûÀÎ ¹æ¹ýÀ» Á¦°øÇϸ鼭 Æó±â¹° 󸮷ΠÀÎÇÑ È¯°æ ¿µÇâÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¸Å¸³Áö°¡ Á¦ÇѵǾî Àְųª Æó±â¹° ó¸® ºñ¿ëÀÌ ³ôÀº Áö¿ª¿¡¼­´Â °¡½ºÈ­´Â Æó±â¹° °ü¸®¿Í ¿¡³ÊÁö »ý»ê¿¡ ÀÖ¾î ¸Å·ÂÀûÀÎ ´ë¾ÈÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.

¼Â°, ±â¼úÀÇ ¹ßÀüÀ¸·Î ÀÎÇØ °¡½ºÈ­´Â º¸´Ù ±¤¹üÀ§ÇÑ ÀÀ¿ë ºÐ¾ß¿¡¼­ ½ÇÇà °¡´ÉÇÏ°í ºñ¿ë È¿À²¼ºÀÌ ³ô¾ÆÁ³½À´Ï´Ù. IGCC(Integrated Gasification Combined Cycle) ½Ã½ºÅÛ, ¿ø·á À¶ÇÕÇü °¡½ºÈ­ ³ë, ź¼Ò ȸ¼ö ¹× ÀúÀå(CCS) ±â¼úÀÇ °³¹ß·Î °¡½ºÈ­ Ç÷£Æ®ÀÇ È¿À²¼º°ú ȯ°æ ¼º´ÉÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº »ê¾÷°è°¡ ¿î¿µ ºñ¿ëÀ» Àý°¨Çϰí, ¿¡³ÊÁö È¿À²À» °³¼±Çϸç, ´õ ¾ö°ÝÇÑ È¯°æ ±ÔÁ¦¸¦ ÁؼöÇÏ´Â µ¥ µµ¿òÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¹ÙÀÌ¿À¸Å½º ¹× Æó±â¹° °¡½ºÈ­ ±â¼úÀÇ ¹ßÀüÀº Àç»ý ¿¡³ÊÁö »ý»êÀÇ »õ·Î¿î ±âȸ¸¦ ¿­¾î ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¸¶Áö¸·À¸·Î È­ÇÐ, ¼®À¯È­ÇÐ, ¾ß±Ý µîÀÇ »ê¾÷¿¡¼­ °¡½ºÈ­ äÅÃÀÌ Áõ°¡Çϰí ÀÖ´Â °Íµµ ½ÃÀå È®´ë¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. °¡½ºÈ­´Â ¾Ï¸ð´Ï¾Æ, ¸Þź¿Ã°ú °°Àº È­ÇÐ »ý»ê¿ë ÇÕ¼º °¡½º »ý»ê°ú Á¤Á¦ ¹× Á¦Ã¶ °øÁ¤¿¡¼­ ¼ö¼Ò »ý»ê¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. »ê¾÷°è°¡ Żź¼ÒÈ­ ¹× ȯ°æ ºÎÇϸ¦ ÁÙÀ̱â À§ÇØ ³ë·ÂÇÏ´Â °¡¿îµ¥, ûÁ¤ ¿¬·á ¹× È­Çй°Áú »ý»ê¿¡ °¡½ºÈ­¸¦ »ç¿ëÇÏ´Â °ÍÀÌ ´õ¿í ¸Å·ÂÀûÀ¸·Î ´Ù°¡¿À°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀº ûÁ¤ ¿¡³ÊÁö ±â¼ú¿¡ ´ëÇÑ Á¤ºÎÀÇ Àå·ÁÃ¥°ú ÇÔ²² °¡½ºÈ­ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇϰí, °¡½ºÈ­ ½ÃÀåÀÌ Àü ¼¼°è ¿¡³ÊÁö ¹× Æó±â¹° °ü¸® ¹®Á¦¸¦ ÇØ°áÇÏ´Â Áß¿äÇÑ ¼Ö·ç¼ÇÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ ¿¹½Ã(36°³»ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Gasification Market to Reach US$577.4 Billion by 2030

The global market for Gasification estimated at US$476.0 Billion in the year 2023, is expected to reach US$577.4 Billion by 2030, growing at a CAGR of 2.8% over the analysis period 2023-2030. Chemical Application, one of the segments analyzed in the report, is expected to record a 3.5% CAGR and reach US$208.5 Billion by the end of the analysis period. Growth in the Liquid Fuel Application segment is estimated at 2.3% CAGR over the analysis period.

The U.S. Market is Estimated at US$129.7 Billion While China is Forecast to Grow at 5.6% CAGR

The Gasification market in the U.S. is estimated at US$129.7 Billion in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$116.8 Billion by the year 2030 trailing a CAGR of 5.6% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 0.8% and 2.1% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 1.4% CAGR.

Global Gasification Market - Key Trends and Drivers Summarized

Why Is Gasification Becoming a Key Player in Sustainable Energy and Waste Management?

Gasification is emerging as a crucial technology for sustainable energy production and waste management, offering a cleaner and more efficient way to convert various feedstocks into useful energy. But why is gasification so important today? Gasification is a thermochemical process that transforms carbon-containing materials—such as coal, biomass, and even municipal solid waste—into syngas (synthetic gas), a mixture of hydrogen, carbon monoxide, and other gases. This syngas can be used to generate electricity, produce chemicals, or serve as a fuel for industrial processes, making gasification a versatile and efficient energy solution.

Unlike traditional combustion, gasification operates in a low-oxygen environment, which minimizes the production of harmful emissions like sulfur dioxide, nitrogen oxides, and particulate matter. This makes it an attractive option for reducing the environmental impact of waste and biomass utilization. Additionally, gasification can help address the global waste problem by converting municipal solid waste and agricultural residues into valuable energy, reducing the burden on landfills and cutting greenhouse gas emissions. In energy-intensive industries, gasification is increasingly being used to produce cleaner fuels like hydrogen and synthetic natural gas (SNG), contributing to the transition toward a more sustainable energy system. With its ability to convert waste into energy while minimizing pollution, gasification is becoming a key player in the pursuit of cleaner, more sustainable industrial processes and energy production.

How Is Technology Enhancing the Efficiency and Versatility of Gasification?

Technological advancements are revolutionizing gasification, making it more efficient, flexible, and economically viable for various applications. One of the most significant breakthroughs in recent years is the development of integrated gasification combined cycle (IGCC) systems. In an IGCC plant, gasification is combined with a gas turbine and a steam turbine to produce electricity with higher efficiency than traditional power plants. By using the syngas produced from gasification to power a gas turbine, and then capturing the heat from the gas turbine exhaust to generate steam for a steam turbine, IGCC systems can achieve thermal efficiencies of over 45%, significantly reducing fuel consumption and greenhouse gas emissions.

Another key technological advancement in gasification is the improvement in feedstock flexibility. Modern gasification plants can now handle a wide range of feedstocks, from coal and petroleum coke to biomass and municipal waste. This flexibility allows industries to optimize feedstock use based on availability, cost, and environmental considerations. Advanced reactors, such as plasma gasifiers, can operate at extremely high temperatures, breaking down feedstocks into their elemental components with minimal by-products, making them ideal for processing complex waste streams.

Additionally, innovations in carbon capture and storage (CCS) are making gasification more environmentally friendly. Gasification plants equipped with CCS technologies can capture and sequester up to 90% of the carbon dioxide produced during the process, preventing it from being released into the atmosphere. This is particularly valuable for industries like steel and cement production, where carbon emissions are difficult to eliminate. Moreover, digital monitoring systems and AI-driven process controls are enhancing the efficiency of gasification plants by optimizing reaction conditions, improving syngas yield, and minimizing energy losses. These advancements are not only making gasification more efficient and versatile but also positioning it as a critical technology for decarbonizing energy and industrial sectors.

Why Are Sustainability and Circular Economy Principles Driving the Adoption of Gasification?

As global industries increasingly focus on sustainability and the circular economy, gasification is gaining attention for its ability to reduce waste and produce cleaner energy. One of the key advantages of gasification is its capacity to process waste materials—such as municipal solid waste, agricultural residues, and industrial by-products—and convert them into valuable energy sources. This not only helps reduce the amount of waste sent to landfills but also mitigates the environmental impact of waste disposal by capturing energy that would otherwise be lost. In this way, gasification supports circular economy principles by transforming waste into a resource and closing the loop on material use.

Additionally, gasification offers a more sustainable way to produce energy compared to traditional fossil fuel-based methods. When used with biomass, gasification can produce renewable energy with a significantly lower carbon footprint. Biomass gasification is considered carbon neutral, as the carbon dioxide released during the process is offset by the CO2 absorbed by the plants during their growth. This makes gasification a promising technology for producing renewable electricity, heat, and biofuels. Furthermore, the ability to generate cleaner synthetic fuels—such as hydrogen, synthetic natural gas (SNG), or liquid fuels—through gasification reduces the reliance on conventional fossil fuels, supporting the transition to a low-carbon energy system.

Gasification also plays a role in reducing industrial emissions. Many industries, such as steelmaking and cement production, are heavy carbon emitters. By integrating gasification into these processes, industries can reduce their reliance on carbon-intensive fuels like coal and shift toward syngas or hydrogen, which produce fewer emissions. The combination of waste-to-energy capabilities, renewable fuel production, and emission reductions is making gasification an increasingly attractive option for industries seeking to meet sustainability goals and adhere to stricter environmental regulations. As the demand for clean energy and waste reduction technologies grows, gasification is positioned to play a pivotal role in achieving these objectives.

What Factors Are Driving the Growth of the Gasification Market?

The growth in the gasification market is driven by several factors, including the global push for clean energy, waste management solutions, and advancements in technology. First, the rising demand for cleaner energy sources is a major driver for the gasification market. Gasification enables the production of syngas, hydrogen, and other synthetic fuels that can be used for power generation, transportation, and industrial processes, offering a cleaner alternative to traditional fossil fuels. As countries set ambitious targets for reducing carbon emissions and transitioning to renewable energy, gasification is emerging as a key technology for producing low-carbon fuels and electricity.

Second, the increasing focus on waste management and the circular economy is propelling the adoption of gasification. Many industries and municipalities are seeking sustainable solutions for managing waste and reducing landfill use. Gasification provides an efficient way to convert waste materials into useful energy while reducing the environmental impact of waste disposal. In regions where landfill space is limited, or waste disposal costs are high, gasification offers a compelling alternative for both waste management and energy production.

Third, technological advancements are making gasification more viable and cost-effective for a wider range of applications. The development of integrated gasification combined cycle (IGCC) systems, feedstock-flexible gasifiers, and carbon capture and storage (CCS) technologies are enhancing the efficiency and environmental performance of gasification plants. These innovations are helping industries reduce operational costs, improve energy efficiency, and comply with stricter environmental regulations. Moreover, advancements in biomass and waste gasification technologies are opening new opportunities for renewable energy production, further driving market growth.

Finally, the increasing adoption of gasification in industries such as chemicals, petrochemicals, and metallurgy is contributing to market expansion. Gasification is widely used to produce synthesis gas for chemical production, such as ammonia and methanol, as well as for hydrogen production in refining and steelmaking processes. As industries seek to decarbonize and reduce their environmental impact, the use of gasification to produce cleaner fuels and chemicals is becoming more attractive. These factors, combined with government incentives for clean energy technologies, are driving the growth of the gasification market, positioning it as a key solution for meeting the world’s energy and waste management challenges.

Select Competitors (Total 36 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â