¼¼°èÀÇ Çí»ç¸ÞÆ¿·»µð¾Æ¹Î ½ÃÀå
Hexamethylenediamine
»óǰÄÚµå : 1564883
¸®¼­Ä¡»ç : Global Industry Analysts, Inc.
¹ßÇàÀÏ : 2024³â 10¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 182 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 5,850 £Ü 8,464,000
PDF (Single User License) help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 17,550 £Ü 25,393,000
PDF (Global License to Company and its Fully-owned Subsidiaries) help
PDF º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. Àμâ´Â °¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Çí»ç¸ÞÆ¿·»µð¾Æ¹Î ¼¼°è ½ÃÀåÀº 2030³â±îÁö 145¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù

2023³â 99¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â Çí»ç¸ÞÆ¿·»µð¾Æ¹Î ¼¼°è ½ÃÀåÀº 2023³âºÎÅÍ 2030³â±îÁö ¿¬Æò±Õ 5.6% ¼ºÀåÇÏ¿© 2030³â¿¡´Â 145¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ º¸°í¼­¿¡¼­ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ³ªÀÏ·Ð ÇÕ¼º ÀÀ¿ë ºÐ¾ß´Â CAGR 5.8%¸¦ ±â·ÏÇÏ¿© ºÐ¼® ±â°£ Á¾·á ½ÃÁ¡¿¡ 117¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. °æÈ­Á¦ ÀÀ¿ë ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 5.0%·Î ÃßÁ¤µË´Ï´Ù.

¹Ì±¹ ½ÃÀåÀº 26¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 8.8%·Î ¼ºÀå Àü¸Á

¹Ì±¹ÀÇ Çí»ç¸ÞÆ¿·»µð¾Æ¹Î ½ÃÀåÀº 2023³â 26¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 34¾ï ´Þ·¯ ±Ô¸ð¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2023-2030³âÀÇ ºÐ¼® ±â°£ µ¿¾È 8.8%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´Ù¸¥ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ª ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ µ¿¾È °¢°¢ 3.1%¿Í 4.5%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯·´¿¡¼­´Â µ¶ÀÏÀÌ 4.0%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼¼°è Çí»ç¸ÞÆ¿·»µð¾Æ¹Î ½ÃÀå - ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ ¿ä¾à

Çí»ç¸ÞÆ¿·»µð¾Æ¹ÎÀº °í±â´É¼º Æú¸®¸ÓÀÇ ÁßÃßÀΰ¡?

Çí»ç¸ÞÆ¿·»µð¾Æ¹Î(HMDA)Àº ´Ù¾çÇÑ °í±â´É¼º Æú¸®¸ÓÀÇ °ñ°ÝÀÌ µÇ´Â Áß¿äÇÑ È­ÇÕ¹°ÀÔ´Ï´Ù. HMDA´Â ¹«»öÀÇ °áÁ¤¼º ¹°Áú·Î ³ªÀÏ·Ð, ƯÈ÷ °¡Àå ÀϹÝÀûÀ¸·Î »ç¿ëµÇ´Â ¿£Áö´Ï¾î¸µ ÇÃ¶ó½ºÆ½ Áß ÇϳªÀÎ ³ªÀÏ·Ð 6,6ÀÇ Á¦Á¶¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. HMDA´Â ¾ÆµðÇÉ»ê°ú ¹ÝÀÀÇÏ¿© ³ªÀÏ·Ð 6,6À» Çü¼ºÇϰí ÀÌ ¹°ÁúÀÇ ±¸¼º ¿ä¼Ò·Î ÀÛ¿ëÇÏ´Â ³ªÀÏ·Ð 6,6ÀÇ Á¦Á¶¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ³ªÀÏ·Ð 6,6Àº ¸Å¿ì ¿ì¼öÇÑ °­µµ, ³»±¸¼º, ³»¿­¼º ¹× ³» È­ÇмºÀ¸·Î À¯¸íÇÕ´Ï´Ù. µû¶ó¼­ ÀÚµ¿Â÷, ¼¶À¯, ÀüÀÚÁ¦Ç°, ¼ÒºñÀç µî ´Ù¾çÇÑ »ê¾÷¿¡¼­ À¯¿ëÇÏ°Ô »ç¿ëµÇ°í ÀÖ½À´Ï´Ù.

2°³ÀÇ ¾Æ¹Î±â¸¦ °¡Áø HMDAÀÇ µ¶Æ¯ÇÑ È­ÇÐ ±¸Á¶´Â Æú¸®¾Æ¹ÌµåÀÇ ÇÕ¼º¿¡ ÀÌ»óÀûÀ̸ç, °í¼º´É ÀÀ¿ë ºÐ¾ß¿¡ ÇÊ¿äÇÑ °­Àμº°ú ź¼ºÀ» Á¦°øÇÕ´Ï´Ù. HMDA´Â °­µµ°¡ ³ô°í, °¡º±°í, ³»¼ºÀÌ °­ÇÑ ¼ÒÀ縦 »ý»êÇÒ ¼ö ÀÖ¾î ÷´Ü Æú¸®¸Ó Á¦Á¶ÀÇ Ãʼ®ÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ »ê¾÷ µî¿¡¼­ ³»±¸¼º°ú °æ·®È­¿¡ ´ëÇÑ ¼ö¿ä°¡ Áö¼ÓÀûÀ¸·Î Áõ°¡ÇÔ¿¡ µû¶ó Çí»ç¸ÞÆ¿·»µð¾Æ¹ÎÀº ÀÌ·¯ÇÑ ¼ö¿ä¸¦ ÃæÁ·½Ã۱â À§ÇØ Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù.

±â¼úÀº Çí»ç¸ÞÆ¿·»µð¾Æ¹ÎÀÇ »ý»ê°ú ÀÀ¿ëÀ» ¾î¶»°Ô ¹ßÀü½ÃÄ×½À´Ï±î?

±â¼úÀÇ ¹ßÀüÀº Çí»ç¸ÞÆ¿·»µð¾Æ¹Î(HMDA)ÀÇ »ý»êÀ» Å©°Ô °³¼±Çϰí È¿À²À» ³ôÀÌ°í »õ·Î¿î ºÐ¾ß¿¡¼­ÀÇ ÀÀ¿ëÀ» È®´ëÇßÀ¸¸ç, HMDA »ý»ê¿¡¼­ °¡Àå Áß¿äÇÑ ±â¼ú Çõ½Å Áß Çϳª´Â º¸´Ù Áö¼Ó °¡´ÉÇÏ°í ºñ¿ë È¿À²ÀûÀÎ »ý»ê °øÁ¤ÀÇ °³¹ßÀÔ´Ï´Ù. ÀüÅëÀûÀÎ HMDA »ý»êÀº Ã˸ÅÀÇ Á¸ÀçÇÏ¿¡ Çí»ç ´ÏÆ®¸±°ú ¼ö¼Ò¸¦ ¹ÝÀÀ½ÃŰ´Â °ÍÀÔ´Ï´Ù. ±×·¯³ª ¿¡³ÊÁö ¼Òºñ¿Í Æó±â¹°À» ÁÙÀ̱â À§ÇÑ »õ·Î¿î ¹æ¹ýÀÌ µîÀåÇϰí ÀÖ½À´Ï´Ù. ¼öÀ²À» ³ôÀ̰í, ºÎ»ê¹°À» ÁÙÀ̰í, ¹ÝÀÀ È¿À²À» ³ôÀÌ´Â Ã˸Ű¡ µµÀԵǾî HMDA »ý»êÀÇ Àü¹ÝÀûÀΠȯ°æ ¿µÇâÀ» ÁÙÀ̰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº ¾÷°è°¡ ³ôÀº »ý»ê ¼öÁØÀ» À¯ÁöÇϸ鼭 Áö¼Ó°¡´É¼º ¸ñÇ¥¸¦ ´Þ¼ºÇϱâ À§ÇØ ³ë·ÂÇϰí ÀÖ´Â »óȲ¿¡¼­ ƯÈ÷ Áß¿äÇÕ´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ ¹ßÀüÀº HMDA »ý»ê¿¡¼­ ¹ÙÀÌ¿ÀÇÁ·Î¼¼½ºÀÇ ÅëÇÕÀÌ ÁøÇàµÇ°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. Çí»ç¸ÞÆ¿·»µð¾Æ¹ÎÀ» »ý»êÇϱâ À§ÇØ Àç»ý °¡´ÉÇÑ ½Ä¹° ¿ø·á¿Í °°Àº ¹ÙÀÌ¿À ¿ø·á¸¦ »ç¿ëÇÏ´Â ¿¬±¸°¡ Ȱ¹ßÈ÷ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ¹ÙÀÌ¿À HMDA »ý»êÀ¸·ÎÀÇ ÀüȯÀº È­¼® ¿¬·á¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀÌ°í º¸´Ù Áö¼Ó °¡´ÉÇÑ °ø±Þ¸ÁÀ» ±¸ÃàÇϱâ À§ÇÑ ±¤¹üÀ§ÇÑ ³ë·ÂÀÇ ÀÏȯÀÔ´Ï´Ù. ģȯ°æ Á¦Ç°¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó, ¹ÙÀÌ¿À HMDA´Â °íǰÁú Æú¸®¸Ó¸¦ »ý»êÇϸ鼭µµ ź¼Ò ¹èÃâ·®À» ÁÙÀ̰íÀÚ ÇÏ´Â Á¦Á¶¾÷üµé¿¡°Ô ¸Å·ÂÀûÀÎ ´ë¾ÈÀÌ µÇ°í ÀÖ½À´Ï´Ù.

¶ÇÇÑ °íºÐÀÚ °øÇÐÀÇ ±â¼ú Çâ»óÀ¸·Î HMDA´Â ³ªÀÏ·Ð 6,6 »ý»êÀÇ ÀüÅëÀûÀÎ ¿ëµµ»Ó¸¸ ¾Æ´Ï¶ó ¿ì¼öÇÑ ¼º´É Ư¼ºÀ» °¡Áø ´Ù¸¥ °í±Þ Æú¸®¾Æ¹Ìµå ¹× Ư¼ö Æú¸®¸Ó¿¡µµ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌµé ¼ÒÀç´Â °­µµ, ³»¿­¼º, È­ÇÐÀû ³»±¸¼ºÀÌ °¡Àå Áß¿äÇÑ Ç×°ø¿ìÁÖ, ÀüÀÚ±â±â, ÀÇ·á±â±â µî ÷´Ü ±â¼ú ºÐ¾ß¿¡¼­ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ºÐÀÚ °øÇÐÀ» ÅëÇØ HMDA À¯·¡ Æú¸®¸Ó¸¦ ƯÁ¤ ¿ä±¸¿¡ ¸Â°Ô Á¶Á¤ÇÒ ¼ö ÀÖ°Ô µÊ¿¡ µû¶ó ÀÌ·¯ÇÑ ºÐ¾ßÀÇ ±â¼ú Çõ½Å¿¡ »õ·Î¿î °¡´É¼ºÀÌ ¿­·È½À´Ï´Ù. ÀÌ·¯ÇÑ ÁÖ¿ä ¹ßÀüÀ¸·Î HMDA´Â Çö´ë ±â¼úÀÇ ±î´Ù·Î¿î ¿ä±¸ »çÇ×À» ÃæÁ·ÇÏ´Â Àç·á °³¹ß¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» °è¼ÓÇϰí ÀÖ½À´Ï´Ù.

Çí»ç¸ÞÆ¿·»µð¾Æ¹ÎÀÌ °í¼º´É Æú¸®¸Ó¿Í »ê¾÷ ÀÀ¿ë ºÐ¾ß¿¡ Áß¿äÇÑ ÀÌÀ¯´Â ¹«¾ùÀΰ¡?

Çí»ç¸ÞÆ¿·»µð¾Æ¹Î(HMDA)Àº Àç·á¿¡ °­µµ, À¯¿¬¼º ¹× ³»¼ºÀ» ºÎ¿©ÇÏ´Â µ¶Æ¯ÇÑ ´É·ÂÀ¸·Î ÀÎÇØ °í±â´É¼º Æú¸®¸Ó ¹× »ê¾÷ ÀÀ¿ë ºÐ¾ß¿¡ ÇʼöÀûÀÎ ¿ªÇÒÀ» ÇÕ´Ï´Ù. °¡Àå Áß¿äÇÑ ¿ªÇÒ Áß Çϳª´Â ³ôÀº ÀÎÀå °­µµ, ³»¸¶¸ð¼º ¹× ¿­ ¾ÈÁ¤¼º°ú °°Àº ¿ì¼öÇÑ ±â°èÀû Ư¼ºÀ¸·Î À¯¸íÇÑ Æú¸®¸ÓÀÎ ³ªÀÏ·Ð 6,6ÀÇ Á¦Á¶ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Æ¯¼ºÀ¸·Î ÀÎÇØ ³ªÀÏ·Ð 6,6Àº ´Ù¾çÇÑ ±î´Ù·Î¿î ÀÀ¿ë ºÐ¾ß¿¡ ÀÌ»óÀûÀÎ ¼ÒÀçÀÔ´Ï´Ù. ¿¹¸¦ µé¾î, ÀÚµ¿Â÷ »ê¾÷¿¡¼­´Â ¶óµð¿¡ÀÌÅÍ ºÎǰ, °ø±â ÈíÀÔ±¸ ¸Å´ÏÆúµå, ¿¬·á ¶óÀΰú °°Àº °¡º±°í ³»±¸¼ºÀÌ ¶Ù¾î³­ ºÎǰÀ» Á¦Á¶ÇÏ´Â µ¥ »ç¿ëµË´Ï´Ù. ³ªÀÏ·Ð ºÎǰÀÇ °æ·®È­´Â ¿¬ºñ Çâ»ó¿¡ µµ¿òÀÌ µÇ¸ç, ÀÌ´Â ÀÚµ¿Â÷ Á¦Á¶¾÷ü°¡ ȯ°æ ±âÁØÀ» ´Þ¼ºÇϱâ À§ÇØ ³ë·ÂÇÏ´Â °¡¿îµ¥ Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù.

»ê¾÷ ÀÀ¿ë ºÐ¾ß¿¡¼­ HMDA¿¡¼­ ÃßÃâÇÑ Æú¸®¸Ó´Â Ä«Æê, ÀÇ·ù, »ê¾÷¿ë Á÷¹° µî¿¡ »ç¿ëµÇ´Â °í¼º´É ¼¶À¯ ¹× Á÷¹° »ý»ê¿¡ ÇʼöÀûÀÔ´Ï´Ù. ³ªÀÏ·Ð 6,6 ¼¶À¯´Â ³»¸¶¸ð¼º°ú ź·Â¼ºÀÌ ¶Ù¾î³ª °Ç¼³ ¹× Á¦Á¶¿Í °°Àº ¿­¾ÇÇÑ È¯°æ¿¡¼­ ÀαⰡ ÀÖÀ¸¸ç, HMDA´Â ±ØÇÑÀÇ ¿Âµµ, ±â°èÀû ½ºÆ®·¹½º ¹× È­ÇÐ ¹°Áú¿¡ ´ëÇÑ ³ëÃâÀ» °ßµ®¾ßÇÏ´Â »ê¾÷±â°è ºÎǰÀÇ °³¹ß¿¡µµ ±â¿©ÇÏ¿©ÀÌ È­ÇÕ¹°ÀÇ ´Ù¾ç¼º°ú Á߿伺À» ´õ¿í ÀÔÁõÇϰí ÀÖ½À´Ï´Ù. ÀÌ È­ÇÕ¹°ÀÇ ´Ù¾ç¼º°ú Á߿伺À» ´õ¿í ÀÔÁõÇϰí ÀÖ½À´Ï´Ù.

¶ÇÇÑ HMDAÀÇ ¿ªÇÒÀº ³ªÀϷлӸ¸ ¾Æ´Ï¶ó Á¢ÂøÁ¦, ÄÚÆÃÁ¦ ¹× °­·ÂÇÑ Á¢Âø·Â°ú º¸È£¼ºÀÌ ÇÊ¿äÇÑ ±âŸ Ư¼ö Æú¸®¸ÓÀÇ Á¦Á¶¿¡µµ »ç¿ëµË´Ï´Ù. ¿¹¸¦ µé¾î, ÄÚÆÃÁ¦¿¡¼­ HMDA À¯·¡ Á¦Ç°Àº ¼®À¯ ¹× °¡½º »ê¾÷°ú °°Àº °¡È¤ÇÑ È¯°æ¿¡¼­ ³»½Ä¼ºÀ» ºÎ¿©Çϱâ À§ÇØ »ç¿ëµË´Ï´Ù. HMDAÀÇ ³»±¸¼º ÀÖ´Â °áÇÕÀ» Çü¼ºÇϰí È­ÇÐÀû ¿­È­¸¦ °ßµô ¼ö ÀÖ´Â ´É·ÂÀº Àç·áÀÇ °áÇÔÀÌ ¾ÈÀü°ú ¿î¿µ¿¡ ½É°¢ÇÑ ¹®Á¦¸¦ ¾ß±âÇÒ ¼ö Àִ ȯ°æ¿¡¼­ ÇʼöÀûÀ̸ç, HMDA°¡ Æú¸®¸Ó¿¡ ºÎ¿©ÇÏ´Â °­µµ, ³»±¸¼º ¹× ³»È­ÇмºÀÇ Á¶ÇÕÀº °¡Àå ±î´Ù·Î¿î Á¶°Ç¿¡¼­µµ ¾ÈÁ¤ÀûÀ¸·Î ÀÛµ¿ÇÏ´Â Àç·á¸¦ ¸¸µå´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ¸Å¿ì Áß¿äÇÕ´Ï´Ù.

Çí»ç¸ÞÆ¿·»µð¾Æ¹Î ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?

Çí»ç¸ÞÆ¿·»µð¾Æ¹Î(HMDA) ½ÃÀåÀÇ ¼ºÀåÀº ÀÚµ¿Â÷ ¹× Ç×°ø¿ìÁÖ »ê¾÷¿¡¼­ °¡º±°í ³»±¸¼ºÀÌ ¶Ù¾î³­ ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, °íºÐÀÚ ±â¼ú ¹ßÀü, Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ °ü½É Áõ°¡ µî ¸î °¡Áö Áß¿äÇÑ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ÃËÁø¿äÀÎ Áß Çϳª´Â ÀÚµ¿Â÷ Á¦Á¶¿¡¼­ ³ªÀÏ·Ð 6,6 ¹× ±âŸ HMDA À¯·¡ ¼ÒÀçÀÇ »ç¿ë È®´ëÀÔ´Ï´Ù. ÀÚµ¿Â÷ »ê¾÷ÀÌ ¿¬ºñ°¡ ÁÁ°í ģȯ°æÀûÀÎ ÀÚµ¿Â÷ »ý»êÀ¸·Î ÀüȯÇÔ¿¡ µû¶ó ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀº ÀÚµ¿Â÷ÀÇ °æ·®È­¿Í ¿¬ºñ Çâ»óÀ» À§ÇØ °æ·® ¼ÒÀ縦 Á¡Á¡ ´õ ¸¹ÀÌ »ç¿ëÇϰí ÀÖ½À´Ï´Ù. ³ôÀº °­µµ ´ë Áß·®ºñ¸¦ °¡Áø ³ªÀÏ·Ð 6,6Àº ±âÁ¸ÀÇ ±Ý¼Ó ºÎǰÀ» ´ëüÇÏ´Â Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖÀ¸¸ç, ÀÚµ¿Â÷ÀÇ ¼º´É Çâ»ó°ú ¹è±â°¡½º ¹èÃâ·® °¨¼Ò¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

Ç×°ø¿ìÁÖ »ê¾÷µµ HMDA ½ÃÀå ¼ºÀå¿¡ ±â¿©ÇÏ´Â ÁÖ¿ä ¿äÀÎ Áß ÇϳªÀÔ´Ï´Ù. Ç×°ø¿ìÁÖ Á¦Á¶¾÷üµéÀº Ç×°ø±âÀÇ È¿À²¼º°ú ¼º´ÉÀ» Çâ»ó½Ã۱â À§ÇØ °æ·®, °í°­µµ ¼ÒÀç¿¡ ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ³ªÀÏ·Ð 6,6 ¹× ±âŸ ÷´Ü Æú¸®¾Æ¹Ìµå¿Í °°Àº HMDA ±â¹Ý Æú¸®¸Ó´Â ³»ºÎ ºÎǰ, ±¸Á¶ ¿ä¼Ò, ´Ü¿­Àç µî ´Ù¾çÇÑ Ç×°ø¿ìÁÖ ÀÀ¿ë ºÐ¾ß¿¡ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Æú¸®¸Ó´Â Ç×°ø±âÀÇ °æ·®È­¿¡ ±â¿©ÇÏ¿© ¿¬·á ¼Òºñ¸¦ ÁÙÀÌ°í ºñÇà È¿À²À» Çâ»ó½Ãŵ´Ï´Ù. Ç×°ø¿ìÁÖ »ê¾÷ÀÌ Áö¼ÓÀûÀ¸·Î ¼ºÀåÇϰí Áö¼Ó°¡´É¼ºÀ» ¿ì¼±½ÃÇÏ´Â Ãß¼¼¿¡ µû¶ó HMDA ±â¹Ý Æú¸®¸Ó¿Í °°Àº °í¼º´É ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä´Â Å©°Ô Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

°íºÐÀÚ ±â¼úÀÇ ¹ßÀüÀº HMDA À¯·¡ Àç·áÀÇ ¿ëµµ¸¦ È®´ëÇÏ¿© ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù. »õ·Î¿î Æú¸®¸Ó ¹èÇÕ ¹× º¹ÇÕÀç·á´Â ÀüÀÚ, ÀÇ·á±â±â, Àç»ý °¡´É ¿¡³ÊÁö¿Í °°Àº »ê¾÷º° ¿ä±¸ »çÇ×À» ÃæÁ·½Ã۱â À§ÇØ °³¹ßµÇ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ÀüÀÚ ºÐ¾ß¿¡¼­ HMDA ±â¹Ý Æú¸®¸Ó´Â Àü±â ÀúÇ×°ú ±â°èÀû ³»±¸¼ºÀÌ ¸ðµÎ ÇÊ¿äÇÑ Ä¿³ØÅÍ, ÇÏ¿ì¡ ¹× Àý¿¬ Àç·á Á¦Á¶¿¡ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Æ¯¼ö ¼ÒÀçÀÇ °³¹ßÀº ±â¾÷µéÀÌ Á¡Á¡ ´õ °íµµÈ­µÇ´Â ¿ëµµ¸¦ À§ÇØ ´õ¿í Á¤±³ÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â Á¦Ç°À» ¸¸µé·Á°í ³ë·ÂÇϸ鼭 HMDA¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

Áö¼Ó°¡´É¼ºµµ HMDA ½ÃÀåÀ» À̲ô´Â Áß¿äÇÑ ¿ä¼Ò Áß ÇϳªÀÔ´Ï´Ù. ±âÁ¸ ¼®À¯È­ÇÐ ±â¹Ý Á¦Ç°ÀÌ È¯°æ¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ ´ëÇÑ ¿ì·Á°¡ Ä¿Áö¸é¼­ ¹ÙÀÌ¿À HMDA¸¦ °³¹ßÇÏ°í Æú¸®¸Ó »ý»ê¿¡¼­ ź¼Ò ¹èÃâ·®À» ÁÙÀÌ´Â °Í¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ±â¾÷µéÀº HMDA »ý»êÀ» À§ÇÑ Àç»ý °¡´ÉÇÑ ¿ø·á¸¦ °³¹ßÇϱâ À§ÇÑ ¿¬±¸¿¡ ÅõÀÚÇϰí ÀÖÀ¸¸ç, ÀÌ´Â È­¼® ¿¬·á¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ Å©°Ô ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ģȯ°æ Á¦Ç°¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä°¡ Áõ°¡Çϰí Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ±ÔÁ¦°¡ °­È­µÊ¿¡ µû¶ó ¹ÙÀÌ¿À HMDA´Â ÇâÈÄ ¸î ³âµ¿¾È Å« ¼ºÀåÀ» ÀÌ·ê ¼ö ÀÖ½À´Ï´Ù.

¸¶Áö¸·À¸·Î, ½ÅÈï±¹, ƯÈ÷ ¾Æ½Ã¾ÆÅÂÆò¾ç¿¡¼­ HMDAÀÇ »ç¿ë È®´ë°¡ ½ÃÀå ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. Áß±¹, Àεµ¿Í °°Àº ±¹°¡µéÀº ±Þ¼ÓÇÑ »ê¾÷È­¿Í µµ½ÃÈ­·Î ÀÎÇØ °Ç¼³, ÀÚµ¿Â÷, Á¦Á¶ ºÐ¾ß¿¡¼­ °í¼º´É ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌµé °æÁ¦°¡ °è¼Ó ¹ßÀüÇϰí Çö´ëÈ­µÊ¿¡ µû¶ó ³»±¸¼ºÀÌ ¶Ù¾î³ª°í °¡º±°í °í°­µµÀÎ ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ¿© Çí»ç¸ÞÆ¿·»µð¾Æ¹Î¿¡ ´ëÇÑ ¼ö¿ä°¡ ´õ¿í Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±¤¹üÀ§ÇÑ ÀÀ¿ë ºÐ¾ß¿Í »ý»ê ±â¼úÀÇ ¹ßÀüÀ¸·Î HMDA ½ÃÀåÀº ²ÙÁØÈ÷ ¼ºÀåÇϰí ÀÖÀ¸¸ç, °íºÐÀÚ ¹× »ê¾÷ Á¦Á¶ÀÇ ¹Ì·¡¿¡ Áß¿äÇÑ Àç·á°¡ µÉ °ÍÀÔ´Ï´Ù.

Á¶»ç ´ë»ó ±â¾÷ ¿¹½Ã(17°³»ç)

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå ºÐ¼®

Á¦4Àå °æÀï

LSH
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Global Hexamethylenediamine Market to Reach US$14.5 Billion by 2030

The global market for Hexamethylenediamine estimated at US$9.9 Billion in the year 2023, is expected to reach US$14.5 Billion by 2030, growing at a CAGR of 5.6% over the analysis period 2023-2030. Nylon Synthesis Application, one of the segments analyzed in the report, is expected to record a 5.8% CAGR and reach US$11.7 Billion by the end of the analysis period. Growth in the Curing Agents Application segment is estimated at 5.0% CAGR over the analysis period.

The U.S. Market is Estimated at US$2.6 Billion While China is Forecast to Grow at 8.8% CAGR

The Hexamethylenediamine market in the U.S. is estimated at US$2.6 Billion in the year 2023. China, the world's second largest economy, is forecast to reach a projected market size of US$3.4 Billion by the year 2030 trailing a CAGR of 8.8% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 3.1% and 4.5% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 4.0% CAGR.

Global Hexamethylenediamine Market - Key Trends and Drivers Summarized

Is Hexamethylenediamine the Backbone of High-Performance Polymers?

Hexamethylenediamine (HMDA) is a vital chemical compound that serves as the backbone for a wide range of high-performance polymers, but why is it so essential? HMDA is a colorless, crystalline substance that plays a critical role in the production of nylon, particularly nylon 6,6, one of the most commonly used engineering plastics. It acts as a building block for these materials by reacting with adipic acid to form nylon 6,6, which is known for its exceptional strength, durability, and resistance to heat and chemicals. This makes it invaluable in a variety of industries, including automotive, textiles, electronics, and consumer goods.

HMDA’s unique chemical structure, with two amine groups, makes it ideal for polyamide synthesis, providing the toughness and elasticity needed for high-performance applications. Nylon 6,6, derived from HMDA, is commonly used in products like automotive components, electrical connectors, industrial machinery, and fibers for textiles such as carpets and clothing. The ability to produce strong, lightweight, and resistant materials has made HMDA a cornerstone in the manufacturing of advanced polymers. As the demand for durable and lightweight materials continues to grow in industries like automotive and aerospace, hexamethylenediamine is increasingly critical to meeting these needs.

How Has Technology Advanced the Production and Applications of Hexamethylenediamine?

Technological advancements have greatly improved the production of hexamethylenediamine (HMDA), enhancing its efficiency and expanding its applications in new fields. One of the most significant innovations in HMDA production is the development of more sustainable and cost-effective manufacturing processes. Traditional HMDA production involves reacting hexanenitrile with hydrogen in the presence of a catalyst. However, new methods are emerging that aim to reduce energy consumption and waste. Catalysts that improve yield, reduce by-products, and enhance reaction efficiency have been introduced, lowering the overall environmental impact of HMDA production. These advancements are particularly important as industries strive to meet sustainability goals while maintaining high levels of production.

Another key advancement is the increasing integration of bio-based processes in HMDA production. Research into using bio-based feedstocks, such as renewable plant materials, to produce hexamethylenediamine is gaining traction. This shift toward bio-based HMDA production is part of a broader effort to reduce dependence on fossil fuels and create more sustainable supply chains. As demand for environmentally friendly products grows, bio-based HMDA is becoming an attractive alternative for manufacturers looking to reduce their carbon footprint while still producing high-quality polymers.

Technological improvements in polymer engineering have also expanded the applications of HMDA. Beyond its traditional use in nylon 6,6 production, HMDA is now finding applications in other advanced polyamides and specialty polymers that offer superior performance characteristics. These materials are being used in high-tech sectors such as aerospace, electronics, and medical devices, where strength, heat resistance, and chemical durability are paramount. The ability to tailor HMDA-derived polymers to specific needs through molecular engineering has opened new possibilities for innovation in these fields. These advancements ensure that HMDA remains a key player in the development of materials that meet the stringent demands of modern technology.

Why Is Hexamethylenediamine Critical for High-Performance Polymers and Industrial Applications?

Hexamethylenediamine (HMDA) is essential for high-performance polymers and industrial applications because of its unique ability to impart strength, flexibility, and resistance to the materials it helps create. One of its most important roles is in the production of nylon 6,6, a polymer that is renowned for its excellent mechanical properties, including high tensile strength, abrasion resistance, and thermal stability. These attributes make nylon 6,6 an ideal material for a wide variety of demanding applications. For example, in the automotive industry, it is used to produce lightweight, durable components such as radiator parts, air intake manifolds, and fuel lines. The reduced weight of nylon-based parts helps improve fuel efficiency, which is increasingly important as automakers seek to meet environmental standards.

In industrial applications, HMDA-derived polymers are crucial in the production of high-performance fibers and textiles, such as those used in carpets, clothing, and industrial fabrics. Nylon 6,6 fibers offer superior wear resistance and resilience, making them popular in heavy-duty environments such as construction and manufacturing. HMDA also contributes to the development of industrial machinery components that need to withstand extreme temperatures, mechanical stress, and exposure to chemicals, further demonstrating the versatility and importance of this compound.

Additionally, HMDA’s role extends beyond nylon. It is also used to produce adhesives, coatings, and other specialty polymers that require strong bonding and protective properties. In coatings, for instance, HMDA-derived products are used to provide corrosion resistance in harsh environments, such as those faced in the oil and gas industry. Its ability to form durable bonds and resist chemical degradation makes it essential in environments where failure of materials can lead to significant safety and operational issues. The combination of strength, durability, and chemical resistance that HMDA imparts to polymers is crucial for creating materials that can perform reliably under the most challenging conditions.

What Factors Are Driving the Growth of the Hexamethylenediamine Market?

The growth of the hexamethylenediamine (HMDA) market is driven by several key factors, including the rising demand for lightweight and durable materials in the automotive and aerospace industries, advancements in polymer technology, and the increasing focus on sustainability. One of the primary drivers is the growing use of nylon 6,6 and other HMDA-derived materials in automotive manufacturing. As the automotive industry shifts toward producing more fuel-efficient and environmentally friendly vehicles, manufacturers are increasingly using lightweight materials to reduce vehicle weight and improve fuel economy. Nylon 6,6, with its high strength-to-weight ratio, is playing a key role in replacing traditional metal components, which contributes to improved vehicle performance and reduced emissions.

The aerospace industry is another major factor contributing to the growth of the HMDA market. Aerospace manufacturers rely on lightweight, high-strength materials to improve the efficiency and performance of aircraft. HMDA-based polymers, such as nylon 6,6 and other advanced polyamides, are used in various aerospace applications, including interior components, structural elements, and insulation materials. These polymers help reduce aircraft weight, leading to lower fuel consumption and increased flight efficiency. As the aerospace industry continues to grow and prioritize sustainability, the demand for high-performance materials like HMDA-derived polymers is expected to increase significantly.

Advancements in polymer technology are also driving market growth by expanding the range of applications for HMDA-derived materials. New polymer formulations and composite materials are being developed to meet the specific needs of industries like electronics, medical devices, and renewable energy. For example, in the electronics sector, HMDA-based polymers are used in the production of connectors, housings, and insulation materials that require both electrical resistance and mechanical durability. The development of these specialized materials is fueling demand for HMDA as companies seek to create more advanced and reliable products for increasingly sophisticated applications.

Sustainability is another important factor driving the HMDA market. With growing concerns about the environmental impact of traditional petrochemical-based products, there is increasing interest in developing bio-based HMDA and reducing the carbon footprint of polymer production. Companies are investing in research to develop renewable feedstocks for HMDA production, which could significantly reduce the reliance on fossil fuels. As consumer demand for environmentally friendly products rises and regulations surrounding sustainability become more stringent, bio-based HMDA could see significant growth in the coming years.

Lastly, the expanding use of HMDA in developing regions, particularly in Asia-Pacific, is contributing to market growth. The rapid industrialization and urbanization in countries like China and India are driving demand for high-performance materials in construction, automotive, and manufacturing sectors. As these economies continue to develop and modernize, the need for durable, lightweight, and high-strength materials is expected to increase, further boosting the demand for hexamethylenediamine. With its broad range of applications and the ongoing advancements in production technology, the HMDA market is poised for steady growth, making it a critical material in the future of polymer and industrial manufacturing.

Select Competitors (Total 17 Featured) -

TABLE OF CONTENTS

I. METHODOLOGY

II. EXECUTIVE SUMMARY

III. MARKET ANALYSIS

IV. COMPETITION

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â