¼¼°èÀÇ Àΰ£ °£ ¸ðµ¨ ½ÃÀå
Human Liver Models
»óǰÄÚµå : 1564997
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 10¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 194 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,464,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 25,393,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Àΰ£ °£ ¸ðµ¨ ¼¼°è ½ÃÀå ±Ô¸ð´Â 2030³â±îÁö 4¾ï 7,420¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î Àü¸Á

2023³â 2¾ï 5,190¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â Àΰ£ °£ ¸ðµ¨ ¼¼°è ½ÃÀåÀº 2023-2030³â ºÐ¼® ±â°£ µ¿¾È ¿¬Æò±Õ 9.5% ¼ºÀåÇÏ¿© 2030³â¿¡´Â 4¾ï 7,420¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. º» º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ½Å¾à °³¹ß ¾ÖÇø®ÄÉÀ̼ÇÀº CAGR 9.3%¸¦ ±â·ÏÇÏ¿© ºÐ¼® ±â°£ Á¾·á ½ÃÁ¡¿¡ 2¾ï 2,580¸¸ ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±³À° ¾ÖÇø®ÄÉÀÌ¼Ç ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 10.6%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 6,810¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 13.3%·Î ¼ºÀåÇÒ °ÍÀ¸·Î Àü¸Á

¹Ì±¹ÀÇ Àΰ£ °£ ¸ðµ¨ ½ÃÀåÀº 2023³â 6,810¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 1¾ï 460¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2023-2030³â ºÐ¼® ±â°£ µ¿¾È 13.3%ÀÇ CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ª ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ µ¿¾È °¢°¢ 6.8%¿Í 7.5%ÀÇ CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ ¿¬Æò±Õ 7.3%ÀÇ ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼¼°è Àΰ£ °£ ¸ðµ¨ ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ ¿ä¾à

Àΰ£ °£ ¸ðµ¨Àº ÀǾàǰ °³¹ß, Áúº´ ¿¬±¸, µ¶¼º ½ÃÇèÀÇ ¹Ì·¡°¡ µÉ ¼ö ÀÖÀ»±î?

Àΰ£ °£ ¸ðµ¨Àº »ý¹° ÀÇÇÐ ¿¬±¸¿¡ ÇʼöÀûÀÎ µµ±¸·Î µîÀåÇߴµ¥, ¿Ö ÀǾàǰ °³¹ß, Áúº´ ¿¬±¸, µ¶¼º ½ÃÇè¿¡ ÇʼöÀûÀÎ °ÍÀϱî? Àΰ£ °£ ¸ðµ¨Àº Àΰ£ °£ÀÇ ±¸Á¶¿Í ±â´ÉÀ» ¸ð¹æÇÑ °£ ¿ÂĨ, 3D ¹ÙÀÌ¿ÀÇÁ¸°Æ® °£ Á¶Á÷, ¿À°¡³ëÀ̵å, ¼¼Æ÷¹è¾ç ¸ðµ¨°ú °°Àº ½ÃÇè°ü ³» ½Ã½ºÅÛÀ» ¸»ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¸ðµ¨À» ÅëÇØ °úÇÐÀÚµéÀº µ¿¹° ¸ðµ¨À̳ª Àΰ£ ÀÓ»ó½ÃÇè¿¡ ÀÇÁ¸ÇÏÁö ¾Ê°íµµ °£ ±â´É, ¾à¹° ´ë»ç, °£ Áúȯ, µ¶¼º ¿µÇâÀ» ¿¬±¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àΰ£ °£ ¸ðµ¨ÀÇ Á߿伺Àº °£ ±â´É ¹× Áúº´ ±âÀü ¿¬±¸¿¡ º¸´Ù Á¤È®Çϰí Àΰ£°ú °ü·ÃµÈ µ¥ÀÌÅ͸¦ Á¦°øÇÒ ¼ö ÀÖ´Ù´Â Á¡¿¡ ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ µ¿¹° ¸ðµ¨Àº Àΰ£ÀÇ »ý¹°ÇÐÀ» Á¤È®ÇÏ°Ô Ç¥ÇöÇÏÁö ¸øÇÏ´Â °æ¿ì°¡ ¸¹¾Æ ÀǾàǰ °³¹ß ¹× µ¶¼ºÇп¡ ¹®Á¦¸¦ ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. Àΰ£ °£ ¸ðµ¨Àº ¾à¹°ÀÇ È¿´É, °£µ¶¼º ¹× ´ë»ç °úÁ¤À» º¸´Ù Á¤È®ÇÏ°Ô Å×½ºÆ®ÇÒ ¼ö ÀÖ´Â °­·ÂÇÑ ´ë¾ÈÀ» Á¦°øÇÕ´Ï´Ù. °³ÀÎ ¸ÂÃãÇü ÀÇ·á, »ý¸í°øÇÐ ¹× Á¦¾à »ê¾÷ÀÌ È®´ëµÊ¿¡ µû¶ó Àΰ£ °£ ¸ðµ¨Àº ½Å¾à °³¹ßÀÇ Á¤È®¼ºÀ» ³ôÀÌ°í µ¿¹° ½ÇÇè¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãß¸ç °£ ÁúȯÀ» ´õ ±íÀÌ ÀÌÇØÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.

±â¼úÀº ¾î¶»°Ô Àΰ£ °£ ¸ðµ¨À» ¹ßÀü½ÃÄ״°¡?

±â¼úÀÇ ¹ßÀüÀº Àΰ£ °£ ¸ðµ¨ÀÇ °³¹ß ¹× ±â´ÉÀ» Å©°Ô Çâ»ó½ÃÄÑ ´Ù¾çÇÑ »ýÀÇÇÐ ÀÀ¿ëÀ» À§ÇÑ Á¤È®¼º°ú ´Ù¾ç¼ºÀ» Çâ»ó½ÃÄ×½À´Ï´Ù. °¡Àå Áß¿äÇÑ µ¹ÆÄ±¸ Áß Çϳª´Â °£ÀÇ ¿ªµ¿ÀûÀΠȯ°æÀ» ¸ð¹æÇÑ ¹Ì¼¼ À¯Ã¼ ÀåÄ¡¸¦ »ç¿ëÇÏ¿© ¼ÒÇüÈ­µÈ °£ ½Ã½ºÅÛÀ» ¸¸µå´Â °£-¿Â-¾î-Ĩ(liver-on-a-chip) ±â¼úÀÇ µîÀåÀÔ´Ï´Ù. ÀÌ Ä¨¿¡´Â »ì¾ÆÀÖ´Â Àΰ£ °£¼¼Æ÷¿Í Ç÷·ù¸¦ ÀçÇöÇÏ´Â ¹Ì¼¼ À¯Ã¼ ä³ÎÀÌ Æ÷ÇԵǾî ÀÖ¾î ¸Å¿ì Çö½ÇÀûÀÎ °£ »ý¸® ¸ðµ¨À» Á¦°øÇÕ´Ï´Ù. ÀÌ ±â¼úÀ» ÅëÇØ ¿¬±¸ÀÚµéÀº °£¿¡¼­ ¾à¹°°ú µ¶¼Ò°¡ ¾î¶»°Ô ´ë»çµÇ´ÂÁö ÅëÁ¦µÈ ȯ°æ¿¡¼­ ¿¬±¸ÇÒ ¼ö ÀÖÀ¸¸ç, À̸¦ ÅëÇØ ÀǾàǰ °³¹ßÀ» À§ÇÑ º¸´Ù ¿¹Ãø °¡´ÉÇÑ µ¥ÀÌÅ͸¦ ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

3D ¹ÙÀÌ¿ÀÇÁ¸°ÆÃÀº Àΰ£ °£ ¸ðµ¨À» ¹ßÀü½ÃŰ´Â Çõ½ÅÀûÀÎ ±â¼úÀ̱⵵ ÇÕ´Ï´Ù. °£¼¼Æ÷ ¹× ±âŸ »ýü Àç·á·Î ¸¸µç ¹ÙÀÌ¿À À×Å©¸¦ »ç¿ëÇÏ¿© °úÇÐÀÚµéÀº Àΰ£ °£°ú µ¿ÀÏÇÑ º¹ÀâÇÑ ±¸Á¶¸¦ °¡Áø °£ Á¶Á÷À» ÀμâÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ 3D ¹ÙÀÌ¿À ÇÁ¸°Æ® °£ Á¶Á÷Àº °£ ¹Ì¼¼ ±¸Á¶¸¦ ´õ Àß Ç¥ÇöÇÏ°í ½ÃÇè°ü ³» ¿¬±¸ÀÇ Á¤È®µµ¸¦ Çâ»ó½Ãŵ´Ï´Ù. °£ Á¶Á÷À» ¹ÙÀÌ¿ÀÇÁ¸°ÆÃÇÒ ¼ö ÀÖ°Ô µÊ¿¡ µû¶ó ȯÀÚº° °£ ¸ðµ¨À» ¸¸µé ¼ö ÀÖ´Â ±æÀÌ ¿­·ÈÀ¸¸ç, °³Àκ° ¸ÂÃ㠾๰ Å×½ºÆ® ¹× Áúº´ ¸ðµ¨¸µ¿¡ »ç¿ëÇÒ ¼ö ÀÖ¾î Àǻ簡 °³ÀÎÀÇ °£ÀÌ Æ¯Á¤ Ä¡·á¿¡ ¾î¶»°Ô ¹ÝÀÀÇÒÁö ¿¹ÃøÇÏ´Â µ¥ µµ¿òÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.

¿À°¡³ëÀÌµå ±â¼úÀº Àΰ£ °£ ¸ðµ¨¿¡µµ Çõ¸íÀ» ÀÏÀ¸Ä×½À´Ï´Ù. °£ ¿À°¡³ëÀ̵å´Â Áٱ⼼Æ÷¿¡¼­ À¯·¡ÇÑ ÀÚ°¡ Á¶Á÷È­µÇ´Â ¼ÒÇü 3D ±¸Á¶¹°·Î, °£ÀÇ ÁÖ¿ä ±â´É Áß »ó´ç ºÎºÐÀ» ÀçÇöÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¿À°¡³ëÀ̵å´Â °£ Àç»ý, Áúº´ ÁøÇà ¹× ¾à¹° ´ë»ç¸¦ ¿¬±¸ÇÒ ¼ö ÀÖ´Â ±ÍÁßÇÑ Ç÷§ÆûÀ» Á¦°øÇÕ´Ï´Ù. ƯÈ÷ °£¿°À̳ª ºñ¾ËÄڿüº Áö¹æ°£ Áúȯ(NAFLD)°ú °°Àº °£ ÁúȯÀ» ¸ðµ¨¸µÇÏ°í º¸´Ù Àΰ£¿¡ °¡±î¿î ½Ã½ºÅÛ¿¡¼­ ½Å¾àÀÇ È¿°ú¸¦ °ËÁõÇÏ´Â µ¥ À¯¿ëÇÕ´Ï´Ù. ¿À°¡³ëÀ̵å´Â Àç»ýÀÇ·á ºÐ¾ß¿¡¼­µµ ÀáÀç·ÂÀ» °¡Áö°í ÀÖ½À´Ï´Ù. ¾ðÁ¨°¡´Â ¼Õ»óµÈ °£ Á¶Á÷À» º¹±¸Çϰųª ´ëüÇÏ´Â µ¥ »ç¿ëµÉ ¼ö Àֱ⠶§¹®ÀÔ´Ï´Ù.

Áٱ⼼Æ÷ ±â¼úÀÇ ¹ßÀü, ƯÈ÷ Àΰø¸¸´ÉÁٱ⼼Æ÷(iPSC)ÀÇ È°¿ëÀº ȯÀÚ ÀÚ½ÅÀÇ ¼¼Æ÷¿¡¼­ À¯µµÇÏ¿© °£¼¼Æ÷(°£¼¼Æ÷)·Î ºÐÈ­½Ãų ¼ö Àֱ⠶§¹®¿¡ ȯÀÚ¿Í À¯ÀüÀûÀ¸·Î µ¿ÀÏÇÑ °£ ¸ðµ¨À» ¸¸µé ¼ö ÀÖ´Â °³ÀÎÈ­µÈ °£ ¸ðµ¨ °³¹ßÀ» ÃËÁøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ °³ÀÎÈ­µÈ °£ ¸ðµ¨À» ÅëÇØ ȯÀÚ °³°³ÀÎÀÇ ¹ÝÀÀÀ» ¹Ý¿µÇÑ ¾à¹° ½ºÅ©¸®´×°ú µ¶¼º½ÃÇèÀÌ °¡´ÉÇØÁ® º¸´Ù ¸ÂÃãÇüÀ¸·Î Á¤È®ÇÑ ¾à¹° °³¹ßÀÌ °¡´ÉÇØÁý´Ï´Ù.

¶Ç ´Ù¸¥ ¹ßÀüÀº °£ ¸ðµ¨ ¿¬±¸¿¡¼­ ÀΰøÁö´É(AI)°ú ±â°èÇнÀÀÇ ÅëÇÕÀ¸·Î, AI ¾Ë°í¸®ÁòÀº °£ ¸ðµ¨¿¡¼­ ¾òÀº ´ë±Ô¸ð µ¥ÀÌÅÍ ¼¼Æ®¸¦ ºÐ¼®ÇÏ¿© ¿¬±¸ÀÚ¿¡°Ô´Â ¸íÈ®ÇÏÁö ¾ÊÀº ¾à¹° ´ë»ç ¹× Áúº´ ÁøÇà ÆÐÅÏÀ» ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ AI ±â¹Ý µµ±¸´Â °£ ¿ÂĨ ½Ã½ºÅÛ ¼³°è¸¦ ÃÖÀûÈ­ÇÏ°í ¸ðµ¨ ¹ÝÀÀ¿¡ µû¶ó ¾à¹° Ä¡·á °á°ú¸¦ ¿¹ÃøÇÒ ¼ö ÀÖ¾î ¿¬±¸ ¹æ¹ýÀ» ´õ¿í °¡¼ÓÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àΰ£ °£ ¸ðµ¨ÀÌ ÀǾàǰ °³¹ß ¹× Áúº´ ¿¬±¸¿¡ ÇʼöÀûÀÎ ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

Àΰ£ °£ ¸ðµ¨Àº ¾à¹° ¹× Áúº´ÀÌ °£°ú »óÈ£ ÀÛ¿ëÇÏ´Â ¹æ½ÄÀ» ÀÌÇØÇϱâ À§ÇÑ º¸´Ù Á¤È®Çϰí Àΰ£°ú °ü·ÃµÈ Ç÷§ÆûÀ» Á¦°øÇϱ⠶§¹®¿¡ ¾à¹° °³¹ß, Áúº´ ¿¬±¸ ¹× µ¶¼º °Ë»ç¿¡ ÇʼöÀûÀÔ´Ï´Ù. °£Àº ¾à¹°°ú µ¶¼º ¹°ÁúÀÇ ´ë»ç¿¡ ÇÙ½ÉÀûÀÎ ¿ªÇÒÀ» Çϸç, ¾à¹° ¾ÈÀü¼º ½ÃÇè¿¡¼­ Áß¿äÇÑ ÃÊÁ¡ÀÌ µÇ°í ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ µ¿¹° ¸ðµ¨Àº Á¾¿¡ µû¶ó ´ë»ç°¡ Å©°Ô ´Ù¸£±â ¶§¹®¿¡ Àΰ£ °£ÀÌ ½Å¾à¿¡ ¾î¶»°Ô ¹ÝÀÀÇÒÁö ¿¹ÃøÇÒ ¼ö ¾ø´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ¹Ý¸é, Àΰ£ °£ ¸ðµ¨Àº Àΰ£ °£ ±â´ÉÀÇ ¼¼Æ÷ÇÐÀû, »ý¸®Àû Ư¡À» ÀçÇöÇÏ¿© ¾à¹°ÀÇ ´ë»ç, È¿´É ¹× ÀáÀçÀû µ¶¼º¿¡ ´ëÇÑ º¸´Ù Á¤È®ÇÑ µ¥ÀÌÅ͸¦ Á¦°øÇÕ´Ï´Ù.

Àΰ£ °£ ¸ðµ¨ÀÇ °¡Àå Áß¿äÇÑ ¿ëµµ Áß Çϳª´Â ÀüÀÓ»ó ¾à¹° ½ÃÇèÀÔ´Ï´Ù. ½Å¾àÀÌ ÀÓ»ó½ÃÇè¿¡ µé¾î°¡±â Àü¿¡ ¾ÈÀü¼º°ú È¿´É, ƯÈ÷ °£ ±â´É°úÀÇ ¿¬°ü¼ºÀ» Å×½ºÆ®ÇؾßÇÕ´Ï´Ù. Àΰ£ °£ ¸ðµ¨À» ÅëÇØ ¿¬±¸ÀÚµéÀº ¾à¹°ÀÌ ¾î¶»°Ô ´ë»çµÇ´ÂÁö, °£¿¡ µ¶¼ºÀÌ ÀÖ´ÂÁö Æò°¡ÇÒ ¼ö ÀÖÀ¸¸ç, ¿¬±¸ °³¹ß Ãʱ⠴ܰ迡¼­ ÀáÀçÀûÀÎ ¹®Á¦¸¦ ½Äº° ÇÒ ¼ö ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ Èıâ ÀÓ»ó½ÃÇè¿¡¼­ ¿¹»óÄ¡ ¸øÇÑ °£ µ¶¼ºÀ¸·Î ÀÎÇØ ¾à¹°ÀÌ ½ÇÆÐÇÒ °¡´É¼ºÀ» ³·Ãß°í Á¦¾à ȸ»çÀÇ ½Ã°£, ÀÚ¿ø ¹× ºñ¿ëÀ» Àý¾à ÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àΰ£ °£ ¸ðµ¨Àº °£¿°, °£°æº¯, °£¾Ï°ú °°Àº °£ Áúȯ ¿¬±¸¿¡µµ ¸Å¿ì À¯¿ëÇÕ´Ï´Ù. °£ ¿ÂĨ ½Ã½ºÅÛ, 3D ¹ÙÀÌ¿À ÇÁ¸°Æ® Á¶Á÷ ¶Ç´Â ¿À°¡³ëÀ̵带 »ç¿ëÇÏ¿© ¿¬±¸ÀÚµéÀº ½ÃÇè°ü ³»¿¡¼­ °£ ÁúȯÀÇ »óŸ¦ ÀçÇöÇÏ¿© Áúº´ÀÇ ¸ÞÄ¿´ÏÁò, ÁøÇà ¹× ÀáÀçÀûÀÎ Ä¡·á¹ýÀ» ¿¬±¸ ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¸ðµ¨Àº °£ ÁúȯÀÌ ¼¼Æ÷ ¼öÁØ¿¡¼­ °£ ±â´É¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ ´ëÇÑ ÀλçÀÌÆ®¸¦ Á¦°øÇÏ¿© º¸´Ù È¿°úÀûÀÎ Ä¡·á¹ýÀ» °³¹ßÇÏ´Â µ¥ µµ¿òÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, °£ ¸ðµ¨À» »ç¿ëÇÏ¿© °£¿° Ç×¹ÙÀÌ·¯½ºÁ¦¸¦ ½ÃÇèÇϰųª °£¾Ï¿¡ ´ëÇÑ »õ·Î¿î Ä¡·á¹ýÀÇ È¿´ÉÀ» ¿¬±¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

µ¶¼º ½ÃÇè ¿ª½Ã Àΰ£ °£ ¸ðµ¨ÀÌ Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ´Â ºÐ¾ßÀÔ´Ï´Ù. ¸¹Àº È­ÇÐÁ¦Ç°°ú ȯ°æµ¶¼Ò´Â °£¿¡ À¯ÇØÇÑ ¿µÇâÀ» ¹ÌÃÄ °£ ¼Õ»ó, °£ºÎÀü µîÀÇ Áõ»óÀ» À¯¹ßÇÒ ¼ö ÀÖ½À´Ï´Ù. Àΰ£ °£ ¸ðµ¨Àº ±âÁ¸ µ¿¹° ½ÇÇè¿¡ ºñÇØ º¸´Ù ¾ÈÀüÇϰí À±¸®ÀûÀÎ ¹æ¹ýÀ¸·Î ´Ù¾çÇÑ ¹°ÁúÀÇ µ¶¼ºÀ» Á¶»çÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¸ðµ¨À» ÅëÇØ È­ÇÐÁ¦Ç°ÀÇ °í󸮷® ½ºÅ©¸®´×ÀÌ °¡´ÉÇϸç, ¿¬±¸ÀÚµéÀº ¾î¶² È­ÇÕ¹°ÀÌ ¾ÈÀüÇÑÁö, ¾î¶² È­ÇÕ¹°ÀÌ °£ °Ç°­¿¡ À§ÇèÀ» ÃÊ·¡ÇÏ´ÂÁö ½Å¼ÓÇϰí È¿À²ÀûÀ¸·Î ÆÇ´ÜÇÒ ¼ö ÀÖ½À´Ï´Ù.

°³º°È­ ÀÇ·áµµ Àΰ£ °£ ¸ðµ¨À» »ç¿ëÇÏ¿© ÇýÅÃÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ȯÀÚ ÀÚ½ÅÀÇ ¼¼Æ÷·Î °£ ¸ðµ¨À» ¸¸µé¸é ÀÇ·á ¼­ºñ½º Á¦°øÀÚ´Â Ä¡·á¸¦ ½ÃÀÛÇϱâ Àü¿¡ ȯÀÚÀÇ °£ÀÌ Æ¯Á¤ ¾à¹°¿¡ ¾î¶»°Ô ¹ÝÀÀÇÏ´ÂÁö ¾Ë¾Æº¼ ¼ö ÀÖ½À´Ï´Ù. ÀÌ´Â °£ ÁúȯÀ» ¾Î°í Àְųª È­Çпä¹ý°ú °°ÀÌ °£ ±â´É¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â °ÍÀ¸·Î ¾Ë·ÁÁø Ä¡·á¸¦ ¹Þ°í Àִ ȯÀÚ¿¡°Ô ƯÈ÷ Áß¿äÇÕ´Ï´Ù. °³ÀÎÈ­µÈ °£ ¸ðµ¨Àº ¾à¹° ºÎÀÛ¿ëÀÇ À§ÇèÀ» ÃÖ¼ÒÈ­Çϰí ȯÀÚ°¡ ÀÚ½ÅÀÇ °íÀ¯ÇÑ »ý¹°ÇÐÀû ±¸Á¶¿¡ °¡Àå È¿°úÀûÀÎ Ä¡·á¸¦ ¹ÞÀ» ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù.

¶ÇÇÑ, Àΰ£ °£ ¸ðµ¨Àº Àç»ý ÀÇÇп¡¼­ °£À» º¹±¸Çϰí Àç»ýÇÒ ¼ö ÀÖ´Â ÀáÀçÀû Ä¡·á¹ýÀ» ¸ð»öÇϱâ À§ÇØ Àç»ý ÀÇÇп¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, °£ ¿À°¡³ëÀ̵å¿Í ¹ÙÀÌ¿À ÇÁ¸°Æ® Á¶Á÷Àº ¾ðÁ¨°¡ °£ Áúȯ ȯÀÚÀÇ ¼Õ»óµÈ °£ Á¶Á÷À» º¹±¸ÇÏ´Â µ¥ »ç¿ëµÇ¾î °£ À̽ÄÀÇ Çʿ伺À» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¸ðµ¨Àº »õ·Î¿î ¼¼Æ÷ ±â¹Ý Ä¡·á¹ýÀ» Å×½ºÆ®ÇÏ°í °£¼¼Æ÷°¡ ¾î¶»°Ô Àç»ýµÇ´ÂÁö ÀÌÇØÇÏ´Â Ç÷§ÆûÀ» Á¦°øÇÏ¿© ¸¸¼º °£ Áúȯ ȯÀÚ¿¡°Ô Èñ¸ÁÀ» ÁÙ ¼ö ÀÖ½À´Ï´Ù.

Àΰ£ °£ ¸ðµ¨ ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

º¸´Ù Á¤È®ÇÑ ¾à¹° °Ë»ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, 3D ¹ÙÀÌ¿ÀÇÁ¸°ÆÃ ¹× ¿À°¡³ëÀÌµå ±â¼úÀÇ ¹ßÀü, °³ÀÎ ¸ÂÃãÇü ÀÇ·á¿¡ ´ëÇÑ °ü½É Áõ°¡ µî ¿©·¯ °¡Áö ¿äÀÎÀÌ Àΰ£ °£ ¸ðµ¨ ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä ÃËÁø¿äÀÎ Áß Çϳª´Â ÀǾàǰ °³¹ß¿¡¼­ ´õ ¸¹Àº ¿¹Ãø ¸ðµ¨ÀÇ Çʿ伺ÀÔ´Ï´Ù. ÀǾàǰ °³¹ß ºñ¿ëÀÌ °è¼Ó »ó½ÂÇÔ¿¡ µû¶ó Á¦¾àȸ»çµéÀº ÀÓ»ó½ÃÇè¿¡¼­ ½Å¾à ½ÇÆÐÀ²À» ³·Ãâ ¼ö ÀÖ´Â ¹æ¹ýÀ» ¸ð»öÇϰí ÀÖ½À´Ï´Ù. Àΰ£ °£ ¸ðµ¨Àº ¾à¹°ÀÌ Àΰ£ÀÇ °£°ú »óÈ£ ÀÛ¿ëÇÏ´Â ¹æ½ÄÀ» ¿¹ÃøÇÒ ¼ö ÀÖ´Â º¸´Ù ½Å·ÚÇÒ ¼ö ÀÖ´Â ¹æ¹ýÀ» Á¦°øÇÏ¿© ´õ ³ªÀº ÀüÀÓ»ó½ÃÇè°ú °£µ¶¼ºÀ¸·Î ÀÎÇÑ ºñ¿ëÀÌ ¸¹ÀÌ µå´Â ½ÃÇèÀÇ ½ÇÆÐ¸¦ ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù.

µ¿¹°½ÇÇèÀ» ´ëüÇÒ ¼ö ÀÖ´Â ´ëü¹ý ÃßÁøµµ ½ÃÀå ¼ºÀåÀ» ÃËÁøÇÏ´Â Áß¿äÇÑ ¿äÀÎÀÔ´Ï´Ù. ¹Ì±¹ ½ÄǰÀǾ౹(FDA)°ú À¯·´ÀǾàǰû(EMA)°ú °°Àº ±ÔÁ¦ ±â°üÀº µ¿¹° ½ÇÇèÀ» ´ëüÇÒ ¼ö ÀÖ´Â ½ÃÇè°ü ³» ¸ðµ¨ »ç¿ëÀ» Àå·ÁÇϰí ÀÖ½À´Ï´Ù. ÀÌ´Â Àΰ£ °£ ¸ðµ¨º¸´Ù ´õ À±¸®ÀûÀ̰í Àΰ£°ú °ü·ÃµÈ µ¶¼º ½ÃÇè¿¡ ´ëÇÑ ¼±ÅñÇÀ» Á¦°øÇϸç, ¿¬±¸¿¡¼­ÀÇ µ¿¹° »ç¿ëÀ» ÁÙÀÌ·Á´Â Àü ¼¼°èÀûÀÎ ³ë·Â°ú ÀÏÄ¡ÇÕ´Ï´Ù. º¸´Ù À±¸®ÀûÀÎ ½ÃÇè ¹æ¹ýÀ¸·ÎÀÇ ÀüȯÀº µ¶¼º ½ÃÇè¿¡¼­ °£ ¸ðµ¨ÀÇ Ãß°¡ äÅÃÀ» ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

3D ¹ÙÀÌ¿ÀÇÁ¸°ÆÃ°ú ¿À°¡³ëÀÌµå ±â¼úÀÇ ¹ßÀüµµ Àΰ£ °£ ¸ðµ¨ ½ÃÀåÀÇ ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀ» ÅëÇØ ¿¬±¸ÀÚµéÀº Àΰ£ °£ÀÇ º¹À⼺À» Ãæ½ÇÇÏ°Ô ÀçÇöÇÏ´Â º¸´Ù Á¤±³ÇÏ°í ±â´ÉÀûÀÎ °£ ¸ðµ¨À» ¸¸µé ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. °£ Á¶Á÷À» 3D ÇÁ¸°ÆÃÇϰųª Áٱ⼼Æ÷¿¡¼­ °£ ¿À°¡³ëÀ̵带 ¹è¾çÇÒ ¼ö ÀÖ´Â ´É·ÂÀº °£ Áúȯ, ¾à¹° ´ë»ç, °£ Àç»ý µîÀÇ ¿¬±¸¿¡ »õ·Î¿î °¡´É¼ºÀ» Á¦½ÃÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀÌ °è¼Ó ¹ßÀüÇÔ¿¡ µû¶ó ¿¬±¸ ¹× ÀǾàǰ °³¹ß¿¡ ´õ ³Î¸® »ç¿ëµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

°³ÀÎÈ­ ÀÇ·áÀÇ ºÎ»óµµ Áß¿äÇÑ ¿øµ¿·ÂÀÔ´Ï´Ù. ÀÇ·á°¡ º¸´Ù °³ÀÎÈ­µÈ Ä¡·á °èȹÀ¸·Î ³ª¾Æ°¨¿¡ µû¶ó ƯÁ¤ ȯÀÚ°¡ ¾à¹°¿¡ ¾î¶»°Ô ¹ÝÀÀÇÒÁö¸¦ ¿¹ÃøÇÒ ¼ö ÀÖ´Â ¸ðµ¨ÀÇ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ȯÀÚ À¯·¡ ¼¼Æ÷·Î ¸¸µç Àΰ£ °£ ¸ðµ¨À» ÅëÇØ ¿¬±¸ÀÚµéÀº ¾à¹°ÀÌ È¯ÀÚÀÇ °£ ±â´É¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» Á¶»çÇÒ ¼ö ÀÖ¾î º¸´Ù ¸ÂÃãÈ­µÇ°í È¿°úÀûÀÎ Ä¡·á¹ýÀ» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â Á¾¾çÇÐ ¹× °£ Áúȯ°ú °°Àº ºÐ¾ß¿¡¼­ ƯÈ÷ µÎµå·¯Áö¸ç, ȯÀÚº° °£ ¸ðµ¨À» »ç¿ëÇϸé Ä¡·á °èȹÀ» ÃÖÀûÈ­ÇÏ°í ¾à¹° ºÎÀÛ¿ëÀÇ À§ÇèÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù.

ºñ¾ËÄڿüº Áö¹æ°£ Áúȯ(NAFLD), °£°æº¯Áõ, °£¾Ï µî °£ ÁúȯÀÇ À¯º´·ü Áõ°¡´Â ´õ ³ªÀº °£ ¸ðµ¨¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Àü ¼¼°èÀûÀ¸·Î °£ ÁúȯÀÇ ºÎ´ãÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¿¬±¸ÀÚµéÀÌ »õ·Î¿î Ä¡·á¹ýÀ» °³¹ßÇϰí Áúº´ ¸ÞÄ¿´ÏÁòÀ» ´õ ±íÀÌ ÀÌÇØÇÏ´Â µ¥ µµ¿òÀ̵Ǵ Á¤È®ÇÑ ¸ðµ¨ÀÇ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Àΰ£ °£ ¸ðµ¨Àº °£ ÁúȯÀ» ¿¬±¸ÇÏ´Â µ¥ ´õ ÀûÀýÇϰí Á¤È®ÇÑ µµ±¸¸¦ Á¦°øÇÏ¿© ȯÀÚÀÇ ¿¹Èĸ¦ °³¼±ÇÏ´Â Ä¡·á¹ý °³¹ßÀ» °¡¼ÓÈ­ÇÕ´Ï´Ù.

¹ÙÀÌ¿ÀÇÁ¸°ÆÃ, ¿À°¡³ëÀÌµå ±â¼ú, °³ÀÎ ¸ÂÃãÇü ÀÇ·áÀÇ ¹ßÀü°ú ÇÔ²² Àΰ£ °£ ¸ðµ¨ ½ÃÀåÀº Å©°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. º¸´Ù Á¤È®Çϰí À±¸®ÀûÀ̸ç Àΰ£°ú °ü·ÃµÈ ½ÃÇè ¹æ¹ý¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó, Àΰ£ °£ ¸ðµ¨Àº ÀǾàǰ °³¹ßÀ» ÃËÁøÇϰí Áúº´ ¿¬±¸¸¦ °³¼±ÇÏ¸ç µ¶¼º ¿¬±¸¿¡¼­ µ¿¹° ½ÇÇè¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀ̱â À§ÇÑ Áß¿äÇÑ µµ±¸·Î ³²À» °ÍÀÔ´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ ¿¹½Ã(ÃÑ 42°³»ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

ksm
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Human Liver Models Market to Reach US$474.2 Million by 2030

The global market for Human Liver Models estimated at US$251.9 Million in the year 2023, is expected to reach US$474.2 Million by 2030, growing at a CAGR of 9.5% over the analysis period 2023-2030. Drug Discovery Application, one of the segments analyzed in the report, is expected to record a 9.3% CAGR and reach US$225.8 Million by the end of the analysis period. Growth in the Educational Application segment is estimated at 10.6% CAGR over the analysis period.

The U.S. Market is Estimated at US$68.1 Million While China is Forecast to Grow at 13.3% CAGR

The Human Liver Models market in the U.S. is estimated at US$68.1 Million in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$104.6 Million by the year 2030 trailing a CAGR of 13.3% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 6.8% and 7.5% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 7.3% CAGR.

Global Human Liver Models Market - Key Trends and Drivers Summarized

Are Human Liver Models the Future of Drug Development, Disease Research, and Toxicology Testing?

Human liver models have emerged as a vital tool in biomedical research, but why are they so essential for advancing drug development, disease research, and toxicology testing? Human liver models refer to in vitro systems, such as liver-on-a-chip, 3D bioprinted liver tissues, organoids, and cell culture models, that mimic the structure and function of the human liver. These models allow scientists to study liver function, drug metabolism, liver diseases, and toxicological effects without relying on animal models or human clinical trials.

The importance of human liver models lies in their ability to provide more accurate and human-relevant data for studying liver function and disease mechanisms. Traditional animal models often fail to accurately represent human biology, leading to issues in drug development and toxicology. Human liver models offer a powerful alternative, allowing for more precise testing of drug efficacy, liver toxicity, and metabolic processes. As personalized medicine, biotechnology, and pharmaceutical industries expand, human liver models are critical for improving the accuracy of drug discovery, reducing reliance on animal testing, and better understanding liver diseases.

How Has Technology Advanced Human Liver Models?

Technological advancements have significantly improved the development and functionality of human liver models, making them more accurate and versatile for various biomedical applications. One of the most significant breakthroughs is the advent of liver-on-a-chip technology, where miniaturized liver systems are created using microfluidic devices that mimic the dynamic environment of the liver. These chips contain live human liver cells and microchannels that replicate blood flow, providing a highly realistic model of liver physiology. This technology allows researchers to study how the liver metabolizes drugs and toxins in a controlled environment, delivering more predictive data for drug development.

3D bioprinting is another transformative technology advancing human liver models. Using bioinks made from liver cells and other biological materials, scientists can now print liver tissues with the same complex structure as a human liver. These 3D bioprinted liver tissues provide a better representation of the liver's microarchitecture, improving the accuracy of in vitro studies. The ability to bioprint liver tissues also opens the door for creating patient-specific liver models, which can be used for personalized drug testing and disease modeling, helping doctors predict how an individual’s liver will respond to specific treatments.

Organoid technology has also revolutionized human liver models. Liver organoids are miniature, self-organizing 3D structures derived from stem cells that replicate many of the liver's key functions. These organoids provide a valuable platform for studying liver regeneration, disease progression, and drug metabolism. They are especially useful for modeling liver diseases, such as hepatitis or non-alcoholic fatty liver disease (NAFLD), and testing the effects of new drugs in a more human-like system. Organoids also have potential in regenerative medicine, as they could one day be used to repair or replace damaged liver tissues.

Improvements in stem cell technologies, particularly the use of induced pluripotent stem cells (iPSCs), have enhanced the development of personalized liver models. iPSCs can be derived from a patient’s own cells and then differentiated into liver cells (hepatocytes), offering the ability to create liver models that are genetically identical to the patient. These personalized liver models allow for drug screening and toxicity testing that reflects individual patient responses, making drug development more tailored and precise.

Another advancement is the integration of artificial intelligence (AI) and machine learning in liver model research. AI algorithms can analyze large datasets from liver models, identifying patterns in drug metabolism or disease progression that may not be obvious to researchers. AI-powered tools can also optimize the design of liver-on-a-chip systems or predict the outcomes of drug treatments based on the model’s response, further accelerating the research process.

Why Are Human Liver Models Critical for Drug Development and Disease Research?

Human liver models are critical for drug development, disease research, and toxicology testing because they provide a more accurate and human-relevant platform for understanding how drugs and diseases interact with the liver. The liver plays a central role in metabolizing drugs and toxins, making it a key focus in drug safety testing. Traditional animal models often fail to predict how a human liver will respond to new drugs due to significant differences in metabolism between species. Human liver models, on the other hand, replicate the cellular and physiological characteristics of human liver function, providing more accurate data on drug metabolism, efficacy, and potential toxicity.

One of the most important applications of human liver models is in preclinical drug testing. Before a new drug can enter clinical trials, it must be tested for its safety and effectiveness, particularly in relation to liver function. Human liver models allow researchers to assess how a drug will be metabolized and whether it has any toxic effects on the liver, helping to identify potential issues early in the development process. This reduces the likelihood of drugs failing in late-stage clinical trials due to unforeseen liver toxicity, saving time, resources, and costs for pharmaceutical companies.

Human liver models are also invaluable for studying liver diseases, such as hepatitis, cirrhosis, and liver cancer. By using liver-on-a-chip systems, 3D bioprinted tissues, or organoids, researchers can recreate the conditions of liver diseases in vitro, enabling them to study disease mechanisms, progression, and potential treatments. These models provide insights into how liver diseases affect liver function at the cellular level, helping to develop more effective therapies. For instance, liver models can be used to test antiviral drugs for hepatitis or investigate the efficacy of new treatments for liver cancer.

Toxicology testing is another critical area where human liver models play a crucial role. Many chemicals and environmental toxins can have harmful effects on the liver, leading to conditions such as liver damage or failure. Human liver models provide a safer, more ethical way to test the toxicity of various substances compared to traditional animal testing. These models allow for high-throughput screening of chemicals, enabling researchers to quickly and efficiently determine which compounds are safe and which pose risks to liver health.

Personalized medicine is also benefiting from the use of human liver models. By creating liver models derived from a patient’s own cells, healthcare providers can test how a patient’s liver will respond to specific drugs before administering treatment. This is particularly important for patients with liver diseases or those undergoing treatments that are known to impact liver function, such as chemotherapy. Personalized liver models help to minimize the risk of adverse drug reactions and ensure that patients receive the most effective treatments for their unique biological makeup.

In addition, human liver models are being used in regenerative medicine to explore potential therapies for liver repair and regeneration. For example, liver organoids and bioprinted tissues could one day be used to repair damaged liver tissue in patients with liver disease, reducing the need for liver transplants. These models provide a platform for testing new cell-based therapies and understanding how liver cells regenerate, offering hope for patients with chronic liver conditions.

What Factors Are Driving the Growth of the Human Liver Model Market?

Several factors are driving the growth of the human liver model market, including the increasing demand for more accurate drug testing, advancements in 3D bioprinting and organoid technologies, and the growing focus on personalized medicine. One of the primary drivers is the need for more predictive models in drug development. As the cost of drug development continues to rise, pharmaceutical companies are looking for ways to reduce the failure rate of new drugs in clinical trials. Human liver models offer a more reliable method for predicting how drugs will interact with the human liver, leading to better preclinical testing and fewer costly trial failures due to liver toxicity.

The push for alternatives to animal testing is another significant factor driving market growth. Regulatory bodies, such as the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA), are encouraging the use of in vitro models as alternatives to animal testing. Human liver models provide a more ethical and human-relevant option for toxicity testing, aligning with global efforts to reduce animal use in research. This shift toward more ethical testing methods is expected to drive further adoption of liver models in toxicology testing.

Advancements in 3D bioprinting and organoid technologies are also contributing to the growth of the human liver model market. These technologies allow researchers to create more sophisticated and functional liver models that closely replicate the complexity of the human liver. The ability to print 3D liver tissues or grow liver organoids from stem cells opens up new possibilities for studying liver diseases, drug metabolism, and liver regeneration. As these technologies continue to evolve, they are expected to become more widely used in research and drug development.

The rise of personalized medicine is another key driver. As healthcare moves toward more individualized treatment plans, there is a growing need for models that can predict how specific patients will respond to drugs. Human liver models created from patient-derived cells enable researchers to test the effects of drugs on a patient’s liver function, providing more tailored and effective treatment options. This trend is particularly strong in fields such as oncology and liver disease, where patient-specific liver models can be used to optimize treatment plans and reduce the risk of adverse drug reactions.

The increasing prevalence of liver diseases, such as non-alcoholic fatty liver disease (NAFLD), cirrhosis, and liver cancer, is also driving demand for better liver models. As the global burden of liver disease rises, there is a growing need for accurate models that can help researchers develop new therapies and better understand disease mechanisms. Human liver models provide a more relevant and precise tool for studying liver diseases, accelerating the development of treatments that can improve patient outcomes.

With advancements in bioprinting, organoid technologies, and personalized medicine, the human liver model market is poised for significant growth. As the demand for more accurate, ethical, and human-relevant testing methods increases, human liver models will remain a key tool for advancing drug development, improving disease research, and reducing reliance on animal testing in toxicology studies.

Select Competitors (Total 42 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â