¿¹Ãø ¾à¹° ¹ÝÀÀ ¸ðµ¨¸µ¿ë AI ½ÃÀå ºÐ¼® ¹× ¿¹Ãø(-2034³â) : À¯Çü, Á¦Ç°, ¼­ºñ½º, ±â¼ú, ÄÄÆ÷³ÍÆ®, ¿ëµµ, ÃÖÁ¾ »ç¿ëÀÚ, ±â´É, Àü°³, ¼Ö·ç¼Ç
AI for Predictive Drug Response Modeling Market Analysis and Forecast to 2034: Type, Product, Services, Technology, Component, Application, End User, Functionality, Deployment, Solutions
»óǰÄÚµå : 1789178
¸®¼­Ä¡»ç : Global Insight Services LLC
¹ßÇàÀÏ : 2025³â 08¿ù
ÆäÀÌÁö Á¤º¸ : ¿µ¹® 369 Pages
 ¶óÀ̼±½º & °¡°Ý (ºÎ°¡¼¼ º°µµ)
US $ 4,750 £Ü 6,692,000
Single User License help
PDF º¸°í¼­¸¦ 1¸í¸¸ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇϸç, Àμâ´Â °¡´ÉÇÕ´Ï´Ù.
US $ 5,750 £Ü 8,101,000
Site License help
PDF, Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷(±¹°¡)ÀÇ ¸ðµç ºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.
US $ 6,750 £Ü 9,510,000
Enterprise License help
PDF, Excel º¸°í¼­¸¦ µ¿ÀÏ ±â¾÷ÀÇ Àü ¼¼°è ¸ðµçºÐÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¶óÀ̼±½ºÀÔ´Ï´Ù. ÅØ½ºÆ®ÀÇ Copy & Paste °¡´ÉÇÕ´Ï´Ù. Àμ⠰¡´ÉÇϸç Àμ⹰ÀÇ ÀÌ¿ë ¹üÀ§´Â PDF ÀÌ¿ë ¹üÀ§¿Í µ¿ÀÏÇÕ´Ï´Ù.


Çѱ۸ñÂ÷

¿¹Ãø ¾à¹° ¹ÝÀÀ ¸ðµ¨¸µ¿ë AI ½ÃÀåÀº 2024³â 23¾ï ´Þ·¯¿¡¼­ 2034³â 36¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç CAGR ¾à 4.6%·Î ¼ºÀåÇÒ Àü¸ÁÀÔ´Ï´Ù. ¿¹Ãø ÀǾàǰ ¹ÝÀÀ ¸ðµ¨¸µÀ» À§ÇÑ AI ½ÃÀåÀº Àΰø Áö´ÉÀ» Ȱ¿ëÇÏ¿© ÀǾàǰ¿¡ ´ëÇÑ È¯ÀÚÀÇ ¹ÝÀÀÀ» ¿¹ÃøÇϰí Á¤¹Ð ÀÇÇÐÀ» Çâ»ó½ÃŰ´Â ±â¼úÀ» Æ÷ÇÔÇÕ´Ï´Ù. ÀÌ ½ÃÀåÀº ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀ» »ý¹° ÀÇÇÐ µ¥ÀÌÅÍ¿Í ÅëÇÕÇÏ¿© ÀǾàǰÀÇ È¿´É°ú ¾ÈÀü¼ºÀ» ÃÖÀûÈ­ÇÏ´Â °ÍÀ» ¸ñÇ¥·Î ÇÕ´Ï´Ù. ¸ÂÃãÇü Ä¡·á¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿Í AI ±â¹Ý ºÐ¼®ÀÇ ¹ßÀüÀº ¼ºÀåÀ» ÃËÁøÇϰí, ÄÄÇ»ÅÍ »ý¹°ÇÐ ¹× ÀÇ·á Á¤º¸ÇÐ ºÐ¾ßÀÇ Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

Àü ¼¼°è ¿¹Ãø ¾à¹° ¹ÝÀÀ ¸ðµ¨¸µ¿ë AI ½ÃÀåÀº °ü¼¼, ÁöÁ¤ÇÐÀû À§Çè, ÁøÈ­ÇÏ´Â °ø±Þ¸Á µ¿ÇâÀÇ º¹ÀâÇÑ ¿µÇâÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ÀϺ»°ú Çѱ¹¿¡¼­´Â AI °ü·Ã ¼öÀÔǰ¿¡ ´ëÇÑ °ü¼¼ ºÎ°ú·Î ÀÎÇØ ÇöÁö R&D ¿ª·® °­È­¿Í AI ±â¹Ý ÀÇ·á ¼Ö·ç¼ÇÀÇ Çõ½ÅÀ» ÃËÁøÇÏ´Â Àü·«Àû ÀüȯÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. Áß±¹Àº ¼öÃâ Á¦ÇÑ¿¡ ´ëÀÀÇÏ¿© ÀÚ¸³À» °­·ÂÇÏ°Ô ÃßÁøÇÏ¸ç ±¹³» AI ¹ßÀü¿¡ ¸·´ëÇÑ ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ´ë¸¸Àº ¹ÝµµÃ¼ °­±¹ÀÌÁö¸¸, ½ÃÀå¿¡¼­ ÁßÃßÀûÀÎ ¿ªÇÒÀ» ¹æÇØÇÒ ¼ö ÀÖ´Â ÁöÁ¤ÇÐÀû ºÒÈ®½Ç¼º¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. Àü ¼¼°èÀûÀ¸·Î ¸ð ½ÃÀåÀº ¸ÂÃãÇü ÀǾàǰ ¹× °í±Þ ºÐ¼®¿¡ ´ëÇÑ ¼ö¿ä¿¡ ÈûÀÔ¾î °­·ÂÇÑ ¼ºÀåÀ» º¸À̰í ÀÖ½À´Ï´Ù. 2035³â±îÁö ½ÃÀåÀÇ È®ÀåÀº ź·ÂÀûÀÎ °ø±Þ¸Á°ú Àü·«Àû Á¦ÈÞ¿¡ ´Þ·Á ÀÖÀ¸¸ç, Áßµ¿ ºÐÀïÀÌ ¿¡³ÊÁö °¡°Ý°ú Á¦Á¶ ºñ¿ë¿¡ ¿µÇâÀ» ¹ÌÄ¥ °¡´É¼ºÀÌ ÀÖ½À´Ï´Ù.

½ÃÀå ¼¼ºÐÈ­
À¯Çü ¸Ó½Å·¯´×, µö·¯´×, ÀÚ¿¬ ¾ð¾î ó¸®
Á¦Ç° ¼ÒÇÁÆ®¿þ¾î Ç÷§Æû, AI ¾Ë°í¸®Áò, µ¥ÀÌÅÍ °ü¸® µµ±¸
¼­ºñ½º ÄÁ¼³ÆÃ, ÅëÇÕ ¹× ±¸Çö, Áö¿ø ¹× À¯Áöº¸¼ö, ±³À° ¹× ÈÆ·Ã
±â¼ú Ŭ¶ó¿ìµå ±â¹Ý, ¿ÂÇÁ·¹¹Ì½º, ÇÏÀ̺긮µå
ÄÄÆ÷³ÍÆ® Çϵå¿þ¾î, ¼ÒÇÁÆ®¿þ¾î, ¼­ºñ½º
¿ëµµ Á¾Á¾¾çÇÐ, ½ÉÀåÇÐ, ½Å°æÇÐ, °¨¿°º´, ¸é¿ªÇÐ
ÃÖÁ¾ »ç¿ëÀÚ Á¦¾à ȸ»ç, »ý¸í °øÇÐ ±â¾÷, ¿¬±¸ ±â°ü, ÀÇ·á ¼­ºñ½º Á¦°øÀÚ
±â´É ¿¹Ãø ºÐ¼®, µ¥ÀÌÅÍ ¸¶ÀÌ´×, ½Ã¹Ä·¹À̼Ç
Àü°³ ´ë±â¾÷, Áß¼Ò±â¾÷
¼Ö·ç¼Ç ¸ÂÃãÇü ¼Ö·ç¼Ç, Ç¥ÁØ ¼Ö·ç¼Ç

¿¹Ãø ¾à¹° ¹ÝÀÀ ¸ðµ¨¸µ¿ë AI ½ÃÀåÀº ¸ÂÃãÇü ÀǾàǰ ¹× µ¥ÀÌÅÍ ºÐ¼®ÀÇ ¹ßÀü¿¡ ÈûÀÔ¾î °­·ÂÇÑ ¼ºÀåÀ» º¸À̰í ÀÖ½À´Ï´Ù. ÀÌ ½ÃÀå¿¡¼­ ¼ÒÇÁÆ®¿þ¾î ºÎ¹®Àº ¿¹Ãø Á¤È®µµ¸¦ ³ôÀÌ´Â ¸Ó½Å·¯´× ¾Ë°í¸®Áò°ú AI Ç÷§ÆûÀÇ ÅëÇÕ¿¡ ÈûÀÔ¾î ÃÖ°í ½ÇÀûÀ» ±â·ÏÇÏ´Â Ä«Å×°í¸®·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ƯÈ÷ AI ±â¹Ý ºÐ¼® µµ±¸¿Í ¸Ó½Å·¯´× ÇÁ·¹ÀÓ¿öÅ©°¡ ÃÖÀü¼±¿¡ ¼­¼­ ¸ÂÃãÇü Ä¡·á °èȹÀ» ÅëÇØ ȯÀÚÀÇ Ä¡·á °á°ú¸¦ °³¼±Çϰí ÀÖ½À´Ï´Ù.

µÎ ¹øÂ°·Î ½ÇÀûÀÌ ÁÁÀº ºÎ¹®Àº Çϵå¿þ¾î·Î, º¹ÀâÇÑ °è»ê ¿ä±¸¸¦ Áö¿øÇÏ´Â AI¿¡ ÃÖÀûÈ­µÈ ÇÁ·Î¼¼¼­¿Í µ¥ÀÌÅÍ ½ºÅ丮Áö ¼Ö·ç¼Ç¿¡ ÁßÁ¡À» µÎ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº ¿¹Ãø ¸ðµ¨¸µ¿¡ ÇÊ¿äÇÑ ¹æ´ëÇÑ µ¥ÀÌÅÍ ¼¼Æ®¸¦ ó¸®ÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ¶ÇÇÑ, Ŭ¶ó¿ìµå ±â¹Ý ¼Ö·ç¼ÇÀº È®À强°ú ºñ¿ë È¿À²¼ºÀ¸·Î ÀÎÇØ Á¡Á¡ ´õ ¼±È£µÇ°í ÀÖÁö¸¸, µ¥ÀÌÅÍ¿¡ ¹Î°¨ÇÑ ¿ëµµ¿¡´Â ¿ÂÇÁ·¹¹Ì½º ½Ã½ºÅÛÀÌ ¿©ÀüÈ÷ Áß¿äÇÕ´Ï´Ù. AI¿Í »ý¸í °øÇÐÀÇ À¶ÇÕÀº °è¼ÓÇØ¼­ »õ·Î¿î ±âȸ¸¦ âÃâÇϸç Çõ½ÅÀ» ÃËÁøÇÏ°í ½ÃÀå ¼ºÀå¼¼¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Á¦¾à ȸ»ç¿Í AI ±â¼ú Á¦°ø¾÷ü °£ÀÇ Çù·ÂÀÌ °­È­µÇ¸é¼­ ÀÌ·¯ÇÑ ¿ªµ¿ÀûÀÎ ¹Ì·¡°¡ ´õ¿í °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù.

¿¹Ãø ¾à¹° ¹ÝÀÀ ¸ðµ¨¸µ¿ë AI ½ÃÀåÀº ´Ù¾çÇÑ Áö¿ª¿¡¼­ »ó´çÇÑ ¼ºÀåÀ» º¸À̰í ÀÖ½À´Ï´Ù. ºÏ¹Ì´Â ÷´Ü ÀÇ·á ÀÎÇÁ¶ó¿Í AI ¿¬±¸¿¡ ´ëÇÑ ¸·´ëÇÑ ÅõÀÚÀÇ ÇýÅÃÀ» ¹Þ¾Æ ¼±µÎ¸¦ ´Þ¸®°í ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ °­·ÂÇÑ ÀǾàǰ ºÎ¹®Àº ÀǾàǰÀÇ È¿´É°ú ȯÀÚ Ä¡·á °á°ú¸¦ °³¼±Çϱâ À§ÇØ AI¸¦ Á¡Á¡ ´õ ¸¹ÀÌ ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. À¯·´µµ Á¤¹Ð ÀÇÇаú AI ±â¹Ý ÀÇ·á Çõ½Å¿¡ ÁýÁßÇÏ¸ç ±× µÚ¸¦ ¹Ù¦ Ãß°ÝÇϰí ÀÖ½À´Ï´Ù.

ÀÌ ½ÃÀåÀÇ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©´Â AI äÅÃÀ» Áö¿øÇÏ¿© ½ÃÀå È®Àå¿¡ À¯¸®ÇÑ È¯°æÀ» Á¶¼ºÇϰí ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾ç Áö¿ªÀº ±Þ¼ÓÇÑ ±â¼úÀû ¹ßÀü°ú ±Þ¼ºÀåÇÏ´Â Á¦¾à »ê¾÷¿¡ ÈûÀÔ¾î À¯¸ÁÇÑ ¼ºÀå Áö¿ªÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. Áß±¹°ú Àεµ °°Àº ±¹°¡µéÀÌ ÀǾàǰ °³¹ß ÇÁ·Î¼¼½º¿¡ Çõ¸íÀ» ÀÏÀ¸Å°±â À§ÇØ AI¿¡ ¸·´ëÇÑ ÅõÀÚ¸¦ Çϰí ÀÖÀ¸¸ç, ÀÌ ºÐ¾ßÀÇ ¼±µÎ¿¡ ¼­ ÀÖ½À´Ï´Ù. ¶óƾ ¾Æ¸Þ¸®Ä«¿Í Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«µµ ºê¶óÁú°ú ¾Æ¶ø¿¡¹Ì¸®Æ®°¡ ÁÖ¿ä ¾÷ü·Î ºÎ»óÇϸ鼭 ÁÖ¸ñÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªµéÀº AI°¡ ÀǷḦ º¯È­½Ãų ÀáÀç·ÂÀ» ÀνÄÇϰí ÀÖÀ¸¸ç, ¹Ì·¡ÀÇ ¼ºÀåÀ» À§ÇÑ ±â¹ÝÀ» ¸¶·ÃÇϰí ÀÖ½À´Ï´Ù.

Roche´Â ¿¹Ãø ¾à¹° ¹ÝÀÀ¿¡ ƯȭµÈ À¯¸ÁÇÑ AI ½ºÅ¸Æ®¾÷À» ¼Ò¼ö ÁöºÐÀ¸·Î ÀμöÇÏ´Â Àü·«Àû Á¶Ä¡¸¦ ÃëÇß½À´Ï´Ù. ÀÌ ÅõÀÚ´Â Roche°¡ ÀǾàǰ °³¹ß ÇÁ·Î¼¼½º¿¡ ÃֽŠAI ±â¼úÀ» ÅëÇÕÇÏ¿© ¸ÂÃãÇü ÀǾàǰ¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°Ú´Ù´Â ÀÇÁö¸¦ °­Á¶ÇÑ °ÍÀÔ´Ï´Ù.

Áß¿äÇÑ ±ÔÁ¦ ¾÷µ¥ÀÌÆ®·Î FDA´Â ¾à¹° ¹ÝÀÀ ¿¹Ãø ¸ðµ¨¸µ¿¡¼­ AI ÅëÇÕ¿¡ ´ëÇÑ »õ·Î¿î ÁöħÀ» ¹ßÇ¥Çß½À´Ï´Ù. ÀÌ °¡À̵å¶óÀÎÀº ÀΰøÁö´É¿¡ ÀÇÇÑ ¿¹ÃøÀÇ ¾ÈÀü¼º°ú È¿À²¼ºÀ» º¸ÀåÇϱâ À§ÇÑ °ÍÀ̸ç, ±â¾÷ÀÌ ÄÄÇöóÀ̾𽺸¦ À¯ÁöÇϸ鼭 Çõ½ÅÀ» ÀÏÀ¸Å°´Â ÇÁ·¹ÀÓ¿öÅ©¸¦ ¼³¸íÇÕ´Ï´Ù.

AstraZeneca´Â ¾Ï Ä¡·á¿¡ ´ëÇÑ È¯ÀÚÀÇ ¹ÝÀÀÀ» ¿¹ÃøÇϱâ À§ÇØ ¼³°èµÈ Çõ½ÅÀûÀÎ AI Ç÷§ÆûÀ» Ãâ½ÃÇß½À´Ï´Ù. ÀÌ Ç÷§ÆûÀº ¸Ó½Å·¯´×À» Ȱ¿ëÇÏ¿© ¹æ´ëÇÑ µ¥ÀÌÅÍ ¼¼Æ®¸¦ ºÐ¼®ÇÏ¿© Á¾¾çÇÐÀÚ¿¡°Ô Ä¡·á È¿´É ¹× ȯÀÚ °á°ú¿¡ ´ëÇÑ ±ÍÁßÇÑ ÀλçÀÌÆ®¸¦ Á¦°øÇÕ´Ï´Ù.

Novartis´Â Èñ±Í ÁúȯÀ» À§ÇÑ AI ±â¹Ý ¿¹Ãø ¸ðµ¨À» °³¹ßÇϱâ À§ÇØ ¼±µµÀûÀÎ ±â¼ú ±â¾÷°ú ÇÕÀÛ ÅõÀÚ¸¦ ¹ßÇ¥Çß½À´Ï´Ù. ÀÌ Çù·ÂÀº AIÀÇ ÀáÀç·ÂÀ» Ȱ¿ëÇÏ¿© ȯÀÚÀÇ ¹ÝÀÀÀ» º¸´Ù Á¤È®ÇÏ°Ô ¿¹ÃøÇÔÀ¸·Î½á Èñ±Í Áúȯ ÀǾàǰ °³¹ßÀÇ °íÀ¯ÇÑ °úÁ¦¸¦ ÇØ°áÇÏ´Â °ÍÀ» ¸ñÇ¥·Î ÇÕ´Ï´Ù.

ÁÖ¿ä µ¿Çâ ¹× ÃËÁø¿äÀÎ

AI ¹× ¸Ó½Å·¯´×ÀÇ ¹ßÀü¿¡ ÈûÀÔ¾î ¿¹Ãø ¾à¹° ¹ÝÀÀ ¸ðµ¨¸µ¿ë AI ½ÃÀåÀÌ ºü¸£°Ô È®ÀåµÇ°í ÀÖ½À´Ï´Ù. Çâ»óµÈ °è»ê ´É·Â°ú Á¤±³ÇÑ ¾Ë°í¸®ÁòÀ» ÅëÇØ ¾à¹° ¹ÝÀÀÀ» Á¤È®ÇÏ°Ô ¿¹ÃøÇÒ ¼ö ÀÖ°Ô µÇ¾î ¿¬±¸ ±â°£ÀÌ Å©°Ô ´ÜÃàµÇ¾ú½À´Ï´Ù. Á¦¾à ȸ»çµéÀÌ º¸´Ù È¿À²ÀûÀÌ°í ºñ¿ë È¿À²ÀûÀÎ ¼Ö·ç¼ÇÀ» ¸ð»öÇÔ¿¡ µû¶ó AI¸¦ ½Å¾à °³¹ß ÇÁ·Î¼¼½º¿¡ ÅëÇÕÇÏ´Â °ÍÀÌ ÇʼöÀûÀÔ´Ï´Ù.

ÁÖ¿ä µ¿ÇâÀ¸·Î´Â AI¸¦ Ȱ¿ëÇÏ¿© °³ÀÎÀÇ À¯ÀüÀû Ư¼º¿¡ ¸Â´Â Ä¡·á¸¦ Á¦°øÇÏ´Â ¸ÂÃãÇü ÀǾàǰÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

¶ÇÇÑ, ±â¼ú ±â¾÷°ú ÀÇ·á ¼­ºñ½º Á¦°ø¾÷ü °£ÀÇ Çù·ÂÀ» ÅëÇØ Çõ½ÅÀûÀÎ AI ±â¹Ý Ç÷§ÆûÀÌ °³¹ßµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÆÄÆ®³Ê½ÊÀº ¿¹ÃøÀÇ Á¤È®¼ºÀ» ³ôÀ̰í ȯÀÚÀÇ Ä¡·á °á°ú¸¦ °³¼±ÇÏ´Â °ÍÀ» ¸ñÇ¥·Î Çϰí ÀÖ½À´Ï´Ù. ÀǾàǰ °³¹ß¿¡ ´ëÇÑ ¿¹Ãø ¸ðµ¨¸µÀÇ ¼ö¿ä°¡ °è¼Ó Áõ°¡ÇÔ¿¡ µû¶ó È®Àå °¡´ÉÇÏ°í °­·ÂÇÑ AI ¼Ö·ç¼ÇÀ» Á¦°øÇÒ ¼ö ÀÖ´Â ±â¾÷¿¡°Ô´Â ¸¹Àº ±âȸ°¡ ÀÖ½À´Ï´Ù.

Á¦¾à¿äÀÎ ¹× µµÀü °úÁ¦

¿¹Ãø ¾à¹° ¹ÝÀÀ ¸ðµ¨¸µ¿ë AI ½ÃÀåÀº ÇöÀç ¸î °¡Áö Áß¿äÇÑ Á¦¾à°ú °úÁ¦¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ÁÖ¿ä °úÁ¦´Â ±ÔÁ¦ ȯ°æÀÇ º¹À⼺À¸·Î, AI ±â¼úÀ» ÀÇ·á ½Ã½ºÅÛ¿¡ ½Å¼ÓÇÏ°Ô ÅëÇÕÇÏ´Â µ¥ Àå¾Ö°¡ µÇ°í ÀÖ½À´Ï´Ù. ´Ù¾çÇÑ ±¹Á¦ Ç¥ÁØÀ» ÁؼöÇØ¾ß ÇÏ´Â °Íµµ ¾î·Á¿òÀ» ´õÇØ ½ÃÀå ħÅõ¸¦ ´ÊÃß°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ AI¿Í ¾à¸®Çп¡ ¸ðµÎ ´ÉÅëÇÑ ¼÷·ÃµÈ Àü¹® ÀηÂÀÌ ÇöÀúÈ÷ ºÎÁ·ÇÏ¿© Çõ½Å°ú ±¸Çö¿¡ º´¸ñ Çö»óÀÌ ¹ß»ýÇϰí ÀÖ½À´Ï´Ù.

µ¥ÀÌÅÍ °³ÀÎ Á¤º¸ º¸È£ ¹®Á¦µµ ¶Ç ´Ù¸¥ Å« Àå¾Ö¹°ÀÔ´Ï´Ù. ¿¹Ãø ¸ðµ¨¸µ¿¡ AI¸¦ Ȱ¿ëÇϸ鼭 ¹Î°¨ÇÑ ÀÇ·á µ¥ÀÌÅÍÀÇ ±â¹Ð¼ºÀ» º¸ÀåÇÏ´Â °ÍÀº ¿©ÀüÈ÷ Áß¿äÇÑ ¹®Á¦ÀÔ´Ï´Ù. ÀÌ °úÁ¦´Â Àü ¼¼°èÀûÀ¸·Î ´Ù¾çÇÑ µ¥ÀÌÅÍ º¸È£ ±ÔÁ¦·Î ÀÎÇØ ´õ¿í ¾ÇÈ­µÇ°í ÀÖ½À´Ï´Ù.

¶ÇÇÑ AI ±â¼úÀÇ ³ôÀº µµÀÔ ºñ¿ëÀº ƯÈ÷ ¼Ò±Ô¸ð ÀǾàǰ ȸ»ç¿Í ¿¬±¸ ±â°üÀÇ µµÀÔÀ» Á¦ÇÑÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºñ¿ë¿¡´Â Ãʱâ ÅõÀÚ»Ó¸¸ ¾Æ´Ï¶ó Áö¼ÓÀûÀÎ À¯Áö °ü¸® ¹× ¾÷µ¥ÀÌÆ® ºñ¿ëµµ Æ÷ÇԵ˴ϴÙ.

»óÈ£ ¿î¿ë¼º ¹®Á¦µµ Áß¿äÇÑ °úÁ¦ÀÔ´Ï´Ù. AI ½Ã½ºÅÛÀ» ±âÁ¸ ÀÇ·á ÀÎÇÁ¶ó¿¡ ÅëÇÕÇÏ´Â µ¥´Â ±â¼úÀûÀÎ ¾î·Á¿òÀÌ ¸¹±â ¶§¹®¿¡ ¿øÈ°ÇÑ ¿î¿µÀÌ ¾î·Æ½À´Ï´Ù.

¸¶Áö¸·À¸·Î, ½ÃÀåÀº ±âÁ¸ ¹æ¹ýº¸´Ù AI°¡ »ý¼ºÇÑ ¿¹ÃøÀ» ½Å·ÚÇÏÁö ¾Ê´Â ÀÇ·á Àü¹®°¡µéÀÇ È¸ÀÇÀûÀÎ ½Ã¼±¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. AIÀÇ Á¤È®¼º°ú ½Å·Ú¼º¿¡ ´ëÇÑ ½Å·Ú¸¦ ±¸ÃàÇÏ´Â °ÍÀº AIÀÇ Æø³ÐÀº ¼ö¿ë°ú Ȱ¿ë¿¡ ÇʼöÀûÀÔ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¿¹Ãø ¾à¹° ¹ÝÀÀ ¸ðµ¨¸µ¿ë AI ½ÃÀå °³¿ä

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå¿¡ °üÇÑ Áß¿ä ÀλçÀÌÆ®

Á¦4Àå ¿¹Ãø ¾à¹° ¹ÝÀÀ ¸ðµ¨¸µ¿ë AI ½ÃÀå Àü¸Á

Á¦5Àå ¿¹Ãø ¾à¹° ¹ÝÀÀ ¸ðµ¨¸µ¿ë AI ½ÃÀå Àü·«

Á¦6Àå ¿¹Ãø ¾à¹° ¹ÝÀÀ ¸ðµ¨¸µ¿ë AI ½ÃÀå ±Ô¸ð

Á¦7Àå ¿¹Ãø ¾à¹° ¹ÝÀÀ ¸ðµ¨¸µ¿ë AI ½ÃÀå : À¯Çüº°

Á¦8Àå ¿¹Ãø ¾à¹° ¹ÝÀÀ ¸ðµ¨¸µ¿ë AI ½ÃÀå : Á¦Ç°º°

Á¦9Àå ¿¹Ãø ¾à¹° ¹ÝÀÀ ¸ðµ¨¸µ¿ë AI ½ÃÀå : ¼­ºñ½ºº°

Á¦10Àå ¿¹Ãø ¾à¹° ¹ÝÀÀ ¸ðµ¨¸µ¿ë AI ½ÃÀå : ±â¼úº°

Á¦11Àå ¿¹Ãø ¾à¹° ¹ÝÀÀ ¸ðµ¨¸µ¿ë AI ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

Á¦12Àå ¿¹Ãø ¾à¹° ¹ÝÀÀ ¸ðµ¨¸µ¿ë AI ½ÃÀå : ¿ëµµº°

Á¦13Àå ¿¹Ãø ¾à¹° ¹ÝÀÀ ¸ðµ¨¸µ¿ë AI ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

Á¦14Àå ¿¹Ãø ¾à¹° ¹ÝÀÀ ¸ðµ¨¸µ¿ë AI ½ÃÀå : ±â´Éº°

Á¦15Àå ¿¹Ãø ¾à¹° ¹ÝÀÀ ¸ðµ¨¸µ¿ë AI ½ÃÀå : Àü°³º°

Á¦16Àå ¿¹Ãø ¾à¹° ¹ÝÀÀ ¸ðµ¨¸µ¿ë AI ½ÃÀå : ¼Ö·ç¼Çº°

Á¦17Àå ¿¹Ãø ¾à¹° ¹ÝÀÀ ¸ðµ¨¸µ¿ë AI ½ÃÀå : Áö¿ªº°

Á¦18Àå °æÀï ±¸µµ

Á¦19Àå ±â¾÷ ÇÁ·ÎÆÄÀÏ

HBR
¿µ¹® ¸ñÂ÷

¿µ¹®¸ñÂ÷

AI for Predictive Drug Response Modeling Market is anticipated to expand from $2.3 Billion in 2024 to $3.6 Billion by 2034, growing at a CAGR of approximately 4.6%. The AI for Predictive Drug Response Modeling Market encompasses technologies that leverage artificial intelligence to forecast patient responses to pharmaceuticals, enhancing precision medicine. This market integrates machine learning algorithms with biomedical data, aiming to optimize drug efficacy and safety. Increasing demand for personalized treatment and advancements in AI-driven analytics are propelling growth, fostering innovations in computational biology and healthcare informatics.

The global AI for Predictive Drug Response Modeling Market is intricately influenced by tariffs, geopolitical risks, and evolving supply chain trends. In Japan and South Korea, the imposition of tariffs on AI-related imports is prompting a strategic pivot towards enhancing local R&D capabilities and fostering innovation in AI-driven healthcare solutions. China's response to export restrictions involves a robust push towards self-reliance, investing heavily in domestic AI advancements. Taiwan, while a semiconductor powerhouse, faces geopolitical uncertainties that could disrupt its pivotal role in the market. Globally, the parent market is experiencing robust growth, driven by the demand for personalized medicine and advanced analytics. By 2035, the market's expansion will hinge on resilient supply chains and strategic alliances, with Middle East conflicts potentially affecting energy prices and manufacturing costs.

Market Segmentation
TypeMachine Learning, Deep Learning, Natural Language Processing
ProductSoftware Platforms, AI Algorithms, Data Management Tools
ServicesConsulting, Integration and Implementation, Support and Maintenance, Training and Education
TechnologyCloud-based, On-premise, Hybrid
ComponentHardware, Software, Services
ApplicationOncology, Cardiology, Neurology, Infectious Diseases, Immunology
End UserPharmaceutical Companies, Biotechnology Firms, Research Institutes, Healthcare Providers
FunctionalityPredictive Analytics, Data Mining, Simulation
DeploymentLarge Enterprises, SMEs
SolutionsCustomized Solutions, Standard Solutions

The AI for Predictive Drug Response Modeling Market is experiencing robust growth, propelled by advancements in personalized medicine and data analytics. Within this market, the software segment emerges as the top-performing category, driven by the integration of machine learning algorithms and AI platforms that enhance predictive accuracy. Particularly, AI-driven analytics tools and machine learning frameworks are at the forefront, facilitating better patient outcomes through tailored treatment plans.

The second highest performing segment is hardware, with a focus on AI-optimized processors and data storage solutions that support complex computational needs. These technologies are pivotal in processing vast datasets required for predictive modeling. Additionally, cloud-based solutions are increasingly favored for their scalability and cost-effectiveness, although on-premise systems remain crucial for data-sensitive applications. The convergence of AI with biotechnology continues to unlock new opportunities, fostering innovation and driving market momentum. Enhanced collaboration between pharmaceutical companies and AI technology providers further accelerates this dynamic landscape.

The AI for Predictive Drug Response Modeling market is characterized by a dynamic landscape of market share distribution, pricing strategies, and new product launches. Companies are increasingly adopting innovative pricing models to capture greater market share, reflecting a keen understanding of customer needs and competitive pressures. The market is witnessing a surge in new product introductions, driven by rapid technological advancements and a growing demand for personalized medicine solutions. This has fostered an environment ripe for innovation, with firms striving to outpace competitors by continuously evolving their product offerings.

Competition in this market is fierce, with key players vying for dominance through strategic partnerships and acquisitions. Benchmarking against industry giants, smaller firms leverage niche expertise and agility to carve out market niches. Regulatory influences play a pivotal role, with stringent policies in North America and Europe shaping the competitive landscape. These regulations ensure high standards, yet also pose barriers to entry for new entrants. The market analysis reveals a trend towards increased regulatory harmonization, which could streamline operations and foster innovation across borders.

Geographical Overview:

The AI for Predictive Drug Response Modeling market is witnessing substantial growth across diverse regions. North America leads the charge, benefiting from advanced healthcare infrastructure and significant investments in AI research. The region's robust pharmaceutical sector is increasingly integrating AI to enhance drug efficacy and patient outcomes. Europe is not far behind, with its strong focus on precision medicine and AI-driven healthcare innovations.

The continent's regulatory frameworks support AI adoption, fostering a conducive environment for market expansion. Asia Pacific emerges as a promising growth pocket, driven by rapid technological advancements and a burgeoning pharmaceutical industry. Countries like China and India are at the forefront, investing heavily in AI to revolutionize drug development processes. Latin America and the Middle East & Africa are also gaining traction, with Brazil and the UAE emerging as key players. These regions are recognizing AI's potential to transform healthcare, paving the way for future growth.

Recent Developments:

In recent months, the AI for Predictive Drug Response Modeling Market has been marked by pivotal developments. Pfizer announced a collaboration with IBM to enhance their predictive modeling capabilities, leveraging AI to improve drug response predictions in clinical trials. This partnership aims to accelerate drug development timelines and reduce costs by utilizing advanced AI algorithms.

Roche has taken a strategic step by acquiring a minority stake in a promising AI startup specializing in predictive drug response. This investment underscores Roche's commitment to integrating cutting-edge AI technologies into their drug development processes, potentially revolutionizing personalized medicine.

In a significant regulatory update, the FDA has issued new guidelines for the integration of AI in predictive drug response modeling. These guidelines are designed to ensure the safety and efficacy of AI-driven predictions, providing a framework for companies to innovate while maintaining compliance.

AstraZeneca has launched an innovative AI platform designed to predict patient responses to cancer treatments. This platform utilizes machine learning to analyze vast datasets, offering oncologists valuable insights into treatment efficacy and patient outcomes.

Novartis has announced a joint venture with a leading tech company to develop AI-driven predictive models for rare diseases. This collaboration aims to address the unique challenges of rare disease drug development by harnessing AI's potential to predict patient responses more accurately.

Key Trends and Drivers:

The AI for Predictive Drug Response Modeling Market is expanding rapidly, driven by advancements in AI and machine learning. Enhanced computational power and sophisticated algorithms are enabling precise predictions of drug responses, significantly reducing research timelines. The integration of AI into drug discovery processes is becoming indispensable, as pharmaceutical companies strive for more efficient and cost-effective solutions.

Key trends include the growing adoption of personalized medicine, which leverages AI to tailor treatments to individual genetic profiles. This trend is further fueled by increasing investments in genomics and biotechnologies. Regulatory bodies are also adapting to these technological advancements, providing frameworks that encourage innovation while ensuring patient safety.

Furthermore, the collaboration between tech companies and healthcare providers is fostering the development of innovative AI-driven platforms. These partnerships aim to enhance predictive accuracy and improve patient outcomes. Opportunities abound for companies that can offer scalable, robust AI solutions, as the demand for predictive modeling in drug development continues to rise.

Restraints and Challenges:

The AI for Predictive Drug Response Modeling Market is currently grappling with several significant restraints and challenges. A primary challenge is the regulatory landscape's complexity, which hinders the swift integration of AI technologies into healthcare systems. Compliance with diverse international standards adds layers of difficulty, slowing market penetration. Furthermore, there is a notable shortage of skilled professionals adept in both AI and pharmacology, creating a bottleneck for innovation and implementation.

Data privacy concerns present another formidable barrier. Ensuring the confidentiality of sensitive medical data while leveraging AI for predictive modeling remains a critical issue. This challenge is exacerbated by varying global data protection regulations.

Moreover, the high cost of AI technology deployment limits its adoption, particularly among smaller pharmaceutical firms and research institutions. These costs include not only initial investments but also ongoing maintenance and updates.

Interoperability issues also pose a significant challenge. Integrating AI systems with existing healthcare infrastructure is often fraught with technical difficulties, impeding seamless operation.

Lastly, the market faces skepticism from healthcare professionals who may be reluctant to trust AI-generated predictions over traditional methods. Building confidence in AI's accuracy and reliability is essential for broader acceptance and utilization.

Key Companies:

Atomwise, Exscientia, Benevolent AI, Insilico Medicine, Recursion Pharmaceuticals, Numerate, Cyclica, Deep Genomics, Berg Health, GNS Healthcare, Bio Symetrics, Owkin, Standigm, Xtal Pi, Two XAR, Aria Pharmaceuticals, Aiforia Technologies, Verge Genomics, Aigenpulse, Quibim

Research Scope:

Our research scope provides comprehensive market data, insights, and analysis across a variety of critical areas. We cover Local Market Analysis, assessing consumer demographics, purchasing behaviors, and market size within specific regions to identify growth opportunities. Our Local Competition Review offers a detailed evaluation of competitors, including their strengths, weaknesses, and market positioning. We also conduct Local Regulatory Reviews to ensure businesses comply with relevant laws and regulations. Industry Analysis provides an in-depth look at market dynamics, key players, and trends. Additionally, we offer Cross-Segmental Analysis to identify synergies between different market segments, as well as Production-Consumption and Demand-Supply Analysis to optimize supply chain efficiency. Our Import-Export Analysis helps businesses navigate global trade environments by evaluating trade flows and policies. These insights empower clients to make informed strategic decisions, mitigate risks, and capitalize on market opportunities.

TABLE OF CONTENTS

1: AI for Predictive Drug Response Modeling Market Overview

2: Executive Summary

3: Premium Insights on the Market

4: AI for Predictive Drug Response Modeling Market Outlook

5: AI for Predictive Drug Response Modeling Market Strategy

6: AI for Predictive Drug Response Modeling Market Size

7: AI for Predictive Drug Response Modeling Market, by Type

8: AI for Predictive Drug Response Modeling Market, by Product

9: AI for Predictive Drug Response Modeling Market, by Services

10: AI for Predictive Drug Response Modeling Market, by Technology

11: AI for Predictive Drug Response Modeling Market, by Component

12: AI for Predictive Drug Response Modeling Market, by Application

13: AI for Predictive Drug Response Modeling Market, by End User

14: AI for Predictive Drug Response Modeling Market, by Functionality

15: AI for Predictive Drug Response Modeling Market, by Deployment

16: AI for Predictive Drug Response Modeling Market, by Solutions

17: AI for Predictive Drug Response Modeling Market, by Region

18: Competitive Landscape

19: Company Profiles

(ÁÖ)±Û·Î¹úÀÎÆ÷¸ÞÀÌ¼Ç 02-2025-2992 kr-info@giikorea.co.kr
¨Ï Copyright Global Information, Inc. All rights reserved.
PC¹öÀü º¸±â