¼¼°èÀÇ GPU µ¥ÀÌÅͺ£À̽º ½ÃÀå
GPU Database
»óǰÄÚµå : 1571968
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 10¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 89 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,136,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,408,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

GPU µ¥ÀÌÅͺ£À̽º ½ÃÀåÀº 2030³â±îÁö 29¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù.

2023³â¿¡ 8¾ï 590¸¸ ´Þ·¯·Î ÃßÁ¤µÈ GPU µ¥ÀÌÅͺ£À̽º ½ÃÀåÀº ¿¹Ãø ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 20.1%·Î ¼ºÀåÇϰí 2030³â¿¡´Â 29¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ GPU µ¥ÀÌÅͺ£À̽º µµ±¸´Â º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 21.0%·Î ¼ºÀåÀ» Áö¼ÓÇϰí, ºÐ¼® ±â°£ÀÌ ³¡³¯ ¶§ 21¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. GPU µ¥ÀÌÅͺ£À̽º ¼­ºñ½º ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ÀÇ º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)·Î 18.0%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 2¾ï 440¸¸ ´Þ·¯·Î ÃßÁ¤µÇ¸ç Áß±¹Àº º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 25.5%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¹Ì±¹ GPU µ¥ÀÌÅͺ£À̽º ½ÃÀåÀº 2023³â 2¾ï 440¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ¿¹Ãø ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 25.5%¸¦ °ßÀÎÇØ 2030³â±îÁö 8¾ï 110¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç ºÐ¼® ±â°£ Áß º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)Àº °¢°¢ 14.0%¿Í 17.0%·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) ¾à 15.5%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°è GPU µ¥ÀÌÅͺ£À̽º ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ ¿ä¾à

GPU µ¥ÀÌÅͺ£À̽º´Â ºòµ¥ÀÌÅÍ ºÐ¼®¿¡ ¾î¶² Çõ¸íÀ» °¡Á®¿À´Â°¡?

GPU µ¥ÀÌÅͺ£À̽º´Â GPU(±×·¡ÇÈ ÇÁ·Î¼¼½Ì À¯´Ö)ÀÇ º´·Ä ó¸® ´É·ÂÀ» Ȱ¿ëÇÏ¿© Äõ¸® ¼º´É°ú µ¥ÀÌÅÍ Ã³¸®¸¦ °¡¼ÓÈ­ÇÔÀ¸·Î½á ºòµ¥ÀÌÅÍ ºÐ¼®ÀÇ »óȲÀ» ÀϺ¯½Ã۰í ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ CPU ±â¹Ý µ¥ÀÌÅͺ£À̽º¿Í ´Þ¸® GPU µ¥ÀÌÅͺ£À̽º´Â ´ë·®ÀÇ µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î ó¸®ÇÒ ¼ö ÀÖÀ¸¹Ç·Î ÀΰøÁö´É(AI), ¸Ó½Å·¯´×(ML), µö·¯´× µî °í¼Ó ºÐ¼®ÀÌ ÇÊ¿äÇÑ ¿ëµµ¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ºñÁ¤Çü µ¥ÀÌÅ͸¦ Æ÷ÇÔÇÑ º¹ÀâÇÑ Äõ¸®¸¦ ó¸®ÇÒ ¼ö ÀÖ´Â GPU µ¥ÀÌÅͺ£À̽ºÀÇ ´É·ÂÀº ½Å¼ÓÇÑ µ¥ÀÌÅÍ Ã³¸®°¡ ÀÇ»ç°áÁ¤¿¡ ÇʼöÀûÀÎ ±ÝÀ¶, ÇコÄɾî, Åë½Å, ÀÚÀ²ÁÖÇàÂ÷ µî ¾÷°è¿¡¼­ ƯÈ÷ À¯¿ëÇÕ´Ï´Ù. µ¥ÀÌÅÍÀÇ ¾çÀÌ Áö¼öÀûÀ¸·Î Áõ°¡Çϰí ÀÖ´Â °¡¿îµ¥, GPU µ¥ÀÌÅͺ£À̽º´Â ºòµ¥ÀÌÅ͸¦ º¸´Ù È¿°úÀûÀ¸·Î Ȱ¿ëÇÏ·Á´Â ±â¾÷¿¡°Ô Â÷¼¼´ë ¼Ö·ç¼ÇÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.

GPU µ¥ÀÌÅͺ£À̽º ½ÃÀåÀÇ ÁÖ¿ä ºÎ¹®¿Í ¿ëµµ´Â?

GPU µ¥ÀÌÅͺ£À̽º À¯Çü¿¡´Â ¿ÂÇÁ·¹¹Ì½º ¹× Ŭ¶ó¿ìµå ±â¹Ý ¼Ö·ç¼ÇÀÌ ÀÖÀ¸¸ç, È®À强°ú À¯¿¬¼ºÀ¸·Î ÀÎÇØ Ŭ¶ó¿ìµå ¹èÆ÷°¡ Å« ÁöÁö¸¦ ¹Þ°í ÀÖ½À´Ï´Ù. GPU µ¥ÀÌÅͺ£À̽ºÀÇ ÁÖ¿ä ¿ëµµÀ¸·Î´Â ½Ç½Ã°£ ºÐ¼®, ¿¹Ãø ¸ðµ¨¸µ, »ç±â ŽÁö, ÀÚ¿¬¾î ó¸® µîÀÌ ÀÖ½À´Ï´Ù. ±ÝÀ¶ ¼­ºñ½º, Ä¿¹Â´ÏÄÉÀ̼Ç, ÇコÄɾî, ÀÚÀ² ½Ã½ºÅÛ µîÀÇ ¾÷°è¿¡¼­´Â GPU µ¥ÀÌÅͺ£À̽º¸¦ Ȱ¿ëÇÏ¿© º¹ÀâÇÑ Äõ¸®¸¦ ºü¸£°Ô ó¸®Çϰí ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ ºÐ¾ß¿¡¼­´Â GPU µ¥ÀÌÅͺ£À̽º°¡ ÀÚÀ²ÁÖÇà Â÷·® °³¹ß¿¡ µµ¿òÀÌ µÇ¾î ¿©·¯ ¼¾¼­¿¡¼­ ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼®À» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÇÑÆí, Åë½Å ¾÷°è¿¡¼­´Â ³×Æ®¿öÅ© ÃÖÀûÈ­ ¹× °í°´ ºÐ¼®¿¡ GPU µ¥ÀÌÅͺ£À̽º¸¦ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ºÏ¹Ì°¡ ½ÃÀåÀ» ¼±µµÇϰí ÀÖÁö¸¸ AI¿Í µ¥ÀÌÅÍ Áý¾àÀûÀÎ »ê¾÷ÀÇ ¹ßÀüÀ¸·Î ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ ±Þ¼ºÀåÇϰí ÀÖ½À´Ï´Ù.

±â¼ú Çõ½ÅÀº ¾î¶»°Ô GPU µ¥ÀÌÅͺ£À̽ºÀÇ ´É·ÂÀ» Çâ»ó½Ã۴°¡?

Çõ½ÅÀº ƯÈ÷ Àθ޸𸮠ó¸®, º´·Ä ÄÄÇ»ÆÃ, ¸Ó½Å·¯´× ÇÁ·¹ÀÓ¿öÅ©¿ÍÀÇ ÅëÇÕ ºÐ¾ß¿¡¼­ GPU µ¥ÀÌÅͺ£À̽ºÀÇ »ó´çÇÑ °³¼±À» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Àθ޸𸮠GPU µ¥ÀÌÅͺ£À̽º´Â µ¥ÀÌÅ͸¦ ¸Þ¸ð¸®¿¡ Á÷Á¢ ÀúÀåÇÔÀ¸·Î½á Àü·Ê ¾ø´Â ¼Óµµ¸¦ ½ÇÇöÇÏ°í ½Ç½Ã°£ Äõ¸® ½ÇÇàÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¼öõ °³ÀÇ GPU Äھ µ¿½Ã¿¡ ÀÛµ¿ÇÏ´Â º´·Ä ó¸® ±â´ÉÀ» ÅëÇØ ±âÁ¸ µ¥ÀÌÅͺ£À̽º°¡ ÇÊ¿ä·Î ÇÏ´Â ½Ã°£ÀÇ 1/2·Î ¹æ´ëÇÑ µ¥ÀÌÅÍ ¼¼Æ®¸¦ ó¸®ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ GPU µ¥ÀÌÅͺ£À̽º¿Í TensorFlow, PyTorch µîÀÇ ¸Ó½Å·¯´× AI Ç÷§Æû°úÀÇ ÅëÇÕÀ¸·Î µ¥ÀÌÅÍ °úÇÐÀÚ¿¡ ÀÇÇÑ º¹ÀâÇÑ ºÐ¼®ÀÇ ½ÇÇà°ú ¿¹Ãø ¸ðµ¨ÀÇ ±¸ÃàÀÌ ¿ëÀÌÇØÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀ¸·Î GPU µ¥ÀÌÅͺ£À̽ºÀÇ ±â´ÉÀÌ È®ÀåµÇ¾î ºò µ¥ÀÌÅÍ ½Ã´ëÀÇ ºñÁî´Ï½º¿¡ ÇʼöÀûÀÎ µµ±¸°¡ µÇ°í ÀÖ½À´Ï´Ù.

GPU µ¥ÀÌÅͺ£À̽º ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº?

GPU µ¥ÀÌÅͺ£À̽º ½ÃÀåÀÇ ¼ºÀåÀº ½Ç½Ã°£ ºÐ¼®¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿Í µ¥ÀÌÅÍ ±â¹Ý ¿ëµµÀÇ º¹À⼺°ú °°Àº ¿©·¯ ¿äÀο¡ ÀÇÇØ ¾ß±âµÇ°í ÀÖ½À´Ï´Ù. ±â¾÷ÀÌ IoT µð¹ÙÀ̽º, ¼Ò¼È ¹Ìµð¾î, ÀüÀÚ»ó°Å·¡ Ç÷§Æû¿¡¼­ ´õ ¸¹Àº µ¥ÀÌÅ͸¦ »ý¼ºÇÔ¿¡ µû¶ó º¸´Ù ºü¸£°í È¿À²ÀûÀÎ µ¥ÀÌÅÍ Ã³¸®°¡ ÇÊ¿äÇÕ´Ï´Ù. GPU µ¥ÀÌÅͺ£À̽º´Â Äõ¸® ¼º´ÉÀ» ȹ±âÀûÀ¸·Î °¡¼ÓÈ­ÇÏ¿© ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ´Â ½Å¼ÓÇÑ ÀÇ»ç°áÁ¤ÀÌ ½É°¢ÇÑ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ´Â ±ÝÀ¶ ¹× ÇコÄɾî¿Í °°Àº ¾÷°è¿¡¼­ ƯÈ÷ Áß¿äÇÕ´Ï´Ù. ¾öû³­ ¾çÀÇ µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î ó¸®ÇØ¾ß ÇÏ´Â AI¿Í ¸Ó½Å·¯´× ¿ëµµÀÇ È®Àåµµ GPU µ¥ÀÌÅͺ£À̽º äÅÃÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. °Ô´Ù°¡ Ŭ¶ó¿ìµå ±â¹Ý ¼Ö·ç¼ÇÀ¸·ÎÀÇ ÀüȯÀÌ ÁøÇàµÇ°í ÀÖ¾î ºòµ¥ÀÌÅÍÀÇ ¿ä±¸¸¦ °ü¸®Çϱâ À§ÇÑ È®À强°ú ºñ¿ë È¿À²ÀûÀÎ ¹æ¹ýÀ» ¿ä±¸ÇÏ´Â ±â¾÷ÀÌ ´Ã°í ÀÖ´Â °Íµµ ½ÃÀå ¼ºÀå¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ ¿¹(ÃÑ 34°Ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

BJH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global GPU Database Market to Reach US$2.9 Billion by 2030

The global market for GPU Database estimated at US$805.9 Million in the year 2023, is expected to reach US$2.9 Billion by 2030, growing at a CAGR of 20.1% over the analysis period 2023-2030. GPU Database Tools, one of the segments analyzed in the report, is expected to record a 21.0% CAGR and reach US$2.1 Billion by the end of the analysis period. Growth in the GPU Database Services segment is estimated at 18.0% CAGR over the analysis period.

The U.S. Market is Estimated at US$204.4 Million While China is Forecast to Grow at 25.5% CAGR

The GPU Database market in the U.S. is estimated at US$204.4 Million in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$801.1 Million by the year 2030 trailing a CAGR of 25.5% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 14.0% and 17.0% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 15.5% CAGR.

Global GPU Database Market - Key Trends and Drivers Summarized

How Are GPU Databases Revolutionizing Big Data Analytics?

GPU databases are transforming the landscape of big data analytics by leveraging the parallel processing power of Graphics Processing Units (GPUs) to accelerate query performance and data processing. Unlike traditional CPU-based databases, GPU databases can process massive volumes of data in real-time, making them ideal for applications that require high-speed analytics, such as artificial intelligence (AI), machine learning (ML), and deep learning. The ability of GPU databases to handle complex queries, including those involving unstructured data, is particularly valuable in industries like finance, healthcare, telecommunications, and autonomous vehicles, where rapid data processing is critical for decision-making. As data volumes continue to grow exponentially, GPU databases are emerging as the next-generation solution for businesses seeking to harness big data more effectively.

What Are the Key Segments and Applications of the GPU Database Market?

Types of GPU databases include on-premise and cloud-based solutions, with cloud deployments gaining significant traction due to their scalability and flexibility. Key applications of GPU databases include real-time analytics, predictive modeling, fraud detection, and natural language processing. Industries such as financial services, telecommunications, healthcare, and autonomous systems are among the largest adopters, leveraging GPU databases to process complex queries at lightning speed. In the automotive sector, GPU databases are instrumental in the development of autonomous vehicles, enabling real-time data analysis from multiple sensors. Meanwhile, the telecommunications industry relies on these databases for network optimization and customer analytics. North America leads the market, but the Asia-Pacific region is seeing rapid growth due to advancements in AI and data-intensive industries.

How Are Technological Innovations Enhancing GPU Database Capabilities?

Technological advancements are driving significant improvements in GPU databases, particularly in the areas of in-memory processing, parallel computing, and integration with machine learning frameworks. In-memory GPU databases are delivering unprecedented speed by storing data directly in memory, which allows for real-time query execution. Parallel processing capabilities, where thousands of GPU cores work simultaneously, enable the handling of massive datasets in a fraction of the time required by traditional databases. Furthermore, the integration of GPU databases with machine learning and AI platforms, such as TensorFlow and PyTorch, is making it easier for data scientists to perform complex analytics and build predictive models. These innovations are expanding the capabilities of GPU databases, making them an essential tool for businesses in the era of big data.

What Factors Are Driving the Growth in the GPU Database Market?

The growth in the GPU database market is driven by several factors, including the rising demand for real-time analytics and the increasing complexity of data-driven applications. As businesses generate more data from IoT devices, social media, and e-commerce platforms, the need for faster and more efficient data processing has become critical. GPU databases offer a solution by dramatically accelerating query performance, which is particularly important in industries such as finance and healthcare, where rapid decision-making can have significant impacts. The expansion of AI and machine learning applications, which require vast amounts of data to be processed in real-time, is also driving the adoption of GPU databases. Additionally, the growing shift towards cloud-based solutions is fueling market growth, as more businesses look for scalable, cost-effective ways to manage their big data needs.

Select Competitors (Total 34 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â