Á¤¹Ð ³ó¾÷ ·Îº¿ ½ÃÀå ºÐ¼® ¹× ¿¹Ãø(-2034³â) : À¯Çü, Á¦Ç°, ¼­ºñ½º, ±â¼ú, ÄÄÆ÷³ÍÆ®, ¿ëµµ, Àü°³, ÃÖÁ¾ »ç¿ëÀÚ, ±â´É
Precision Agriculture Robotics Market Analysis and Forecast to 2034: Type, Product, Services, Technology, Component, Application, Deployment, End User, Functionality
»óǰÄÚµå : 1789183
¸®¼­Ä¡»ç : Global Insight Services LLC
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 304 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,750 £Ü 6,681,000
Single User License help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇϸç, Àμâ´Â °¡´ÉÇÕ´Ï´Ù.
US $ 5,750 £Ü 8,088,000
Site License help
PDF, Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷(±¹°¡)ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,750 £Ü 9,495,000
Enterprise License help
PDF, Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ Àü ¼¼°è ¸ðµçºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

Á¤¹Ð ³ó¾÷ ·Îº¿ ½ÃÀåÀº 2024³â 53¾ï ´Þ·¯¿¡¼­ 2034³â¿¡´Â 163¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç ¾à 12%ÀÇ ¿¬Æò±Õ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù. Á¤¹Ð ³ó¾÷ ·Îº¿ ½ÃÀåÀº ÀÚµ¿È­ ¹× µ¥ÀÌÅÍ ±â¹Ý ÀλçÀÌÆ®¸¦ ÅëÇØ ³ó¾÷ °üÇàÀ» ÃÖÀûÈ­Çϵµ·Ï ¼³°èµÈ ÷´Ü ·Îº¿ ½Ã½ºÅÛÀ» Æ÷ÇÔÇÕ´Ï´Ù. ÀÌ ·Îº¿µéÀº ½É±â, ¸ð´ÏÅ͸µ, ¼öÈ® µîÀÇ ÀÛ¾÷À» Á¤¹ÐÇÏ°Ô ¼öÇàÇÏ¿© ÀÛ¹° ¼öÈ®·®°ú ÀÚ¿ø È¿À²¼ºÀ» ³ôÀÔ´Ï´Ù. ÀÌ ½ÃÀåÀº Áö¼Ó °¡´ÉÇÑ ³ó¾÷¿¡ ´ëÇÑ Çʿ伺, ³ëµ¿·Â ºÎÁ·, AI ¹× IoTÀÇ ±â¼úÀû ¹ßÀü¿¡ ÀÇÇØ ÃßÁøµÇ°í ÀÖÀ¸¸ç, ÀÚÀ² ±â°è ¹× ½º¸¶Æ® ³ó¾÷ ¼Ö·ç¼ÇÀÇ Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

Á¤¹Ð ³ó¾÷ ·Îº¿ ½ÃÀåÀº Àü ¼¼°è °ü¼¼, ÁöÁ¤ÇÐÀû À§Çè, ÁøÈ­ÇÏ´Â °ø±Þ¸Á µ¿ÇâÀÇ ¿µÇâÀ» Å©°Ô ¹Þ°í ÀÖ½À´Ï´Ù. ÀϺ»°ú Çѱ¹¿¡¼­´Â ¹«¿ª ±äÀåÀÌ °íÁ¶µÇ¸é¼­ ÀÚ¸³°ú ±¹³» ·Îº¿ Çõ½Å¿¡ ´ëÇÑ ÅõÀÚ·Î Àü·«ÀÇ ÃàÀÌ À̵¿Çϰí ÀÖ½À´Ï´Ù. ¼öÃâ Á¦¾à¿¡ Á÷¸éÇÑ Áß±¹Àº ÀÚ±¹ ±â¼ú °³¹ß¿¡ ´ëÇÑ ÁýÁßÀ» °¡¼ÓÈ­Çϰí ÀÖÀ¸¸ç, °­·ÂÇÑ ¹ÝµµÃ¼ »ê¾÷À» º¸À¯ÇÑ ´ë¸¸Àº ¹ÌÁß ±äÀå °ü°è ¼Ó¿¡¼­ ÁßÃßÀûÀÌÁö¸¸ Ãë¾àÇÑ ¾÷ü·Î ³²¾Æ ÀÖ½À´Ï´Ù. Àü ¼¼°èÀûÀ¸·Î ½ÃÀåÀº Áö¼Ó °¡´ÉÇÑ ³ó¾÷ °üÇà¿¡ ´ëÇÑ Çʿ伺¿¡ ÈûÀÔ¾î °ßÁ¶ÇÑ ¼ºÀåÀ» º¸À̰í ÀÖ½À´Ï´Ù. 2035³â±îÁö ½ÃÀåÀº ´Ù¾çÇÑ °ø±Þ¸Á°ú Àü·«Àû Áö¿ª ÆÄÆ®³Ê½Ê¿¡ µû¶ó Å©°Ô È®ÀåµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. µ¿½Ã¿¡ Áßµ¿ ºÐÀïÀº Àü ¼¼°è °ø±Þ¸ÁÀÇ È¥¶õ°ú ¿¡³ÊÁö °¡°ÝÀÇ º¯µ¿¼ºÀ» ¾ÇÈ­½ÃÄÑ »ý»ê ºñ¿ë°ú ½ÃÀå ¿ªÇп¡ °£Á¢ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù.

½ÃÀå ¼¼ºÐÈ­
À¯Çü ÀÚÀ² ·Îº¿, µå·Ð, ÀÚµ¿ Æ®·¢ÅÍ, ·Îº¿ ÆÈ
Á¦Ç° ÆÄÁ¾ ·Îº¿, Á¦ÃÊ ·Îº¿, ¼öÈ® ·Îº¿, °ü°³ µå·Ð, Åä¾ç ¸ð´ÏÅ͸µ ·Îº¿
¼­ºñ½º ÄÁ¼³ÆÃ, ÅëÇÕ ¹× Àü°³, À¯Áöº¸¼ö ¹× Áö¿ø
±â¼ú Àΰø Áö´É, ¸Ó½Å·¯´×, GPS ½Ã½ºÅÛ, ¿ø°Ý °¨Áö, IoT ¿¬°á
ÄÄÆ÷³ÍÆ® ¼¾¼­, ¾×Ãß¿¡ÀÌÅÍ, Á¦¾î ½Ã½ºÅÛ, Àü·Â ½Ã½ºÅÛ, ¼ÒÇÁÆ®¿þ¾î
¿ëµµ ÀÛ¹° ¸ð´ÏÅ͸µ, Åä¾ç °ü¸®, ¹ç ¸ÅÇÎ, ¼öÈ®·® ¸ð´ÏÅ͸µ, Á¤¹Ð »ìÆ÷
Àü°³ ¿ÂÇÁ·¹¹Ì½º, Ŭ¶ó¿ìµå ±â¹Ý, ÇÏÀ̺긮µå
ÃÖÁ¾ »ç¿ëÀÚ ´ë±Ô¸ð ³óÀå, Áß¼Ò±Ô¸ð ³óÀå, ¿¬±¸ ±â°ü, ³ó¾÷ Çùµ¿ Á¶ÇÕ
±â´É ³»ºñ°ÔÀ̼Ç, µ¥ÀÌÅÍ ºÐ¼®, Åë½Å, ÀÚµ¿È­

Á¤¹Ð ³ó¾÷ ·Îº¿ ½ÃÀåÀº ³ó¾÷ »ý»ê¼º ¹× Áö¼Ó °¡´É¼º Çâ»óÀÇ Çʿ伺¿¡ ÈûÀÔ¾î »ó´çÇÑ ¼ºÀåÀ» ±â´ëÇϰí ÀÖ½À´Ï´Ù. ÀÌ ½ÃÀå¿¡¼­ Çϵå¿þ¾î ºÎ¹®ÀÌ °¡Àå ½ÇÀûÀÌ ÁÁÀº Ä«Å×°í¸®·Î, ÀÚÀ² ÁÖÇà Æ®·¢ÅÍ¿Í µå·ÐÀÌ ÇöÀå ÀÛ¾÷À» ÃÖÀûÈ­Çϰí ÀΰǺñ¸¦ Àý°¨ÇÏ´Â ´É·ÂÀ¸·Î ¼±µÎ¸¦ ´Þ¸®°í ÀÖ½À´Ï´Ù. ±× µÚ¸¦ ÀÌ¾î ·Îº¿ Àåºñ·Î ¼öÁýÇÑ µ¥ÀÌÅ͸¦ ÇØ¼®Çϰí ÀÇ»ç °áÁ¤ °úÁ¤À» °³¼±ÇÏ´Â µ¥ ÇʼöÀûÀÎ ³óÀå °ü¸® ½Ã½ºÅÛ ¹× µ¥ÀÌÅÍ ºÐ¼® Ç÷§ÆûÀ» Æ÷ÇÔÇÏ´Â ¼ÒÇÁÆ®¿þ¾î ºÎ¹®ÀÌ ±× µÚ¸¦ ¹Ù¦ µû¸£°í ÀÖ½À´Ï´Ù.

AI ¹× IoT ±â¼úÀÇ ÅëÇÕÀº ½Ç½Ã°£ ¸ð´ÏÅ͸µ ¹× ¿¹Ãø ºÐ¼®À» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á ÀÌ ½ÃÀåÀ» ´õ¿í ¹ßÀü½Ã۰í ÀÖ½À´Ï´Ù. ·Îº¿ ¼öÈ® ½Ã½ºÅÛÀÇ ÇÏÀ§ ºÎ¹®Àº È¿À²ÀûÀÎ ÀÛ¹° ó¸® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó µÎ ¹øÂ°·Î ³ôÀº ½ÇÀûÀ» ¿Ã¸®°í ÀÖ´Â ºÐ¾ß·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ³óºÎµéÀÌ ³ëµ¿·Â ºÎÁ· ¹®Á¦¸¦ ÇØ°áÇϰí ÀÛ¹° ¼öÈ®·®À» ³ôÀ̱â À§ÇØ ³ë·ÂÇÔ¿¡ µû¶ó Á¤¹Ð ³ó¾÷ ·Îº¿ °øÇп¡ ´ëÇÑ ÅõÀÚ°¡ °¡¼ÓÈ­µÉ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ÀÌ´Â ³ó¾÷ÀÇ ±â¼úÀû ¹ßÀüÀ» Ȱ¿ëÇϰíÀÚ ÇÏ´Â ÀÌÇØ °ü°èÀڵ鿡°Ô À¯¸®ÇÑ ±âȸ°¡ µÉ °ÍÀÔ´Ï´Ù.

Á¤¹Ð ³ó¾÷ ·Îº¿ °øÇÐ ½ÃÀåÀº ¿ªµ¿ÀûÀÎ º¯È­¸¦ °Þ°í ÀÖÀ¸¸ç, ÁÖ¿ä ¾÷°è ¼±µÎ ±â¾÷µéÀÌ ½ÃÀå Á¡À¯À²À» ´ëºÎºÐ Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ±â¾÷µéÀÌ ºñ¿ë È¿À²¼º°ú Ãֽűâ¼úÀÇ ±ÕÇüÀ» ¸ÂÃß±â À§ÇØ ³ë·ÂÇÔ¿¡ µû¶ó °¡°Ý Àü·«µµ ÁøÈ­Çϰí ÀÖ½À´Ï´Ù. ÀÌ ºÐ¾ßÀÇ °­·ÂÇÑ Çõ½Å Áֱ⸦ ¹Ý¿µÇÏ¿© ½ÅÁ¦Ç°ÀÌ ÀÚÁÖ Ãâ½ÃµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº È¿À²ÀûÀ̰í Áö¼Ó °¡´ÉÇÑ ³ó¾÷ °üÇà¿¡ ´ëÇÑ Áõ°¡ÇÏ´Â ¼ö¿ä¸¦ ÃæÁ·Çϱâ À§ÇØ ¸ÂÃãÈ­µÇ¾î ÀÖ½À´Ï´Ù. ÀÌ ½ÃÀåÀº »ý»ê¼º Çâ»ó°ú ȯ°æ¿¡ ´ëÇÑ ¿µÇâ °¨¼Ò¿¡ Àü·«ÀûÀ¸·Î ÃÊÁ¡À» µÎ°í ÀÖÀ¸¸ç, ÀÌ´Â Á¤¹Ð ·Îº¿ °øÇÐÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

°æÀï º¥Ä¡¸¶Å·À» ÅëÇØ ÁÖ¿ä ¾÷üµéÀÌ ±â¼ú ¿ìÀ§¸¦ Â÷ÁöÇϱâ À§ÇØ Áö¼ÓÀûÀ¸·Î °æÀïÇÏ´Â ¹Ì·¡°¡ µå·¯³³´Ï´Ù. ƯÈ÷ ºÏ¹Ì¿Í À¯·´ÀÇ ±ÔÁ¦ ¿µÇâÀº ½ÃÀå ¿ªÇп¡ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±ÔÁ¦´Â ¾ÈÀü ±âÁØÀ» º¸ÀåÇϰí Áö¼Ó °¡´ÉÇÑ °üÇàÀ» ÃËÁøÇÏ¿© Á¦Ç° °³¹ß ¹× ½ÃÀå ÁøÃâ Àü·«¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. Áö¿ª Àü¹® Áö½ÄÀ» Ȱ¿ëÇÏ´Â Áö¿ª ¾÷üµé·Î ÀÎÇØ °æÀï ȯ°æÀº ´õ¿í ½ÉÈ­µÇ°í ÀÖ½À´Ï´Ù. ½ÃÀå µ¥ÀÌÅÍ´Â Çù·Â ¹× ÆÄÆ®³Ê½ÊÀÌ Áõ°¡ÇÏ¿© Çõ½ÅÀ» ÃËÁøÇÏ°í ½ÃÀå ¼ºÀåÀ» °¡¼ÓÈ­ÇÏ´Â Ãß¼¼¸¦ º¸¿©ÁÝ´Ï´Ù. Á¤¹Ð ³ó¾÷ ·Îº¿ °øÇÐ ºÎ¹®Àº ±â¼ú ÅëÇÕ ¹× ±ÔÁ¦ Áؼö¿¡ ÈûÀÔ¾î »ó´çÇÑ ¼ºÀåÀ» ´Þ¼ºÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

À¯·´Àº Áö¼Ó °¡´ÉÇÑ ³ó¾÷ ¹× ·Îº¿ ±â¼ú¿¡ »ó´çÇÑ ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀº ȯ°æ¿¡ ´ëÇÑ ¿µÇâÀ» ÁÙÀ̰í È¿À²¼ºÀ» ³ôÀ̱â À§ÇØ ³ë·ÂÇϰí ÀÖÀ¸¸ç, ÀÌ´Â ½ÃÀå ¼ºÀåÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾ç Áö¿ª¿¡¼­´Â ±Þ¼ÓÇÑ µµ½ÃÈ­¿Í Àα¸ Áõ°¡·Î Á¤¹Ð ³ó¾÷ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. Áß±¹°ú Àεµ µî ±¹°¡µéÀº ³ó¾÷ ·Îº¿ ±â¼ú¿¡ ´ë±Ô¸ð ÅõÀÚ¸¦ ÁøÇà ÁßÀÔ´Ï´Ù.

¶óƾ ¾Æ¸Þ¸®Ä«¿Í Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«´Â À¯¸ÁÇÑ ¼ºÀå Áö¿ªÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ¶óƾ ¾Æ¸Þ¸®Ä«´Â Á¤¹Ð ³ó¾÷ÀÇ ÀÌÁ¡¿¡ ´ëÇÑ ÀνÄÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«´Â ³ó¾÷ Çõ½Å¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªµéÀº ·Îº¿ ±â¼úÀÌ ½Ä·® ¾Èº¸ ¹®Á¦¸¦ ÇØ°áÇÏ°í ³ó¾÷ »ý»ê¼ºÀ» Çâ»ó½ÃŰ´Â ÀáÀç·ÂÀ» ÀνÄÇϰí ÀÖ½À´Ï´Ù.

ÀÌ¿Í ÇÔ²² Bosch´Â À¯·´ÀÇ Àú¸íÇÑ ³ó¾÷ ±â¼ú ±â¾÷°ú ÇÕÀÛ ÅõÀÚ¸¦ ÅëÇØ Á¤¹Ð ³ó¾÷¿¡ ÀûÇÕÇÑ Ã·´Ü AI ±â¹Ý ·Îº¿ ½Ã½ºÅÛÀ» °³¹ßÇÒ ¿¹Á¤ÀÔ´Ï´Ù. ÀÌ Çù·ÂÀº À¯·´ Àü¿ª¿¡ ½º¸¶Æ® ³ó¾÷ ±â¼úÀÇ Àü°³¸¦ °¡¼ÓÈ­ÇÒ °ÍÀ¸·Î ±â´ëµË´Ï´Ù.

ÇÑÆí, CNH IndustrialÀº Çâ»óµÈ ¼¾¼­ ±â¼ú°ú ¸Ó½Å·¯´× ±â´ÉÀ» °®Ãá »õ·Î¿î Á¤¹Ð ³ó¾÷ ·Îº¿ Á¦Ç°±ºÀ» Ãâ½ÃÇß½À´Ï´Ù. ÀÌ Á¦Ç° Ãâ½Ã´Â Çö´ë ³ó¾÷¿¡ Çõ¸íÀ» ÀÏÀ¸Å°±â À§ÇÑ ÀÌ È¸»çÀÇ ³ë·Â¿¡ Áß¿äÇÑ ÁøÀüÀ» ÀǹÌÇÕ´Ï´Ù.

±ÝÀ¶ ´º½º¿¡¼­´Â Á¤¹Ð ³ó¾÷ ·Îº¿ °øÇÐ ºÎ¹®ÀÌ »ó´çÇÑ ÅõÀÚ¸¦ À¯Ä¡ÇßÀ¸¸ç, º¥Ã³ ijÇÇÅ» ȸ»çµéÀÌ ·Îº¿ °øÇÐ Çõ½Å¿¡ ÁÖ·ÂÇÏ´Â ´Ù¾çÇÑ ½Å»ý ±â¾÷¿¡ 5¾ï ´Þ·¯ ÀÌ»óÀ» ÅõÀÚÇß½À´Ï´Ù.

¸¶Áö¸·À¸·Î, ºÏ¹ÌÀÇ ±ÔÁ¦ ´ç±¹Àº Á¤¹Ð ³ó¾÷ ·Îº¿ °øÇÐÀÇ Ã¤ÅÃÀ» ÃËÁøÇϱâ À§ÇØ »õ·Î¿î ÁöħÀ» µµÀÔÇÏ¿© ÀÌ·¯ÇÑ ±â¼úÀ» ±âÁ¸ ³ó¾÷ ¿î¿µ¿¡ È¿À²ÀûÀ¸·Î ÅëÇÕÇÏ´Â °ÍÀ» ¸ñÇ¥·Î Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±ÔÁ¦ º¯È­´Â ¾÷°è ³»¿¡¼­ Ãß°¡ÀûÀÎ ¼ºÀå°ú Çõ½ÅÀ» ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ

Á¤¹Ð ³ó¾÷ ·Îº¿ ½ÃÀåÀº ±â¼úÀû ¹ßÀü°ú ½º¸¶Æ® ³ó¾÷ °üÇàÀÇ Ã¤Åà Áõ°¡¿¡ ÈûÀÔ¾î ±Þ¼ÓÇÑ ¼ºÀåÀ» º¸À̰í ÀÖ½À´Ï´Ù. ÁÖ¿ä µ¿ÇâÀ¸·Î´Â Á¤¹Ðµµ¿Í È¿À²¼ºÀ» ³ôÀ̱â À§ÇØ ·Îº¿ °øÇп¡ Àΰø Áö´É°ú ¸Ó½Å·¯´×À» ÅëÇÕÇÏ´Â °ÍÀÌ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀ» ÅëÇØ ·Îº¿Àº ½Ç½Ã°£À¸·Î ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖ¾î ÀÚ¿ø »ç¿ëÀ» ÃÖÀûÈ­ÇÏ°í »ý»ê¼ºÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. Áö¼Ó °¡´É¼º°ú ȯ°æ¿¡ ´ëÇÑ ¿µÇâÀÇ °¨¼Ò¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó Á¤¹Ð ³ó¾÷ ·Îº¿¿¡ ´ëÇÑ ¼ö¿äµµ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

¶Ç ´Ù¸¥ Áß¿äÇÑ µ¿ÇâÀº ÀÛ¹° ½É±â, ¼öÈ®, ¸ð´ÏÅ͸µ µîÀÇ ÀÛ¾÷À» À§ÇÑ ÀÚÀ² ºñÇà µå·Ð ¹× Áö»ó Â÷·®ÀÇ °³¹ßÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Çõ½ÅÀº ÀΰǺñ¸¦ Àý°¨ÇÏ°í ¿î¿µ È¿À²¼ºÀ» ³ôÀÔ´Ï´Ù. µ¥ÀÌÅÍ ±â¹Ý ÀλçÀÌÆ®¿¡ ´ëÇÑ ¿ä±¸´Â Åä¾ç °Ç°­, ±â»ó Á¶°Ç, ÀÛ¹° »óÅ¿¡ ´ëÇÑ ½Ç½Ã°£ µ¥ÀÌÅ͸¦ Á¦°øÇϴ ÷´Ü ¼¾¼­ ¹× IoT ±â±âÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ µ¥ÀÌÅ͸¦ ÅëÇØ ³óºÎµéÀº Á¤º¸¿¡ ±â¹ÝÇÑ ÀÇ»ç °áÁ¤À» ³»¸®°í ¼öÈ®·®À» ÃÖÀûÈ­ÇÏ¸ç ³¶ºñ¸¦ ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù.

¶ÇÇÑ, ½º¸¶Æ® ³ó¾÷ ¹× ±â¼ú äÅÃÀ» ÃËÁøÇÏ´Â Á¤ºÎ Á¤Ã¥ÀÌ ½ÃÀå ¼ºÀåÀÇ Ã˸ÅÁ¦ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. Àü ¼¼°è Àα¸°¡ °è¼Ó Áõ°¡ÇÔ¿¡ µû¶ó ½Ä·® »ý»êÀ» Áö¼Ó °¡´ÉÇÏ°Ô ´Ã·Á¾ß ÇÏ´Â ¾Ð¹ÚÀÌ ½ÉÈ­µÇ°í ÀÖ½À´Ï´Ù. Á¤¹Ð ³ó¾÷ ·Îº¿ °øÇÐÀº ÀÌ·¯ÇÑ °úÁ¦¸¦ ÇØ°áÇÒ ¼ö ÀÖ´Â ¼Ö·ç¼ÇÀ» Á¦°øÇÏ¿© ÀÌ ºÐ¾ßÀÇ ±â¾÷µé¿¡°Ô À¯¸®ÇÑ ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ µ¿Çâ°ú ÃßÁø ¿äÀÎÀÌ ÇÕÃÄÁö¸é¼­ ½ÃÀåÀº Áö¼ÓÀûÀÎ È®ÀåÀ» ÁغñÇϰí ÀÖ½À´Ï´Ù.

Á¦¾à¿äÀÎ ¹× µµÀü °úÁ¦

Á¤¹Ð ³ó¾÷ ·Îº¿ ½ÃÀåÀº ¸î °¡Áö Áß¿äÇÑ Á¦¾à°ú °úÁ¦¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ÁÖ¿ä Á¦¾àÀº ·Îº¿ ½Ã½ºÅÛ¿¡ ÇÊ¿äÇÑ »ó´çÇÑ Ãʱâ ÅõÀÚ·Î, Áß¼Ò±â¾÷ÀÇ µµÀÔÀ» ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ Ã·´Ü ±â¼úÀ» ¿î¿µ ¹× À¯Áö °ü¸®ÇÒ ¼÷·ÃµÈ ÀηÂÀÌ Áö¼ÓÀûÀ¸·Î ºÎÁ·ÇÏ¿© ±¤¹üÀ§ÇÑ ±¸Çö¿¡ Àå¾Ö¹°ÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ·Îº¿ °øÇÐÀ» ±âÁ¸ ³ó¾÷ °üÇà¿¡ ÅëÇÕÇÏ·Á¸é ³óÀå °ü¸®¿¡ Å« º¯È­°¡ ÇÊ¿äÇϱ⠶§¹®¿¡ ±âÁ¸ ³óºÎµé¿¡°Ô´Â ¾î·Á¿òÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ±ÔÁ¦ Àå¾Ö¹°°ú ´Ù¾çÇÑ ±¹Á¦ Ç¥ÁØÀÇ Áؼöµµ ½ÃÀå È®Àå¿¡ º¹À⼺À» ¾ß±âÇÕ´Ï´Ù. ¸¶Áö¸·À¸·Î, ÷´Ü ¼¾¼­ ¹× µ¥ÀÌÅÍ ºÐ¼®ÀÇ »ç¿ëÀ¸·Î ÀÎÇÑ µ¥ÀÌÅÍ °³ÀÎ Á¤º¸ º¸È£ ¹× º¸¾È¿¡ ´ëÇÑ ¿ì·Á´Â ³óºÎµé°ú ÀÌÇØ °ü°èÀÚµéÀÇ ¿ì·Á¸¦ ºÒ·¯ÀÏÀ¸Å°°í, äÅà ¼Óµµ¸¦ ´ÊÃâ °¡´É¼ºÀÌ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µµÀü °úÁ¦´Â ´Ù¾çÇÑ ³ó¾÷ÀÇ ¹Ì·¡¿¡ Á¤¹Ð ³ó¾÷ ·Îº¿ °øÇÐÀÇ ±Þ¼ÓÇÑ ¼ºÀå°ú Àü°³¸¦ ¹æÇØÇÏ´Â ¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¤¹Ð ³ó¾÷ ·Îº¿ ½ÃÀå °³¿ä

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå¿¡ °üÇÑ Áß¿ä ÀλçÀÌÆ®

Á¦4Àå Á¤¹Ð ³ó¾÷ ·Îº¿ ½ÃÀå Àü¸Á

Á¦5Àå Á¤¹Ð ³ó¾÷ ·Îº¿ ½ÃÀå Àü·«

Á¦6Àå Á¤¹Ð ³ó¾÷ ·Îº¿ ½ÃÀå ±Ô¸ð

Á¦7Àå Á¤¹Ð ³ó¾÷ ·Îº¿ ½ÃÀå : À¯Çüº°

Á¦8Àå Á¤¹Ð ³ó¾÷ ·Îº¿ ½ÃÀå : Á¦Ç°º°

Á¦9Àå Á¤¹Ð ³ó¾÷ ·Îº¿ ½ÃÀå : ¼­ºñ½ºº°

Á¦10Àå Á¤¹Ð ³ó¾÷ ·Îº¿ ½ÃÀå : ±â¼úº°

Á¦11Àå Á¤¹Ð ³ó¾÷ ·Îº¿ ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

Á¦12Àå Á¤¹Ð ³ó¾÷ ·Îº¿ ½ÃÀå : ¿ëµµº°

Á¦13Àå Á¤¹Ð ³ó¾÷ ·Îº¿ ½ÃÀå : Àü°³º°

Á¦14Àå Á¤¹Ð ³ó¾÷ ·Îº¿ ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

Á¦15Àå Á¤¹Ð ³ó¾÷ ·Îº¿ ½ÃÀå : ±â´Éº°

Á¦16Àå Á¤¹Ð ³ó¾÷ ·Îº¿ ½ÃÀå : Áö¿ªº°

Á¦17Àå °æÀï ±¸µµ

Á¦18Àå ±â¾÷ ÇÁ·ÎÆÄÀÏ

HBR
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

Precision Agriculture Robotics Market is anticipated to expand from $5.3 Billion in 2024 to $16.3 Billion by 2034, growing at a CAGR of approximately 12%. The Precision Agriculture Robotics Market encompasses advanced robotic systems designed to optimize farming practices through automation and data-driven insights. These robots perform tasks such as planting, monitoring, and harvesting with precision, enhancing crop yield and resource efficiency. The market is propelled by the need for sustainable agriculture, labor shortages, and technological advancements in AI and IoT, driving innovations in autonomous machinery and smart farming solutions.

The Precision Agriculture Robotics Market is being significantly influenced by global tariffs, geopolitical risks, and evolving supply chain trends. In Japan and South Korea, escalating trade tensions are prompting a strategic pivot towards self-reliance and investment in domestic robotics innovation. China, under export constraints, is accelerating its focus on indigenous technology development, while Taiwan, with its robust semiconductor industry, remains a pivotal yet vulnerable player amidst US-China tensions. Globally, the market is experiencing robust growth, driven by the need for sustainable agricultural practices. By 2035, the market is anticipated to expand substantially, contingent upon diversified supply chains and strategic regional partnerships. Concurrently, Middle East conflicts are exacerbating global supply chain disruptions and energy price volatility, thereby indirectly influencing production costs and market dynamics.

Market Segmentation
TypeAutonomous Robots, Drones, Automated Tractors, Robotic Arms
ProductSeeding Robots, Weeding Robots, Harvesting Robots, Irrigation Drones, Soil Monitoring Robots
ServicesConsulting, Integration and Deployment, Maintenance and Support
TechnologyArtificial Intelligence, Machine Learning, GPS Systems, Remote Sensing, IoT Connectivity
ComponentSensors, Actuators, Control Systems, Power Systems, Software
ApplicationCrop Monitoring, Soil Management, Field Mapping, Yield Monitoring, Precision Spraying
DeploymentOn-premises, Cloud-based, Hybrid
End UserLarge Farms, Small and Medium Farms, Research Institutions, Agricultural Cooperatives
FunctionalityNavigation, Data Analysis, Communication, Automation

The Precision Agriculture Robotics Market is poised for significant growth, driven by the need for enhanced agricultural productivity and sustainability. Within this market, the hardware segment is the top-performing category, with autonomous tractors and drones leading the charge due to their ability to optimize field operations and reduce labor costs. Following closely is the software segment, encompassing farm management systems and data analytics platforms, which are crucial for interpreting data collected by robotic equipment and improving decision-making processes.

The integration of AI and IoT technologies is further propelling this market, enabling real-time monitoring and predictive analytics. The sub-segment of robotic harvesting systems is emerging as the second-highest performing area, reflecting the increasing demand for efficient crop handling solutions. As farmers seek to address labor shortages and enhance crop yield, investment in precision agriculture robotics is expected to accelerate, presenting lucrative opportunities for stakeholders aiming to capitalize on technological advancements in agriculture.

The Precision Agriculture Robotics Market is witnessing a dynamic shift, with market share being predominantly held by key industry leaders. Pricing strategies are evolving as companies strive to balance cost-effectiveness with cutting-edge technology. New product launches are frequent, reflecting the robust innovation cycle within the sector. These advancements are tailored to meet the growing demand for efficient, sustainable agricultural practices. The market is characterized by a strategic focus on enhancing productivity and reducing environmental impact, which is driving the adoption of precision robotics.

Competition benchmarking reveals a landscape where major players continually vie for technological supremacy. Regulatory influences, particularly in North America and Europe, are pivotal in shaping market dynamics. These regulations ensure safety standards and promote sustainable practices, thereby influencing product development and market entry strategies. The competitive environment is further intensified by regional players who leverage local expertise. Market data indicates a trend towards increased collaboration and partnerships, fostering innovation and accelerating market growth. The precision agriculture robotics sector is poised for substantial growth, driven by technological integration and regulatory compliance.

Geographical Overview:

The Precision Agriculture Robotics Market is witnessing substantial growth across diverse regions, each exhibiting unique characteristics. North America leads the market, driven by technological advancements and the adoption of smart farming practices. The region's focus on enhancing agricultural productivity through automation is a key driver.

Europe follows, with significant investments in sustainable agriculture and robotic technologies. The region's commitment to reducing environmental impact and increasing efficiency bolsters market growth. In Asia Pacific, rapid urbanization and population growth intensify the demand for precision agriculture solutions. Countries like China and India are at the forefront, investing heavily in agricultural robotics.

Latin America and the Middle East & Africa are emerging as promising growth pockets. Latin America benefits from increasing awareness of precision agriculture's benefits, while the Middle East & Africa see rising investments in agricultural innovation. These regions are recognizing the potential of robotics to address food security and enhance agricultural productivity.

Recent Developments:

The Precision Agriculture Robotics Market has witnessed notable developments over the past three months. John Deere has made headlines with its strategic acquisition of a leading robotics startup, aimed at enhancing its autonomous farming solutions. This move underscores Deere's commitment to integrating cutting-edge robotics technology into its agricultural machinery lineup.

In parallel, Bosch has entered into a joint venture with a prominent European agri-tech firm to develop advanced AI-driven robotic systems tailored for precision farming. This collaboration is expected to accelerate the deployment of smart farming technologies across the continent.

Meanwhile, CNH Industrial has launched a new line of precision agriculture robots, featuring enhanced sensor technology and machine learning capabilities. This product launch signifies a significant step forward in the company's efforts to revolutionize modern farming practices.

In financial news, the Precision Agriculture Robotics sector has attracted substantial investment, with venture capital firms injecting over $500 million into various startups focused on robotics innovations.

Lastly, regulatory bodies in North America have introduced new guidelines to facilitate the adoption of precision agriculture robotics, aiming to streamline the integration of these technologies into conventional farming operations. These regulatory changes are anticipated to spur further growth and innovation within the industry.

Key Trends and Drivers:

The Precision Agriculture Robotics Market is experiencing a surge driven by technological advancements and increased adoption of smart farming practices. Key trends include the integration of artificial intelligence and machine learning in robotics to enhance precision and efficiency. These technologies enable robots to make real-time decisions, optimizing resource use and boosting productivity. The growing focus on sustainability and reducing environmental impact is also propelling the demand for precision agriculture robotics.

Another significant trend is the development of autonomous drones and ground vehicles for tasks such as planting, harvesting, and monitoring crops. These innovations reduce labor costs and increase operational efficiency. The need for data-driven insights is driving the adoption of advanced sensors and IoT devices, which provide real-time data on soil health, weather conditions, and crop status. This data empowers farmers to make informed decisions, optimizing yields and reducing waste.

Furthermore, government initiatives promoting smart agriculture and technological adoption are acting as catalysts for market growth. As the global population continues to rise, the pressure to increase food production sustainably is intensifying. Precision agriculture robotics offers solutions to meet this challenge, presenting lucrative opportunities for companies in the sector. The market is poised for continuous expansion as these trends and drivers converge.

Restraints and Challenges:

The Precision Agriculture Robotics Market encounters several significant restraints and challenges. A primary restraint is the substantial initial investment required for robotic systems, which can deter small and medium-sized enterprises from adoption. Additionally, there is a persistent lack of skilled labor to operate and maintain these advanced technologies, posing a barrier to widespread implementation. Furthermore, the integration of robotics into existing agricultural practices requires significant changes in farm management, which can be daunting for traditional farmers. Regulatory hurdles and compliance with varying international standards also create complexities for market expansion. Finally, data privacy and security concerns, stemming from the use of advanced sensors and data analytics, raise apprehensions among farmers and stakeholders, potentially slowing adoption rates. These challenges collectively impede the rapid growth and deployment of precision agriculture robotics across diverse agricultural landscapes.

Key Companies:

Ag Junction, Naio Technologies, eco Robotix, Blue River Technology, Farm Wise, Small Robot Company, Ag Eagle Aerial Systems, Ecorobotix, Autonomous Solutions, Saga Robotics, Resson, Vision Robotics, Taranis, Iron Ox, Root AI, Swarm Farm Robotics, Bear Flag Robotics, Fieldin, See Tree, Agrointelli

Research Scope:

Our research scope provides comprehensive market data, insights, and analysis across a variety of critical areas. We cover Local Market Analysis, assessing consumer demographics, purchasing behaviors, and market size within specific regions to identify growth opportunities. Our Local Competition Review offers a detailed evaluation of competitors, including their strengths, weaknesses, and market positioning. We also conduct Local Regulatory Reviews to ensure businesses comply with relevant laws and regulations. Industry Analysis provides an in-depth look at market dynamics, key players, and trends. Additionally, we offer Cross-Segmental Analysis to identify synergies between different market segments, as well as Production-Consumption and Demand-Supply Analysis to optimize supply chain efficiency. Our Import-Export Analysis helps businesses navigate global trade environments by evaluating trade flows and policies. These insights empower clients to make informed strategic decisions, mitigate risks, and capitalize on market opportunities.

TABLE OF CONTENTS

1: Precision Agriculture Robotics Market Overview

2: Executive Summary

3: Premium Insights on the Market

4: Precision Agriculture Robotics Market Outlook

5: Precision Agriculture Robotics Market Strategy

6: Precision Agriculture Robotics Market Size

7: Precision Agriculture Robotics Market, by Type

8: Precision Agriculture Robotics Market, by Product

9: Precision Agriculture Robotics Market, by Services

10: Precision Agriculture Robotics Market, by Technology

11: Precision Agriculture Robotics Market, by Component

12: Precision Agriculture Robotics Market, by Application

13: Precision Agriculture Robotics Market, by Deployment

14: Precision Agriculture Robotics Market, by End User

15: Precision Agriculture Robotics Market, by Functionality

16: Precision Agriculture Robotics Market, by Region

17: Competitive Landscape

18: Company Profiles

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â