¼¼°èÀÇ ½Ç¸®ÄÜ ¾ç±Ø ½ÃÀå : ±âȸ, ¼ºÀå ÃËÁø¿äÀÎ, »ê¾÷ µ¿Ç⠺м® ¹× ¿¹Ãø(2025-2034³â)
Silicone Anodes Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034
»óǰÄÚµå
:
1755278
¸®¼Ä¡»ç
:
Global Market Insights Inc.
¹ßÇàÀÏ
:
2025³â 05¿ù
ÆäÀÌÁö Á¤º¸
:
¿µ¹® 220 Pages
¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
¤± Add-on °¡´É: °í°´ÀÇ ¿äû¿¡ µû¶ó ÀÏÁ¤ÇÑ ¹üÀ§ ³»¿¡¼ CustomizationÀÌ °¡´ÉÇÕ´Ï´Ù. ÀÚ¼¼ÇÑ »çÇ×Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.
¼¼°èÀÇ ½Ç¸®ÄÜ ¾ç±Ø ½ÃÀåÀº 2024³â¿¡ 49¾ï ´Þ·¯·Î Æò°¡µÇ¾ú°í ¿¡³ÊÁö ¹Ðµµ¿Í ¼º´ÉÀÇ Çâ»óÀÌ ¿ä±¸µÇ´Â °í¿¡³ÊÁö ¸®Æ¬ À̿ ¹èÅ͸®·ÎÀÇ ½ÃÇÁÆ®°¡ °¡¼ÓµÇ°í ÀÖ´Â °ÍÀ» ¹è°æÀ¸·Î 2034³â¿¡´Â 97¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ÃßÁ¤µÇ¸ç CAGR 7.1%·Î ¼ºÀåÇÒ Àü¸ÁÀÔ´Ï´Ù.
½Ç¸®ÄÜ ±â¹Ý ¾ç±ØÀº ±âÁ¸ Èæ¿¬ÀÇ ÃÖ´ë ¿ë·®ÀÎ 372mAh/gÀÇ ¾à 10¹è¿¡ ´ÞÇÏ´Â 3,600mAh/gÀÇ ¿ë·®À» Á¦°øÇÒ ¼ö ÀÖ´Â ÁÖ¿ä ¹ßÀüÀÔ´Ï´Ù. Àü±âÀÚµ¿Â÷¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó Â÷¼¼´ë ¹èÅ͸® ¼º´ÉÀ» ¸ñÇ¥·Î ÇÏ´Â ±¹°¡Àû ¸ñÇ¥¿¡ ÈûÀÔ¾î ¹èÅ͸® ±â¼úÀº ´õ ³ôÀº ¿¡³ÊÁö ÀÓ°è°ªÀ» ÇâÇØ ¹ßÀüÇϰí ÀÖ½À´Ï´Ù. Á¤ºÎ ÁÖµµÀÇ ÀÌ´Ï¼ÅÆ¼ºê, ¹èÅ͸® »ý»ê ºñ¿ëÀÇ °¨¼Ò, ¾ö°ÝÇÑ ¹èÃâ ¸ñÇ¥´Â ½Ç¸®ÄÜ ¾ç±Ø °³¹ß¿¡ °·ÂÇÑ ÃßÁø·ÂÀ» Á¦°øÇϰí ÀÖ½À´Ï´Ù.
ûÁ¤ ¿¡³ÊÁö ÀüȯÀ» ¸ñÇ¥·Î ÇÑ ±ÔÁ¦ ÇÁ·Î±×·¥, ¿¹¸¦ µé¾î ¹Ì±¹ÀÇ ÀÎÇ÷¹ÀÌ¼Ç °¨Ãà¹ý(Inflation Reduction Act)°ú À¯·´ ¿¬ÇÕ(EU)ÀÇ ±âÈÄ Á¤Ã¥Àº ÀÌ ºÐ¾ßÀÇ »ý»ê°ú Çõ½ÅÀ» Áö¿øÇÕ´Ï´Ù. ¶ÇÇÑ °ø°ø ±â°üÀÇ Áö¿øÀ» ¹ÞÀº ¿¬±¸´Â ½Ç¸®ÄÜÀÇ ±â¼úÀû ÇѰèÀÎ ÆØÃ¢°ú ÅðÈ ¹®Á¦¸¦ ÇØ°áÇϱâ À§ÇØ º¹ÇÕ Àç·á¿Í °í±Þ Àü±Ø ¼³°è ޱ¸¿¡ ÁýÁߵǰí ÀÖ½À´Ï´Ù. ÷´Ü Àç·á °úÇÐ, Á¤Ã¥ Áö¿ø, ÃÖÁ¾ »ç¿ëÀÚ ¼ö¿ä°¡ À¶ÇյǾî ÀÚµ¿Â÷, °¡Àü, ¿¡³ÊÁö ÀúÀå ºÎ¹®¿¡¼ ½Ç¸®ÄÜ ±â¹Ý ¾ç±ØÀÌ »ó¿ë ¹èÅ͸® ½Ã½ºÅÛ¿¡ ºü¸£°Ô äÅÃµÉ ¼ö ÀÖ´Â À¯¸®ÇÑ ¹Ì·¡°¡ ÆîÃÄÁö°í ÀÖ½À´Ï´Ù.
½ÃÀå ¹üÀ§ |
½ÃÀÛ ¿¬µµ |
2024³â |
¿¹Ãø ¿¬µµ |
2025-2034³â |
½ÃÀÛ ±Ý¾× |
49¾ï ´Þ·¯ |
¿¹Ãø ±Ý¾× |
97¾ï ´Þ·¯ |
CAGR |
7.1% |
½Ç¸®ÄÜ-ź¼Ò º¹ÇÕ Àç·á´Â ±â°èÀû ³»±¸¼º°ú »çÀÌŬ¸µ È¿À²ÀÌ Çâ»óµÇ¾î 2024³â¿¡ 30%ÀÇ Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. ÀÌ Àç·á´Â °·ÂÇÑ Àüµµ¼º°ú ±¸Á¶Àû ź·Â¼ºÀ» À¯ÁöÇÏ¸é¼ ÃæÀü Áß ½Ç¸®ÄÜ ºÎÇÇ ÆØÃ¢À̶ó´Â ÀϹÝÀûÀÎ ¹®Á¦¸¦ ¿ÏÈÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ź¼Ò ¸ÅÆ®¸¯½º´Â Áß¿äÇÑ ¹öÆÛ¸µ ±â´ÉÀ» Á¦°øÇÏ¿© Àü±âÀÚµ¿Â÷ ¾ÖÇø®ÄÉÀ̼ǿ¡ ÇÊ¿äÇÑ ¹«°Å¿î ºÎÇÏ »çÀÌŬ¿¡¼µµ ¾ÈÁ¤ÀûÀÎ ¼º´ÉÀ» º¸ÀåÇÕ´Ï´Ù. ÀÌ ÇÏÀ̺긮µå Àç·á´Â È®Àå °¡´ÉÇÑ »ó¿ë µî±Þ ½Ç¸®ÄÜ ¾ç±ØÀÇ Çʼö ¿É¼ÇÀÌ µÇ¾ú½À´Ï´Ù.
ÇÑÆí, ¸®Æ¬ À̿ ¹èÅ͸®´Â 2024³â 58.3%ÀÇ ½ÃÀå Á¡À¯À²À» Â÷ÁöÇßÀ¸¸ç, Àü±âÂ÷, ÈÞ´ë¿ë ÀüÀÚ±â±â, Àü·Â ÀúÀå ½Ã½ºÅÛ µî »ê¾÷ÀÌ ½ÃÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ½Ç¸®ÄÜ ¾ç±ØÀÇ ÀåÁ¡Àº ±âÁ¸ ¸®Æ¬ À̿ ½Ã½ºÅÛ°úÀÇ È£È¯¼ºÀ¸·Î, Å« À籸¼ºÀ» ÇÏÁö ¾Ê°íµµ ¿øÈ°ÇÏ°Ô ÅëÇÕÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ´Â ½Ç¸®ÄÜÀÌ °ÈµÈ ¸®Æ¬ À̿ ¹èÅ͸®ÀÇ »ó¿ëÈ ¹× ´ë·® »ý»êÀ» °¡¼ÓÈÇÏ´Â µ¥ µµ¿òÀÌ µÇ¾ú½À´Ï´Ù. ÀÌ ¹èÅ͸®´Â ÁÖÇà °Å¸® ¿¬Àå, ±â±â ¼ö¸í ¿¬Àå, ¿¡³ÊÁö ÀúÀå ¹Ðµµ Çâ»ó µî »ó´çÇÑ ÀÌÁ¡À» Á¦°øÇÕ´Ï´Ù.
2024³â¿¡´Â Àü±âÀÚµ¿Â÷°¡ ¸ðµç ÀÀ¿ë ºÎ¹®¿¡¼ ¼±µÎ¸¦ Â÷ÁöÇÏ¸ç ½Ç¸®ÄÜ ¾ç±ØÀÇ ÁÖ¿ä ¼ö¿ä µ¿·ÂÀ¸·Î ÀÚ¸®¸Å±èÇß½À´Ï´Ù. ¿ÏÀü Àü±â Ç÷§ÆûÀ¸·ÎÀÇ Àüȯ¿¡´Â ´õ ³ôÀº ¹Ðµµ¿Í ºü¸¥ ÃæÀü ±â´ÉÀ» Á¦°øÇϴ ÷´Ü ¹èÅ͸® ÈÇÐ ¹°ÁúÀÌ ÇÊ¿äÇÕ´Ï´Ù. ½Ç¸®ÄÜ ÈÇÕ¹°Àº ¿ì¼öÇÑ ¿ë·®°ú ÁÖÇà °Å¸® ¿¬Àå¿¡ ±â¿©Çϴ Ư¼ºÀ¸·Î ÀÎÇØ ¿©±â¿¡¼ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¾÷üµéÀº ½Ç¸®ÄÜ ¾ç±ØÀ» Â÷¼¼´ë EV ¹èÅ͸® ½Ã½ºÅÛ¿¡ ÅëÇÕÇϱâ À§ÇØ Àç·á °ø±Þ¾÷üµé°úÀÇ ÆÄÆ®³Ê½ÊÀ» Àû±ØÀûÀ¸·Î ¸ð»öÇϰí ÀÖ½À´Ï´Ù.
¹Ì±¹ ½Ç¸®ÄÜ ¾ç±Ø ½ÃÀåÀº 2024³â¿¡ 10¾ï ´Þ·¯ÀÇ ¸ÅÃâÀ» ´Þ¼ºÇßÀ¸¸ç, ºÏ¹Ì Àü¿ª¿¡¼ °è¼ÓÇØ¼ ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. °·ÂÇÑ ¿¬¹æ Á¤ºÎÀÇ Áö¿ø¿¡ ÈûÀÔ¾î, ±¹°¡ Á¤Ã¥Àº EV ¹èÅ͸® ±â¼úÀÇ ±¹³» »ý»ê ¹× Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÃÊ´çÀû ÀÎÇÁ¶ó ¹ý¾È°ú °°Àº ¹ý·üÀº ÷´Ü ¿¡³ÊÁö ½Ã½ºÅÛ¿¡ ´ëÇÑ ÅõÀÚ¸¦ Àå·ÁÇÏ´Â ÇÑÆí, °í¼Ó ÃæÀü ¹× Àå°Å¸® Àü±âÀÚµ¿Â÷¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó OEM ¹× ¹èÅ͸® Á¦Á¶¾÷üµéÀÌ ½Ç¸®ÄÜ ±â¹Ý ¼ÒÀ縦 ÅëÇÕÇϵµ·Ï À¯µµÇϰí ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿Í ¹èÅ͸® °³¹ß¾÷üÀÇ Àû±ØÀûÀÎ Âü¿©¿Í ÇÔ²² ¹Ì±¹ÀÇ °·ÂÇÑ R&D »ýŰè´Â Àç·á °úÇÐ, »ó¾÷Àû ÀÀ¿ë ¹× °ø±Þ¸Á ÅëÇÕÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
½Ç¸®ÄÜ ¾ç±Ø ½ÃÀå¿¡¼ Ȱµ¿ÇÏ´Â ÁÖ¿ä ¾÷ü·Î´Â Amprius Technologies, Wacker Chemie, Enovix ¹× Sila Nanotechnologies°¡ ÀÖ½À´Ï´Ù. ½ÃÀå ÁöÀ§¸¦ °ÈÇϱâ À§ÇØ ½Ç¸®ÄÜ ¾ç±Ø ¾÷°èÀÇ ±â¾÷µéÀº Àå±âÀûÀÎ Çù·Â, R&D È®´ë ¹× ¼öÁ÷ ÅëÇÕ¿¡ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä Àü·«¿¡´Â ½Ç¸®ÄÜÀÇ ÆØÃ¢ ¹®Á¦¸¦ ÇØ°áÇϱâ À§ÇÑ Â÷¼¼´ë º¹ÇÕ Àç·á °³¹ß°ú Àü±âÂ÷ ¹× ¹èÅ͸® Á¦Á¶»ç¿ÍÀÇ Á¦ÈÞ¸¦ ÅëÇØ »ó¾÷ȸ¦ °¡¼ÓÈÇÏ´Â °ÍÀÌ Æ÷ÇԵ˴ϴÙ. ÀϺΠ±â¾÷Àº Á¦Ç° ¾ÈÁ¤¼º°ú ºñ¿ë È¿À²¼ºÀ» È®º¸Çϱâ À§ÇØ µ¶ÀÚÀûÀÎ ³ª³ë±¸Á¶ ¼³°è¿Í È®Àå °¡´ÉÇÑ Á¦Á¶ ±â¼úÀ» °³¹ßÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ±â¾÷µéÀº °ø°ø ÀÚ±Ý Áö¿ø°ú ±ÔÁ¦ Áö¿øÀ» Ȱ¿ëÇØ Çõ½Å ÆÄÀÌÇÁ¶óÀÎÀ» °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù.
¸ñÂ÷
Á¦1Àå Á¶»ç ¹æ¹ý°ú ¹üÀ§
Á¦2Àå ÁÖ¿ä ¿ä¾à
Á¦3Àå ¾÷°è ÀλçÀÌÆ®
- »ýÅÂ°è ºÐ¼®
- ¹ë·ùüÀο¡ ¿µÇâÀ» ÁÖ´Â ¿äÀÎ
- ÀÌÀÍ·ü ºÐ¼®
- Çõ½Å
- Àå·¡ÀÇ Àü¸Á
- Á¦Á¶¾÷ÀÚ
- ¸®¼¿·¯
- Æ®·³ÇÁ Á¤±Ç¿¡ ÀÇÇÑ °ü¼¼¿¡ ´ëÇÑ ¿µÇâ
- ¹«¿ª¿¡ ¹ÌÄ¡´Â ¿µÇâ
- ¾÷°è¿¡ ¹ÌÄ¡´Â ¿µÇâ
- °ø±ÞÃøÀÇ ¿µÇâ(¿øÀç·á)
- ÁÖ¿ä ¿øÀç·áÀÇ °¡°Ý º¯µ¿
- °ø±Þ¸Á À籸¼º
- »ý»ê ºñ¿ë¿¡ ¹ÌÄ¡´Â ¿µÇâ
- ¼ö¿äÃøÀÇ ¿µÇâ(ÆÇ¸Å°¡°Ý)
- ÃÖÁ¾ ½ÃÀå¿¡ÀÇ °¡°Ý Àü´Þ
- ½ÃÀå Á¡À¯À² µ¿Çâ
- ¼ÒºñÀÚÀÇ ¹ÝÀÀ ÆÐÅÏ
- ¿µÇâÀ» ¹Þ´Â ÁÖ¿ä ±â¾÷
- Àü·«ÀûÀÎ ¾÷°è ´ëÀÀ
- °ø±Þ¸Á À籸¼º
- °¡°Ý ¼³Á¤ ¹× Á¦Ç° Àü·«
- Á¤Ã¥°ü¿©
- Àü¸Á°ú ÇâÈÄ °ËÅä »çÇ×
- ¹«¿ª Åë°è(HS ÄÚµå) Âü°í : À§ÀÇ ¹«¿ª Åë°è´Â ÁÖ¿ä ±¹°¡¿¡ ´ëÇØ¼¸¸ Á¦°øµË´Ï´Ù
- ¿µÇâ¿äÀÎ
- ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
- Àü±âÀÚµ¿Â÷ ½ÃÀåÀÇ ¼ºÀå
- °í¿¡³ÊÁö ¹Ðµµ ¹èÅ͸®¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
- ¹èÅ͸® ºñ¿ë ÀúÇÏ
- Á¤ºÎ Á¤Ã¥ ¹× ±ÔÁ¦
- ½Ç¸®ÄÜ ¾ç±Ø Àç·áÀÇ ±â¼ú ¹ßÀü
- ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
- ½Ç¸®ÄÜ ¾ç±Ø ±¸ÇöÀÇ ±â¼úÀû °úÁ¦
- ³ôÀº »ý»ê ºñ¿ë
- ´ëü ¾ç±Ø Àç·á¿ÍÀÇ °æÀï
- °ø±Þ¸ÁÀÇ Á¦¾à
- ¼º´É°ú ³»±¸¼º¿¡ ´ëÇÑ ¿ì·Á
- ½ÃÀå ±âȸ
- Â÷¼¼´ë Àü±âÂ÷(EV)¿ÍÀÇ ÅëÇÕ
- ¼ÒºñÀÚ ÀüÀÚÁ¦Ç°¿¡¼ÀÇ ½Å±Ô ÀÀ¿ë ºÐ¾ß
- ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ
- Ç×°ø¿ìÁÖ ¹× ¹æÀ§ »ê¾÷ ÀÀ¿ë
- ½Ç¸®ÄÜ ¾ç±Ø¿Í °íü ¹èÅ͸®ÀÇ ½Ã³ÊÁö È¿°ú
- ½ÃÀåÀÇ °úÁ¦
- »ó¾÷È ¼öÁØÀ¸·ÎÀÇ »ý»ê ±Ô¸ð È®´ë
- ÀϰüµÈ ǰÁú ½ÇÇö
- ¼º´É°ú ºñ¿ëÀÇ ±ÕÇü
- ±âÁ¸ Á¦Á¶ ÀÎÇÁ¶ó¿ÍÀÇ ÅëÇÕ
- ±ÔÁ¦ Ʋ°ú Á¤ºÎÀÇ ´ëó
- ¹èÅ͸® ¾ÈÀü ±âÁØ
- ¿î¼Û ±ÔÁ¦
- ȯ°æ ±ÔÁ¦
- Á¦Á¶ ±âÁØ
- ½ÃÇè ¹× ÀÎÁõ ¿ä°Ç
- Áö¿ª¿¡ ÀÇÇÑ ±ÔÁ¦ÀÇ Â÷ÀÌ
- ¼ºÀå °¡´É¼º ºÐ¼®
- °¡°Ý ºÐ¼®(USD/Åæ, 2021-2034³â)
- ½Ç¸®ÄÜ ¾ç±ØÀÇ ±âÃÊ
- ½Ç¸®ÄÜ ¾ç±Ø ±â¼úÀÇ °³¿ä
- ¸®Æ¬ À̿ ¹èÅ͸® ÀÛµ¿ ¿ø¸®
- ¾ç±Ø Àç·á·Î¼ÀÇ ½Ç¸®ÄÜ
- ÀÌ·Ð ¿ë·®°ú ¿¡³ÊÁö ¹Ðµµ
- Èæ¿¬ ¾ç±Ø°úÀÇ ºñ±³
- ±â¼úÀûÀÎ °úÁ¦¿Í ÇØ°áÃ¥
- º¼·ý È®´ëÀÇ ¹®Á¦
- °íü ÀüÇØÁú ÀÎÅÍÆäÀ̽º (SEI) Çü¼º
- »çÀÌŬ ¼ö¸í Á¦ÇÑ
- Àü±â Àüµµ¼ºÀÇ °úÁ¦
- Çõ½ÅÀûÀÎ µðÀÚÀÎ Á¢±Ù¹ý
- ¼º´É ÁöÇ¥¿Í Æò°¡
- ºñ¿ë·®
- »çÀÌŬ¸µÀÇ ¾ÈÁ¤¼º
- ·¹ÀÌÆ® ´É·Â
- Äð·Õ È¿À²
- ¿Âµµ ¼º´É
- Ç¥ÁØÈµÈ Å×½ºÆ® ÇÁ·ÎÅäÄÝ
- Àç·á°úÇаú °øÇÐ
- ½Ç¸®ÄÜ Àç·á Æû
- ½Ç¸®ÄÜ ³ª³ëÀÔÀÚ
- ½Ç¸®ÄÜ ³ª³ë¿ÍÀ̾î
- ½Ç¸®ÄÜ ³ª³ëÆ©ºê
- ´Ù°øÁú ½Ç¸®ÄÜ ±¸Á¶
- ½Ç¸®ÄÜ ¹Ú¸·
- ½Ç¸®ÄÜ Åº¼Ò º¹ÇÕÀç·á
- ÄÚ¾î ½© ±¸Á¶
- ½Ç¸®ÄÜ-Èæ¿¬ º¹ÇÕÀç·á
- ½Ç¸®ÄÜ-ź¼Ò³ª³ëÆ©ºê º¹ÇÕÀç·á
- ½Ç¸®ÄÜ-±×·¡ÇÉ º¹ÇÕÀç·á
- ±âŸ º¹ÇÕ ¾ÆÅ°ÅØÃ³
- ½Ç¸®ÄÜ »êȹ°°è Àç·á
- ÀÏ»êȱԼÒ(SiO)
- ÀÌ»êȱԼÒ(SiO2)
- ½Ã¿Á½º º¹ÇÕÀç·á
- ¼º´É Ư¼º
- ¹ÙÀδõ¿Í ÷°¡Á¦
- Á¾·¡ÀÇ ¹ÙÀδõ(PVDF)
- ¼ö¿ë¼º ¹ÙÀδõ(CMC, PAA)
- ¿¤¶ó½ºÅä¸Ó ¹ÙÀδõ
- Àüµµ¼º ÷°¡Á¦
- ±â´É¼º ÷°¡Á¦
- ÀüÇØÁú¿¡ °üÇÑ °í·Á »çÇ×
- ÀüÇØÁú Á¦Çü
- ¼¼ÀÌ ¾ÈÁ¤È ÷°¡Á¦
- °íü ÀüÇØÁú
- ½Ç¸®ÄÜ-ÀüÇØÁú °è¸é°øÇÐ
- Á¦Á¶ ¹× »ý»ê ±â¼ú
- ½Ç¸®ÄÜ Àç·áÀÇ ÇÕ¼º
- ÈÇÐ ÁõÂø
- ¸¶±×³×½Ã¿À ¼¹Í ȯ¿ø
- Àü±âÈÇÐ ¿¡Äª
- º¼¹Ð
- ±âŸ ÇÕ¼º ¹æ¹ý
- Àü±Ø Á¦Á¶ ±â¼ú
- ½½·¯¸® Á¶Á¦
- ÄÚÆÃ °øÁ¤
- ͏°´õ °¡°ø
- Àü±Ø Àý´Ü
- ǰÁú°ü¸®¹æ¹ý
- ¼¿ Á¶¸³ °øÁ¤
- ÆÄ¿ìÄ¡ ¼¿ Á¶¸³
- ¿øÅëÇü ¼¿ Á¶¸³
- »ç°¢ ±âµÕ ¼¿ Á¶¸³
- Çü¼º°ú ³ëÈ
- È®À强 °í·Á »çÇ×
- ½ÇÇè½Ç ±Ô¸ð¿¡¼ ÆÄÀÏ·µ »ý»ê
- ´ë·®»ý»ê °úÁ¦
- ºñ¿ë ºÐ¼®
- ¼öÀ² ÃÖÀûÈ
- ±â±â ¿ä°Ç
- Á¦Á¶¾÷ÀÇ Çõ½Å
- °Ç½Ä Àü±Ø ó¸®
- ÀûÃþ Á¶Çü
- ·Ñ Åõ ·Ñ ó¸®
- Industry 4.0 ÅëÇÕ
- »õ·Î¿î Á¦Á¶ Á¢±Ù
- ½Ç¸®ÄÜ ¾ç±Ø ±â¼úÀÇ ÃÖ±Ù Çõ½Å
- »õ·Î¿î ½Ç¸®ÄÜ ³ª³ë±¸Á¶
- °í±Þ º¹ÇÕÀç ¼³°è
- ¹ÙÀδõ¿Í ÀüÇØÁúÀÇ Çõ½Å
- Á¦Á¶ °øÁ¤ÀÇ È¹±âÀûÀÎ
- ¼º´É Çâ»ó Àü·«
- Porter's Five Forces ºÐ¼®
- PESTEL ºÐ¼®
Á¦4Àå °æÀï ±¸µµ
- ¼Ò°³
- ÁÖ¿ä ±â¾÷ÀÇ ½ÃÀå Á¡À¯À² ºÐ¼®
- °æÀï º¥Ä¡¸¶Å·
- Àü·«Àû ´ë½Ãº¸µå
- °æÀï Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º
- ÁÖ¿ä ±â¾÷ÀÌ Ã¤¿ëÇϰí ÀÖ´Â °æÀï Àü·«
- ÇÕº´°ú Àμö
- º¥Ã³¿Í Çù¾÷
- Á¦Ç° ¹ß¸Å¿Í Çõ½Å
- È®´ë ¹× ÅõÀÚ Àü·«
Á¦5Àå ½ÃÀå Ãß°è ¹× ¿¹Ãø : Àç·áº°(2021-2034³â)
- ÁÖ¿ä µ¿Çâ
- ½Ç¸®ÄÜ ³ª³ëÀÔÀÚ
- ½Ç¸®ÄÜ ³ª³ë¿ÍÀ̾î/³ª³ëÆ©ºê
- ½Ç¸®ÄÜ Åº¼Ò º¹ÇÕÀç·á
- »êȱԼÒ/SiOx
- ½Ç¸®ÄÜ ¹Ú¸·
- ±âŸ
Á¦6Àå ½ÃÀå Ãß°è ¹× ¿¹Ãø : ¹èÅ͸® À¯Çüº°(2021-2034³â)
- ÁÖ¿ä µ¿Çâ
- ¸®Æ¬ À̿ ¹èÅ͸®
- ¿øÅëÇü ¼¿ ¹èÅ͸®
- ÆÄ¿ìÄ¡Çü ¼¿ ¹èÅ͸®
- °¢ÁÖÇü ¼¿ ¹èÅ͸®
- ¸®Æ¬ Æú¸®¸Ó ¹èÅ͸®
- Àü°íü ¹èÅ͸®
- ±âŸ
Á¦7Àå ½ÃÀå Ãß°è ¹× ¿¹Ãø : ¿ëµµº°(2021-2034³â)
- ÁÖ¿ä µ¿Çâ
- ÀÚµ¿Â÷
- ¹èÅ͸® Àü±âÀÚµ¿Â÷
- Ç÷¯±×ÀÎ ÇÏÀ̺긮µå Àü±âÀÚµ¿Â÷
- ÇÏÀ̺긮µå Àü±âÀÚµ¿Â÷
- »ó¿ëÂ÷
- °¡Àü
- ½º¸¶Æ®Æù
- ³ëÆ®ºÏ°ú ÅÂºí¸´
- ¿þ¾î·¯ºí µð¹ÙÀ̽º
- ±âŸ
- ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ
- ÁÖ°Å¿ë
- »ó¾÷¿ë
- À¯Æ¿¸®Æ¼ ½ºÄÉÀÏ
- ¸¶ÀÌÅ©·Î±×¸®µå¿Í ¿ÀÇÁ ±×¸®µå
- »ê¾÷
- Àüµ¿ °ø±¸
- ÀÚÀç°ü¸® ±â±â
- ±âŸ
- Ç×°ø¿ìÁÖ ¹× ¹æ¾î
- ±âŸ
Á¦8Àå ½ÃÀå Ãß°è ¹× ¿¹Ãø : Áö¿ªº°(2021-2034³â)
- ÁÖ¿ä µ¿Çâ
- ºÏ¹Ì
- À¯·´
- µ¶ÀÏ
- ¿µ±¹
- ÇÁ¶û½º
- ½ºÆäÀÎ
- ÀÌÅ»¸®¾Æ
- ±âŸ À¯·´
- ¾Æ½Ã¾ÆÅÂÆò¾ç
- Áß±¹
- Àεµ
- ÀϺ»
- È£ÁÖ
- Çѱ¹
- ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
- ¶óƾ¾Æ¸Þ¸®Ä«
- ºê¶óÁú
- ¸ß½ÃÄÚ
- ¾Æ¸£ÇîÆ¼³ª
- ±âŸ ¶óƾ¾Æ¸Þ¸®Ä«
- Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
- »ç¿ìµð¾Æ¶óºñ¾Æ
- ³²¾ÆÇÁ¸®Ä«
- ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
- ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
Á¦9Àå ±â¾÷ ÇÁ·ÎÆÄÀÏ
- Advano
- Amprius Technologies
- BTR New Energy Material
- Enevate Corporation
- Enovix
- Group14 Technologies
- NanoGraf Corporation
- Nexeon Limited
- Ningbo Shanshan
- OneD Battery Sciences
- Shin-Etsu Chemical
- Sila Nanotechnologies
- Targray Technology International
- Wacker Chemie
HBR
¿µ¹® ¸ñÂ÷
The Global Silicone Anodes Market was valued at USD 4.9 billion in 2024 and is estimated to grow at a CAGR of 7.1% to reach USD 9.7 billion by 2034, fueled by the accelerating shift toward high-energy lithium-ion batteries that demand improved energy density and performance. Silicon-based anodes are a major advancement, capable of delivering around 3,600 mAh/g-nearly ten times the capacity of conventional graphite, which maxes out at 372 mAh/g. The rising demand for electric vehicles pushes battery technologies toward higher energy thresholds, supported by national goals targeting next-generation battery performance. Government-led initiatives, declining battery production costs, and stringent emissions targets create strong momentum for silicon anode development.

Regulatory programs aimed at clean energy transition, such as the U.S. Inflation Reduction Act and the EU's climate policies, support production and innovation in this space. In addition, research backed by public agencies is focusing on resolving technical limitations of silicon, like expansion and degradation, by exploring composite materials and advanced electrode designs. The convergence of advanced materials science, policy backing, and end-user demand creates a favorable landscape for the rapid adoption of silicon-based anodes in commercial battery systems across automotive, consumer electronics, and energy storage sectors.
Market Scope |
Start Year | 2024 |
Forecast Year | 2025-2034 |
Start Value | $4.9 Billion |
Forecast Value | $9.7 Billion |
CAGR | 7.1% |
Silicon-carbon composites captured a 30% share in 2024 due to their enhanced mechanical durability and cycling efficiency. These materials help mitigate the common challenge of silicon volume expansion during charging, while maintaining strong conductivity and structural resilience. The carbon matrix offers critical buffering, ensuring reliable performance under the heavy load cycles required by electric vehicle applications. This hybrid material has become the go-to option for scalable, commercial-grade silicon anodes.
Meanwhile, lithium-ion batteries accounted for a 58.3% share in 2024, as industries like EVs, portable electronics, and grid storage dominate the market. The advantage of silicon anodes lies in their compatibility with existing lithium-ion systems, allowing seamless integration without major retooling. This has helped accelerate the commercialization and mass production of silicon-enhanced lithium-ion batteries. These batteries offer significant benefits, such as extended driving range, greater device longevity, and enhanced energy storage density.
Electric vehicles led all application segments in 2024, establishing themselves as the primary driver of demand for silicon anodes. The shift toward fully electric platforms requires advanced battery chemistries that deliver higher density and fast charging capabilities. Silicon compounds are crucial here, given their superior capacity and contribution to extended range. Automotive manufacturers are actively exploring partnerships with material suppliers to accelerate the integration of silicon anodes into next-gen EV battery systems.
U.S. Silicone Anodes Market generated USD 1 billion in 2024 and continues to gain strength across North America. Backed by strong federal support, national policies promote domestic production and innovation in EV battery technology. Legislation such as the Bipartisan Infrastructure Law encourages investment in advanced energy systems, while growing consumer demand for fast-charging, long-range electric vehicles pushes OEMs and battery manufacturers to incorporate silicon-based materials. The country's robust R&D ecosystem, along with active engagement from automakers and battery developers, is driving rapid advancements in material science, commercial applications, and supply chain integration.
Key players operating in the Silicone Anodes Market include Amprius Technologies, Wacker Chemie, Enovix, and Sila Nanotechnologies. To reinforce their market position, companies in the silicone anodes industry focus on long-term collaborations, R&D scaling, and vertical integration. Key strategies include developing next-generation composites to address silicon's expansion challenges and forming alliances with EV and battery manufacturers to streamline commercialization. Some players invest in proprietary nanostructure designs and scalable manufacturing techniques to ensure product stability and cost efficiency. Additionally, firms are leveraging public funding and regulatory support to fast-track innovation pipelines.
Table of Contents
Chapter 1 Methodology & Scope
- 1.1 Market scope & definition
- 1.2 Base estimates & calculations
- 1.3 Forecast calculation
- 1.4 Data sources
- 1.4.1 Primary
- 1.4.2 Secondary
- 1.4.2.1 Paid sources
- 1.4.2.2 Public sources
- 1.5 Primary research and validation
- 1.5.1 Primary sources
- 1.5.2 Data mining sources
Chapter 2 Executive Summary
- 2.1 Industry synopsis, 2021 - 2034
Chapter 3 Industry Insights
- 3.1 Industry ecosystem analysis
- 3.1.1 Factor affecting the value chain
- 3.1.2 Profit margin analysis
- 3.1.3 Disruptions
- 3.1.4 Future outlook
- 3.1.5 Manufacturers
- 3.1.6 Distributors
- 3.2 Trump administration tariffs
- 3.2.1 Impact on trade
- 3.2.1.1 Trade volume disruptions
- 3.2.1.2 Retaliatory measures
- 3.2.2 Impact on the industry
- 3.2.2.1 Supply-side impact (raw materials)
- 3.2.2.1.1 Price volatility in key materials
- 3.2.2.1.2 Supply chain restructuring
- 3.2.2.1.3 Production cost implications
- 3.2.2.2 Demand-side impact (selling price)
- 3.2.2.2.1 Price transmission to end markets
- 3.2.2.2.2 Market share dynamics
- 3.2.2.2.3 Consumer response patterns
- 3.2.3 Key companies impacted
- 3.2.4 Strategic industry responses
- 3.2.4.1 Supply chain reconfiguration
- 3.2.4.2 Pricing and product strategies
- 3.2.4.3 Policy engagement
- 3.2.5 Outlook and future considerations
- 3.3 Trade statistics (HS Code) Note: the above trade statistics will be provided for key countries only.
- 3.3.1 Major exporting countries
- 3.3.2 Major importing countries
- 3.4 Impact forces
- 3.4.1 Market drivers
- 3.4.1.1 Growing electric vehicle market
- 3.4.1.2 Increasing demand for high-energy density batteries
- 3.4.1.3 Declining battery costs
- 3.4.1.4 Government initiatives and regulations
- 3.4.1.5 Technological advancements in silicon anode materials
- 3.4.2 Market restraints
- 3.4.2.1 Technical challenges in silicon anode implementation
- 3.4.2.2 High production costs
- 3.4.2.3 Competition from alternative anode materials
- 3.4.2.4 Supply chain constraints
- 3.4.2.5 Performance and durability concerns
- 3.4.3 Market opportunities
- 3.4.3.1 Integration in next-generation EVs
- 3.4.3.2 Emerging applications in consumer electronics
- 3.4.3.3 Energy storage systems
- 3.4.3.4 Aerospace and defense applications
- 3.4.3.5 Silicon anode-solid state battery synergies
- 3.4.4 Market challenges
- 3.4.4.1 Scaling production to commercial levels
- 3.4.4.2 Achieving consistent quality
- 3.4.4.3 Balancing performance and cost
- 3.4.4.4 Integration with existing manufacturing infrastructure
- 3.5 Regulatory framework and government initiatives
- 3.5.1 Battery safety standards
- 3.5.2 Transportation regulations
- 3.5.3 Environmental regulations
- 3.5.4 Manufacturing standards
- 3.5.5 Testing and certification requirements
- 3.5.6 Regional regulatory variations
- 3.6 Growth potential analysis
- 3.7 Pricing analysis (USD/Tons) 2021-2034
- 3.8 Fundamentals of silicon anodes
- 3.8.1 Silicon anode technology overview
- 3.8.1.1 Lithium-ion battery working principles
- 3.8.1.2 Silicon as anode material
- 3.8.1.3 Theoretical capacity and energy density
- 3.8.1.4 Comparison with graphite anodes
- 3.8.2 Technical challenges and solutions
- 3.8.2.1 Volume expansion issues
- 3.8.2.2 Solid electrolyte interphase (sei) formation
- 3.8.2.3 Cycle life limitations
- 3.8.2.4 Electrical conductivity challenges
- 3.8.2.5 Innovative design approaches
- 3.8.3 Performance metrics and evaluation
- 3.8.3.1 Specific capacity
- 3.8.3.2 Cycling stability
- 3.8.3.3 Rate capability
- 3.8.3.4 Coulombic efficiency
- 3.8.3.5 Temperature performance
- 3.8.3.6 Standardized testing protocols
- 3.9 Materials science and engineering
- 3.9.1 Silicon material forms
- 3.9.1.1 Silicon nanoparticles
- 3.9.1.2 Silicon nanowires
- 3.9.1.3 Silicon nanotubes
- 3.9.1.4 Porous silicon structures
- 3.9.1.5 Silicon thin films
- 3.9.2 Silicon-carbon composites
- 3.9.2.1 Core-shell structures
- 3.9.2.2 Silicon-graphite composites
- 3.9.2.3 Silicon-carbon nanotubes composites
- 3.9.2.4 Silicon-graphene composites
- 3.9.2.5 Other composite architectures
- 3.9.3 Silicon oxide-based materials
- 3.9.3.1 Silicon monoxide (Sio)
- 3.9.3.2 Silicon dioxide (Sio2)
- 3.9.3.3 Siox composites
- 3.9.3.4 Performance characteristics
- 3.9.4 Binders and additives
- 3.9.4.1 Conventional binders (PVDF)
- 3.9.4.2 Water-soluble binders (CMC, PAA)
- 3.9.4.3 Elastomeric binders
- 3.9.4.4 Conductive additives
- 3.9.4.5 Functional additives
- 3.9.5 Electrolyte considerations
- 3.9.5.1 Electrolyte formulations
- 3.9.5.2 Additives for sei stabilization
- 3.9.5.3 Solid-state electrolytes
- 3.9.5.4 Silicon-electrolyte interface engineering
- 3.10 Manufacturing and production technologies
- 3.10.1 Silicon material synthesis
- 3.10.1.1 Chemical vapor deposition
- 3.10.1.2 Magnesiothermic reduction
- 3.10.1.3 Electrochemical etching
- 3.10.1.4 Ball milling
- 3.10.1.5 Other synthesis methods
- 3.10.2 Electrode fabrication techniques
- 3.10.2.1 Slurry preparation
- 3.10.2.2 Coating processes
- 3.10.2.3 Calendering
- 3.10.2.4 Electrode cutting
- 3.10.2.5 Quality control methods
- 3.10.3 Cell assembly processes
- 3.10.3.1 Pouch cell assembly
- 3.10.3.2 Cylindrical cell assembly
- 3.10.3.3 Prismatic cell assembly
- 3.10.3.4 Formation and aging
- 3.10.4 Scalability considerations
- 3.10.4.1 Lab-scale to pilot production
- 3.10.4.2 Mass production challenges
- 3.10.4.3 Cost analysis
- 3.10.4.4 Yield optimization
- 3.10.4.5 Equipment requirements
- 3.10.5 Manufacturing innovations
- 3.10.5.1 Dry electrode processing
- 3.10.5.2 Additive manufacturing
- 3.10.5.3 Roll-to-roll processing
- 3.10.5.4 Industry 4.0 integration
- 3.10.5.5 Emerging manufacturing approaches
- 3.11 Recent innovations in silicon anode technology
- 3.11.1 Novel silicon nanostructures
- 3.11.2 Advanced composite designs
- 3.11.3 Binder and electrolyte innovations
- 3.11.4 Manufacturing process breakthroughs
- 3.11.5 Performance enhancement strategies
- 3.12 Porter's analysis
- 3.13 PESTEL analysis
Chapter 4 Competitive Landscape, 2024
- 4.1 Introduction
- 4.2 Market share analysis of key players
- 4.3 Competitive benchmarking
- 4.4 Strategic dashboard
- 4.5 Competitive positioning matrix
- 4.6 Competitive strategies adopted by key players
- 4.6.1 Mergers and acquisitions
- 4.6.2 Ventures and collaborations
- 4.6.3 Product launches and innovations
- 4.6.4 Expansion and investment strategies
Chapter 5 Market Estimates and Forecast, By Material, 2021 - 2034 (USD Billion) (Kilo Tons)
- 5.1 Key trends
- 5.2 Silicon nanoparticles
- 5.3 Silicon nanowires/nanotubes
- 5.4 Silicon-carbon composites
- 5.5 Silicon oxide/SiOx
- 5.6 Silicon thin films
- 5.7 Others
Chapter 6 Market Estimates and Forecast, By Battery Type, 2021 - 2034 (USD Billion) (Kilo Tons)
- 6.1 Key trends
- 6.2 Lithium-ion batteries
- 6.2.1 Cylindrical cells
- 6.2.2 Pouch cells
- 6.2.3 Prismatic cells
- 6.3 Lithium-polymer batteries
- 6.4 Solid-state batteries
- 6.5 Others
Chapter 7 Market Estimates and Forecast, By Application, 2021 - 2034 (USD Billion) (Kilo Tons)
- 7.1 Key trends
- 7.2 Automotive
- 7.2.1 Battery electric vehicles
- 7.2.2 Plug-in hybrid electric vehicles
- 7.2.3 Hybrid electric vehicles
- 7.2.4 Commercial vehicles
- 7.3 Consumer electronics
- 7.3.1 Smartphones
- 7.3.2 Laptops and tablets
- 7.3.3 Wearable devices
- 7.3.4 Others
- 7.4 Energy storage systems
- 7.4.1 Residential
- 7.4.2 Commercial
- 7.4.3 Utility-Scale
- 7.4.4 Microgrid and off-grid
- 7.5 Industrial
- 7.5.1 Power tools
- 7.5.2 Material handling equipment
- 7.5.3 Others
- 7.6 Aerospace and defense
- 7.7 Others
Chapter 8 Market Estimates and Forecast, By Region, 2021 - 2034 (USD Billion) (Kilo Tons)
- 8.1 Key trends
- 8.2 North America
- 8.3 Europe
- 8.3.1 Germany
- 8.3.2 UK
- 8.3.3 France
- 8.3.4 Spain
- 8.3.5 Italy
- 8.3.6 Rest of Europe
- 8.4 Asia Pacific
- 8.4.1 China
- 8.4.2 India
- 8.4.3 Japan
- 8.4.4 Australia
- 8.4.5 South Korea
- 8.4.6 Rest of Asia Pacific
- 8.5 Latin America
- 8.5.1 Brazil
- 8.5.2 Mexico
- 8.5.3 Argentina
- 8.5.4 Rest of Latin America
- 8.6 Middle East and Africa
- 8.6.1 Saudi Arabia
- 8.6.2 South Africa
- 8.6.3 UAE
- 8.6.4 Rest of Middle East and Africa
Chapter 9 Company Profiles
- 9.1 Advano
- 9.2 Amprius Technologies
- 9.3 BTR New Energy Material
- 9.4 Enevate Corporation
- 9.5 Enovix
- 9.6 Group14 Technologies
- 9.7 NanoGraf Corporation
- 9.8 Nexeon Limited
- 9.9 Ningbo Shanshan
- 9.10 OneD Battery Sciences
- 9.11 Shin-Etsu Chemical
- 9.12 Sila Nanotechnologies
- 9.13 Targray Technology International
- 9.14 Wacker Chemie
°ü·ÃÀÚ·á