¼¼°èÀÇ º¹ÇÕÀç ¼ö¸® ½ÃÀå
Composite Repairs
»óǰÄÚµå : 1565136
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 10¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 244 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,106,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 24,320,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

º¹ÇÕÀç ¼ö¸® ¼¼°è ½ÃÀåÀº 2030³â±îÁö 186¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î Àü¸Á

2023³â 136¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â º¹ÇÕÀç ¼ö¸® ¼¼°è ½ÃÀåÀº 2023³âºÎÅÍ 2030³â±îÁö ¿¬Æò±Õ 4.6% ¼ºÀåÇÏ¿© 2030³â¿¡´Â 186¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ Ç×°ø¿ìÁÖ ¹× ¹æÀ§ ºÎ¹®Àº CAGR 6.3%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á ½ÃÁ¡¿¡ 56¾ï ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÚµ¿Â÷ ¹× ¿î¼Û ºÎ¹®Àº ºÐ¼® ±â°£ µ¿¾È 4.1%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 37¾ï ´Þ·¯, Áß±¹Àº CAGR 4.4%·Î ¼ºÀåÇÒ °ÍÀ¸·Î Àü¸Á

¹Ì±¹ÀÇ º¹ÇÕÀç ¼ö¸® ½ÃÀåÀº 2023³â 37¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 29¾ï ´Þ·¯ ±Ô¸ð¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2023-2030³âÀÇ ºÐ¼® ±â°£ µ¿¾È 4.4%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ª ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ µ¿¾È °¢°¢ 4.5%¿Í 3.7%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ 4.3%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼¼°è º¹ÇÕÀç ¼ö¸® ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ ¿ä¾à

º¹ÇÕÀç ¼ö¸®´Â ¾î¶»°Ô »ê¾÷ Àü¹ÝÀÇ À¯Áöº¸¼ö ¹× ±¸Á¶Àû º¸Á¸¼º¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í Àִ°¡?

º¹ÇÕÀç ¼ö¸®¶õ ź¼Ò¼¶À¯, À¯¸®¼¶À¯, ¼öÁö µî ÷´Ü º¹ÇÕÀç·á¸¦ »ç¿ëÇÏ¿© ¼Õ»óµÈ ±¸Á¶¹°À̳ª ºÎǰÀ» ¼ö¸® ¹× º¸°­ÇÏ´Â °ÍÀ» ¸»ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Àç·á´Â ƯÈ÷ Ç×°ø¿ìÁÖ, ÀÚµ¿Â÷, ÇØ¾ç, ¿¡³ÊÁö »ê¾÷ µî °í¼º´É Àç·á°¡ Áß¿äÇÑ ºÐ¾ß¿¡¼­ ±Õ¿­, ±Õ¿­ ¹× ±âŸ ¸¶¸ð ¹× ÆÄ¼ÕÀ» º¹±¸ÇÏ´Â µ¥ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. º¹ÇÕÀç ¼ö¸®°¡ ƯÈ÷ Áß¿äÇÑ ÀÌÀ¯´Â °í°¡ÀÇ ºÎǰÀ̳ª Áß¿äÇÑ ºÎǰÀ» ¿ÏÀüÈ÷ ±³Ã¼ÇÏÁö ¾Ê°íµµ ¼ö¸íÀ» ¿¬ÀåÇÒ ¼ö ÀÖ´Â °¡º±°í °­ÇÏ¸ç ³»±¸¼ºÀÌ ¶Ù¾î³­ ¼Ö·ç¼ÇÀ» Á¦°øÇϱ⠶§¹®ÀÔ´Ï´Ù. ¿¹¸¦ µé¾î, Ç×°ø¿ìÁÖ ºÐ¾ß¿¡¼­ º¹ÇÕÀç·á´Â Áß·® ´ëºñ °­µµ·Î ÀÎÇØ Ç×°ø±â ±¸Á¶¹°¿¡ ÀÚÁÖ »ç¿ëµÇ¸ç, Å« ºÎºÐÀ» ±³Ã¼ÇÏÁö ¾Ê°íµµ ¼Õ»óµÈ º¹ÇÕ±¸Á¶¹°À» ¼ö¸®ÇÒ ¼ö ÀÖ´Ù´Â °ÍÀº ºñ¿ë Àý°¨¿¡ Å« ÀÌÁ¡ÀÌ µË´Ï´Ù. ¶ÇÇÑ, º¹ÇÕÀç ¼ö¸®´Â ±âÁ¸ ¼ö¸® ¹æ¹ýº¸´Ù ´ú ħ½ÀÀûÀ̸ç, ´Ù¿îŸÀÓÀ» ÃÖ¼ÒÈ­ÇÒ ¼ö ÀÖ¾î °¡µ¿ Áö¼ÓÀÌ Áß¿äÇÑ »ê¾÷¿¡¼­ Å« ÀÌÁ¡À¸·Î ÀÛ¿ëÇÕ´Ï´Ù. º¹ÇÕÀç ¼ö¸®ÀÇ ´Ù¸ñÀû¼ºÀº °¡È¤ÇÑ ÇØ¾ç Á¶°Ç¿¡¼­ ÆÄÀÌÇÁ¶óÀÎÀ» ¼ö¸®ÇÏ´Â °ÍºÎÅÍ ¿ø°ÝÁö¿¡¼­ dz·Â Åͺó ºí·¹À̵带 ¼ö¸®ÇÏ´Â °Í±îÁö ´Ù¾çÇÑ È¯°æ¿¡¼­ ±¸Á¶Àû °ÇÀü¼ºÀ» ȸº¹ÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù.

¾î¶² ±â¼ú ¹ßÀüÀÌ º¹ÇÕÀç ¼ö¸® ¹æ¹ýÀ» Çâ»ó½ÃÄ×À»±î?

±â¼úÀÇ ¹ßÀüÀ¸·Î º¹ÇÕÀç º¸¼ö ±â¼úÀÌ Å©°Ô °³¼±µÇ¾î º¸´Ù È¿À²ÀûÀÌ°í ½Å·ÚÇÒ ¼ö ÀÖÀ¸¸ç ´Ù¾çÇÑ Àç·á¿Í ±¸Á¶¹°¿¡ Àû¿ëµÉ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. °¡Àå ÁÖ¸ñÇÒ ¸¸ÇÑ ±â¼ú Çõ½Å Áß Çϳª´Â ¿­¾ÇÇÑ È¯°æ Á¶°Ç¿¡¼­µµ ºü¸£°Ô °æÈ­ÇÒ ¼ö Àִ ÷´Ü ¼öÁö¿Í Á¢ÂøÁ¦ÀÇ °³¹ßÀÔ´Ï´Ù. ÀÌ·¯ÇÑ °í¼º´É ¼öÁö´Â ±Ý¼Ó, ÇÃ¶ó½ºÆ½ ¹× ±âŸ º¹ÇÕÀç·á¿¡ Ź¿ùÇÑ °­µµ·Î º¹ÇÕÀç·á¸¦ °áÇÕÇÏ¿© ±¸Á¶Àû ¹«°á¼º»Ó¸¸ ¾Æ´Ï¶ó ºÎǰÀÇ ±â´ÉÀû ¼º´ÉÀ» º¹¿øÇÏ´Â ¼ö¸®¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¶Ç ´Ù¸¥ Áß¿äÇÑ ¹ßÀüÀº º¹ÇÕÀç ÆÐÄ¡ ¹× ·¦ÇÎÀ» À§ÇÑ ÀÚµ¿È­µÈ ·Îº¿ ½Ã½ºÅÛÀÇ »ç¿ëÀÔ´Ï´Ù. ÀÌ´Â ¼ö¸® ÀÛ¾÷ÀÇ ÀÛÀº °áÇÔµµ ¾ÈÀü¿¡ ½É°¢ÇÑ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ´Â Ç×°ø¿ìÁÖ ¹× ¹æÀ§ »ê¾÷¿¡¼­ ƯÈ÷ Áß¿äÇÕ´Ï´Ù. ÃÊÀ½ÆÄ °Ë»ç, ¿­È­»ó °Ë»ç, ·¹ÀÌÀú °øÀ¯±×·¡ÇÇ¿Í °°Àº ºñÆÄ±« °Ë»ç(NDT) ±â¼úµµ º¹ÇÕÀç ¼ö¸® ¿öÅ©Ç÷ο쿡 ÅëÇÕµÇ¾î ¼ö¸® ÀüÈÄÀÇ ¼Õ»óÀ» Á¤È®ÇÏ°Ô Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹æ¹ýÀ» ÅëÇØ ±â¼úÀÚ´Â ¼û°ÜÁø °áÇÔÀ» °¨ÁöÇÏ°í ±¸Á¶¹°À» ÇØÃ¼ÇÏÁö ¾Ê°íµµ º¸¼ö ǰÁúÀ» È®ÀÎÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÇÁ¸®ÇÁ·¹±×(»çÀü ÇÔħµÈ º¹ÇÕ ¼¶À¯) °³¹ßÀÇ ¹ßÀüÀ¸·Î ¼Õ»óµÈ ±¸Á¶¹°ÀÇ ¸ð¾ç°ú ¿ä±¸ »çÇ׿¡ ¸Â°Ô ½±°Ô ¼ºÇü ¹× °æÈ­ÇÒ ¼ö ÀÖ¾î º¸¼ö °øÁ¤À» °£¼ÒÈ­ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº º¹ÇÕÀç ¼ö¸® °¡´É¼ºÀÇ ÇѰ踦 ¶Ù¾î³Ñ¾î ¾÷°è Àü¹Ý¿¡ ´õ ºü¸£°í, ´õ ¾ÈÁ¤ÀûÀ̸ç, ºñ¿ë È¿À²ÀûÀÎ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù.

º¹ÇÕÀç ¼ö¸®´Â ´Ù¾çÇÑ »ê¾÷¿¡¼­ ¾î¶»°Ô Àû¿ëµÇ°í Àִ°¡?

º¹ÇÕÀç ¼ö¸®´Â ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ Àû¿ëµÇ°í ÀÖÀ¸¸ç, °­µµ, ¹«°Ô, ³»±¸¼º µî º¹ÇÕÀç·áÀÇ °íÀ¯ÇÑ Æ¯¼ºÀ» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. Ç×°ø¿ìÁÖ »ê¾÷¿¡¼­ º¹ÇÕÀç ¼ö¸®´Â ³¯°³, µ¿Ã¼, Á¶Á¾¸é µî Ç×°ø±âÀÇ ±¸Á¶ ºÎǰÀ» À¯ÁöÇϱâ À§ÇØ ÇʼöÀûÀÔ´Ï´Ù. ÃÖ±Ù Ç×°ø±â´Â °æ·®È­ ¹× ¿¬ºñ Çâ»óÀ» À§ÇØ º¹ÇÕÀ縦 »ç¿ëÇÏ´Â °æ¿ì°¡ ¸¹±â ¶§¹®¿¡ ÀÌ·¯ÇÑ ºÎǰÀ» ´ë±Ô¸ð ´Ù¿îŸÀÓÀ̳ª °ªºñ½Ñ ±³Ã¼ ¾øÀÌ ¼ö¸®ÇÒ ¼ö ÀÖ´Â ´É·ÂÀº ¿îÇ× È¿À²À» À¯ÁöÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ÀÚµ¿Â÷ ºÐ¾ß¿¡¼­ º¹ÇÕÀç ¼ö¸®´Â ź¼Ò¼¶À¯¿Í °°Àº °æ·® ¼ÒÀç·Î ¸¸µé¾îÁø ±¸Á¶ ºÎǰ°ú ÆÐ³ÎÀ» ¼ö¸®ÇÏ´Â µ¥ »ç¿ëµÇ¾î °í¼º´É ÀÚµ¿Â÷ÀÇ ¹«°á¼º°ú °ø±â¿ªÇÐÀû Ư¼ºÀ» À¯ÁöÇϸ鼭 Â÷·®ÀÇ ¼ö¸íÀ» ¿¬ÀåÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÇØ¾ç »ê¾÷¿¡¼­´Â °¡È¤ÇÑ È¯°æ Á¶°Ç¿¡ ³ëÃâµÇ´Â ¼±¹Ú¿¡ º¹ÇÕÀç ¼ö¸®°¡ Áß¿äÇÏ°Ô È°¿ëµÇ°í ÀÖ½À´Ï´Ù. ¼±Ã¼, °©ÆÇ, µÀ´ë¸¦ º¹ÇÕÀç·á·Î ¼ö¸®ÇÏ¸é ±âÁ¸ÀÇ Áß±Ý¼Ó ¼ö¸® ¾øÀ̵µ ¼ö¹Ð¼º°ú °­µµ¸¦ ȸº¹ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¡³ÊÁö ºÐ¾ß¿¡¼­´Â ¼Õ»óµÈ dz·Â Åͺó ºí·¹À̵带 ¼ö¸®Çϰųª ³ëÈÄÈ­µÈ ÆÄÀÌÇÁ¶óÀÎÀ» º¸°­ÇÏ´Â µ¥ º¹ÇÕÀç ¼ö¸®°¡ ÀÚÁÖ È°¿ëµÇ°í ÀÖ½À´Ï´Ù. ƯÈ÷ º¹ÇÕÀç ·¦Àº ÆÄÀÌÇÁ¶óÀÎ ¼ö¸®¿¡ ³Î¸® »ç¿ëµÇ¾î °¡µ¿ Áß´ÜÀ» ÇÇÇÏ´Â ºü¸£°í ºñ¿ë È¿À²ÀûÀÎ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ, Åä¸ñ ÀÎÇÁ¶ó¿¡¼­ º¹ÇÕÀç·á·Î º¸°­µÈ ±³·®À̳ª °Ç¹°Àº ÀÌ·¯ÇÑ ¹æ½ÄÀ¸·Î º¸¼öÇÒ ¼ö ÀÖ¾î ´ë±Ô¸ð °³Ãà ¾øÀ̵µ ¾ÈÀü¼º°ú ±â´É¼ºÀ» À¯ÁöÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ »ê¾÷¿¡¼­ º¹ÇÕÀç ¼ö¸®´Â ±âÁ¸ÀÇ º¸¼ö ±â¼úÀ» ´ëüÇÒ ¼ö ÀÖ´Â °í¼º´ÉÀÇ ¿À·¡ Áö¼ÓµÇ´Â ´ë¾ÈÀ» Á¦°øÇÏ¿© À¯Áöº¸¼ö ºñ¿ëÀ» Àý°¨Çϰí Áß¿äÇÑ ¼³ºñÀÇ ¼ö¸íÀ» ¿¬ÀåÇÏ´Â µ¥ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

º¹ÇÕÀç ¼ö¸® ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀϱî?

º¹ÇÕÀç ¼ö¸® ½ÃÀåÀÇ ¼ºÀåÀº ¸î °¡Áö Áß¿äÇÑ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. °¡Àå Å« ¿äÀÎÀº ³»±¸¼ºÀÌ ¶Ù¾î³ª°í, °¡º±°í, ºñ¿ë È¿À²ÀûÀÎ ¼ö¸® ¼Ö·ç¼Ç¿¡ ´ëÇÑ °¢ »ê¾÷ ºÐ¾ß ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ƯÈ÷ Ç×°ø¿ìÁÖ, ÀÚµ¿Â÷, Àç»ý¿¡³ÊÁö ºÐ¾ß¿¡¼­ º¹ÇÕ¼ÒÀç´Â ¼º´É°ú È¿À²¼ºÀ» Çâ»ó½ÃŰ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. º¹ÇÕ¼ÒÀç·Î Á¦À۵Ǵ ºÎǰÀÌ ´Ã¾î³²¿¡ µû¶ó Àç·áÀÇ ±¸Á¶Àû, ±â´ÉÀû ¹«°á¼ºÀ» À¯ÁöÇϱâ À§ÇÑ Æ¯¼öÇÑ ¼ö¸® ¹æ¹ý¿¡ ´ëÇÑ Çʿ伺ÀÌ ºü¸£°Ô Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °íºÎ°¡°¡Ä¡ ÀÚ»êÀ» ¿î¿ëÇÏ´Â »ê¾÷¿¡¼­ Áö¼Ó°¡´É¼º°ú ¼ö¸íÁֱ⠰ü¸®¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ´Â °Íµµ Å« ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. º¹ÇÕÀç ¼ö¸®´Â °í°¡ÀÇ ±³Ã¼Ç°¿¡ ÀÇÁ¸ÇÏÁö ¾Ê°íµµ Áß¿äÇÑ ÀåºñÀÇ ¼ö¸íÀ» ¿¬ÀåÇÏ°í Æó±â¹°À» ÁÙ¿© ÀÚ¿øÀ» Àý¾àÇÒ ¼ö ÀÖ´Â ¹æ¹ýÀ» Á¦°øÇÕ´Ï´Ù. À̴ dz·Â Åͺó ºí·¹À̵å¿Í ÆÄÀÌÇÁ¶óÀÎÀÇ ¼ö¸®°¡ ¿ÏÀüÇÑ ºÎǰ ±³Ã¼º¸´Ù ÈξÀ ´õ Áö¼Ó °¡´ÉÇÏ°í ºñ¿ë È¿À²ÀûÀÏ ¼ö ÀÖ´Â ¿¡³ÊÁö¿Í °°Àº »ê¾÷¿¡¼­ ƯÈ÷ Áß¿äÇÕ´Ï´Ù. ¶ÇÇÑ, ±Þ¼Ó °æÈ­ ¼öÁö, ¼ö¸® °øÁ¤ ÀÚµ¿È­, ºñÆÄ±« °Ë»ç ¹æ¹ý µî ÷´Ü Àç·á ¹× ±â¼ú °³¹ßÀº º¹ÇÕÀç ¼ö¸®ÀÇ È¿À²¼ºÀ» ³ôÀ̰í, º¹ÇÕÀç ¼ö¸®ÀÇ Ã¤ÅÃÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, º¹ÇÕÀç ¼ö¸®°¡ °¡µ¿ Áß´ÜÀ» ÃÖ¼ÒÈ­Çϰí ÇöÀå¿¡¼­ ¹Ù·Î ¼öÇàÇÒ ¼ö ÀÖ´Â °æ¿ì°¡ ¸¹±â ¶§¹®¿¡ ´Ù¿îŸÀÓ°ú À¯Áöº¸¼ö ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ´Ù´Â Á¡µµ º¹ÇÕÀç ¼ö¸® ½ÃÀåÀ» °ßÀÎÇÏ´Â ¿äÀÎÀÔ´Ï´Ù. ¸¶Áö¸·À¸·Î, Áß¿ä ÀÎÇÁ¶ó¿¡¼­ Àç·áÀÇ ¾ÈÀü¼º°ú ±ä ¼ö¸íÀ» °­Á¶ÇÏ´Â ±ÔÁ¦ ±âÁØÀº ¾÷°è°¡ º¸´Ù ½Å·ÚÇÒ ¼ö ÀÖ°í ³»±¸¼ºÀÌ ¶Ù¾î³­ ¼ö¸® ¼Ö·ç¼ÇÀ» äÅÃÇϵµ·Ï Àå·ÁÇϰí ÀÖÀ¸¸ç, ÀÌ´Â º¹ÇÕÀç ¼ö¸® ¼ö¿ä¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀº Áö¼ÓÀûÀÎ ±â¼ú Çõ½Å°ú ÇÔ²² º¹ÇÕÀç ¼ö¸® ½ÃÀåÀÇ Áö¼ÓÀûÀÎ ¼ºÀåÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ ¿¹½Ã(ÃÑ 42°Ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Composite Repairs Market to Reach US$18.6 Billion by 2030

The global market for Composite Repairs estimated at US$13.6 Billion in the year 2023, is expected to reach US$18.6 Billion by 2030, growing at a CAGR of 4.6% over the analysis period 2023-2030. Aerospace & Defense End-Use, one of the segments analyzed in the report, is expected to record a 6.3% CAGR and reach US$5.6 Billion by the end of the analysis period. Growth in the Automotive & Transportation End-Use segment is estimated at 4.1% CAGR over the analysis period.

The U.S. Market is Estimated at US$3.7 Billion While China is Forecast to Grow at 4.4% CAGR

The Composite Repairs market in the U.S. is estimated at US$3.7 Billion in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$2.9 Billion by the year 2030 trailing a CAGR of 4.4% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 4.5% and 3.7% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 4.3% CAGR.

Global Composite Repairs Market - Key Trends and Drivers Summarized

How Are Composite Repairs Revolutionizing Maintenance and Structural Integrity Across Industries?

Composite repairs refer to the use of advanced composite materials, such as carbon fiber, fiberglass, and resins, to restore or reinforce damaged structures and components. These materials are applied to repair cracks, fractures, and other forms of wear and tear, especially in sectors where high-performance materials are crucial, such as aerospace, automotive, marine, and energy industries. Composite repairs are particularly important because they offer a lightweight, strong, and durable solution that can often extend the service life of expensive or critical components without the need for full replacement. For instance, in the aerospace sector, composite materials are frequently used in aircraft structures due to their strength-to-weight ratio, and the ability to repair damaged composite structures without replacing large sections is a major cost-saving advantage. Furthermore, composite repairs are less invasive than traditional repair methods, often requiring minimal downtime, which is a significant benefit in industries where operational continuity is critical. The versatility of composite repairs allows for the restoration of structural integrity in diverse environments, from repairing pipelines in harsh offshore conditions to mending wind turbine blades on remote sites.

What Technological Advances Have Enhanced Composite Repair Methods?

Technological advancements have significantly improved composite repair techniques, making them more efficient, reliable, and applicable to a wider range of materials and structures. One of the most notable innovations is the development of advanced resins and adhesives that can cure rapidly, even in adverse environmental conditions. These high-performance resins bond composite materials to metals, plastics, or other composites with exceptional strength, enabling repairs that restore not only structural integrity but also the functional performance of the component. Another key advancement is the use of automated and robotic systems for applying composite patches or wraps, which ensures precision in the repair process and reduces the potential for human error. This is particularly important in industries like aerospace and defense, where even minor flaws in repair work can have significant safety implications. Non-destructive testing (NDT) technologies, such as ultrasonic testing, thermography, and laser shearography, have also been integrated into composite repair workflows to accurately assess damage before and after repairs. These methods allow technicians to detect hidden flaws and ensure the quality of the repair without dismantling the structure. Additionally, advancements in the development of prepregs—pre-impregnated composite fibers—have simplified the repair process, as these materials can be easily molded and cured to match the shape and requirements of the damaged structure. Such innovations are pushing the boundaries of what is possible in composite repairs, offering faster, more reliable, and cost-effective solutions across industries.

How Are Composite Repairs Applied Across Different Industries?

Composite repairs are applied across a broad spectrum of industries, each benefiting from the unique properties that composites offer in terms of strength, weight, and durability. In the aerospace industry, composite repairs are critical for maintaining aircraft structural components such as wings, fuselages, and control surfaces. As modern aircraft increasingly use composite materials to reduce weight and improve fuel efficiency, the ability to repair these components without extensive downtime or costly replacements has become essential for maintaining operational efficiency. In the automotive sector, composite repairs are used to restore structural parts and panels made of lightweight materials like carbon fiber, helping to extend the lifespan of high-performance vehicles while maintaining their integrity and aerodynamics. The marine industry relies heavily on composite repairs for vessels exposed to harsh environmental conditions. Repairing hulls, decks, and masts with composite materials can restore their water-tightness and strength without the need for traditional, heavier metal repairs. In the energy sector, composite repairs are frequently employed to fix damaged wind turbine blades and reinforce aging pipelines. Composite wraps, in particular, are widely used for pipeline repairs, providing a fast, cost-effective solution that avoids shutting down operations. Additionally, in civil infrastructure, bridges and buildings reinforced with composite materials can be repaired using these methods, ensuring they remain safe and functional without the need for extensive reconstruction. Across these industries, composite repairs offer a high-performance, long-lasting alternative to traditional repair techniques, helping reduce maintenance costs and extend the life of vital equipment.

What Factors Are Fueling the Growth of the Composite Repairs Market?

The growth in the composite repairs market is driven by several key factors, largely due to the increasing demand for durable, lightweight, and cost-effective repair solutions across industries. One of the primary drivers is the widespread use of composite materials in modern infrastructure, particularly in aerospace, automotive, and renewable energy sectors, where these materials are critical for improving performance and efficiency. As more components are made from composites, the need for specialized repair methods that maintain the material’s structural and functional integrity is rapidly increasing. Another major factor is the rising focus on sustainability and life-cycle management in industries that operate high-value assets. Composite repairs offer a way to extend the lifespan of critical equipment without resorting to expensive replacements, thus reducing waste and conserving resources. This is particularly significant in industries like energy, where repairs to wind turbine blades or pipelines are far more sustainable and cost-effective than complete part replacements. The development of advanced materials and technologies, such as fast-curing resins, automation in repair processes, and non-destructive testing methods, has also made composite repairs more efficient, further boosting their adoption. Additionally, the trend toward reducing downtime and maintenance costs is driving the market, as composite repairs can often be performed in situ with minimal disruption to operations. Finally, regulatory standards emphasizing the safety and longevity of materials in critical infrastructure are pushing industries to adopt more reliable and durable repair solutions, further fueling demand for composite repairs. These factors, combined with ongoing technological innovation, position the composite repairs market for continued growth as industries increasingly turn to high-performance materials for both construction and maintenance needs.

Select Competitors (Total 42 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â