±â¼úÀÇ Áøº¸¿Í ÀÌÇØ °ü°èÀÚÀÇ ÀÌ´Ï¼ÅÆ¼ºê¸¦ ÅëÇØ Áø´Ü Á¤¹ÐµµÀÇ Çâ»ó, ¹æ»ç¼± ³ëÃâ °¨¼Ò ¹× ºñ¿ë Àý°¨
ÄÄÇ»ÅÍ ´ÜÃþ ÃÔ¿µ(CT)Àº ¿©·¯ °¢µµ¿¡¼ ¾òÀº X¼± ÃøÁ¤°ªÀ» °áÇÕÇϰí ÄÄÇ»ÅÍ ¾Ë°í¸®ÁòÀ» »ç¿ëÇÏ¿© ó¸®ÇÏ°í ´Ü¸é À̹ÌÁö ¶Ç´Â ´ÜÃþ À̹ÌÁö¸¦ »ý¼ºÇÏ´Â °í±Þ À̹ÌÁö ±â¼úÀÔ´Ï´Ù. ´ÜÃþ ¿µ»óÀº Àå±â¿Í Á¶Á÷ÀÇ 3D Ç¥ÇöÀ¸·Î À籸¼ºµÇ¾î ³»ºÎ ±¸Á¶¸¦ Á¤È®ÇÏ°Ô ½Ã°¢ÈÇÒ ¼ö ÀÖ½À´Ï´Ù.
º» ºÐ¼®¿¡ µû¸£¸é CT ±â¼úÀº ¿¡³ÊÁö ·¹º§ÀÌ ´Ù¸¥ 2°³ÀÇ X¼± ºöÀ» »ç¿ëÇÏ¿© ¿ì¼öÇÑ Á¶Á÷ Ư¼ºÀ» Á¦°øÇÏ´Â µà¾ó ¿¡³ÊÁö CT µî ÇöÀúÇÑ Áøº¸¸¦ ÀÌ·ç°í ÀÖ½À´Ï´Ù. ±¤ÀÚ °è¼ö CT(PCT)´Â °³º° X¼± ±¤ÀÚ¸¦ °¨ÁöÇÏ´Â °í±Þ °ËÃâ±â¸¦ »ç¿ëÇÏ¿© °ø°£ ºÐÇØ´É Çâ»ó, ¹è°æ ³ëÀÌÁî °¨¼Ò ¹× ¹æ»ç¼± ³ëÃâ °¨¼Ò¸¦ ½ÇÇöÇÕ´Ï´Ù.
CT À̹Ì¡¿¡ ÀΰøÁö´É°ú ¸Ó½Å·¯´×À» ÅëÇÕÇÏ¿© À̹ÌÁö À籸¼ºÀ» °ÈÇϰí, ÀÌ»óÀ» °¨ÁöÇϸç, º¸´Ù Á¤È®ÇÑ Áø´ÜÀ» Á¦°øÇÕ´Ï´Ù. AI¸¦ Ȱ¿ëÇÑ ¹Ýº¹ À籸¼º ±â¼úÀº S/Nºñ¿Í ¹æ»ç¼± ÇÇÆøÀ» Àú°¨ÇÏ¸é¼ º¸´Ù ¿ì¼öÇÑ ÈÁúÀ» ´Þ¼ºÇϴµ¥ µµ¿òÀÌ µË´Ï´Ù.
ÈÞ´ë¿ë CT ÀåÄ¡¿Í Æ÷ÀÎÆ® ¿Àºê Äɾî CT ÀåÄ¡ÀÇ µîÀå¿¡ ÀÇÇØ CT È»ó Áø´Ü¿¡ ´ëÇÑ ¾×¼¼½º°¡ È®´ëµÇ¾î, ±¸±Þ ÇöÀåÀ̳ª ¿ø°ÝÁö¿¡¼µµ Áï½Ã Áø´ÜÀÌ °¡´ÉÇÏ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ CT ±â¼úÀÇ ¹ßÀüÀ¸·Î ȯÀÚÀÇ ¿¹Èĵµ Å©°Ô °³¼±µÇ¾ú½À´Ï´Ù.
ÀÌ º¸°í¼´Â PCT¿Í Äܺö CT¿¡ ÃÊÁ¡À» ¸ÂÃß°í ÀÌ·¯ÇÑ ±â¼úÀû Áøº¸ÀÇ »ó¼¼ÇÑ ºÐ¼®, ÇöÀç µ¿Çâ, Á¶»ç °³¼±, CT Áø´Ü ºÐ¾ß¿¡¼ ¹Ì·¡ÀÇ ¼ºÀå ±âȸ¸¦ Á¦°øÇÏ´Â °ÍÀ» ¸ñÇ¥·Î ÇÕ´Ï´Ù.
¸ñÂ÷
Àü·«Àû °úÁ¦
- ¿Ö ¼ºÀåÀÌ ¾î·Á¿öÁö°í Àִ°¡?
- The Strategic Imperative 8(TM)
- ÄÄÇ»ÅÍ ´ÜÃþ ÃÔ¿µ »ê¾÷¿¡ ÀÖ¾î¼ÀÇ Àü·«Àû Áß¿ä °úÁ¦ »óÀ§ 3ÀÇ ¿µÇâ
- ¼ºÀå ±âȸ°¡ Growth Pipeline Engine(TM)À» °¡¼Ó
- Á¶»ç ¹æ¹ý
¼ºÀå ±âȸ ºÐ¼®
¼ºÀå ¿äÀÎ
- ¼ºÀå ÃËÁø¿äÀÎ
- ¼ºÀå ¾ïÁ¦¿äÀÎ
±â¼ú ºÐ¼®
- CT ±â¼úÀÇ ¼¹® ¹× Ư¡
- CT ½Ã½ºÅÛ ÄÄÆ÷³ÍÆ®
PCT ±â¼ú ºÐ¼®
- ¿¡³ÊÁö ÀûºÐÇü °ËÃâ±â ¹× PCD : ±â¼ú ºñ±³
PCT ±â¼ú »óȲ
- Siemens Healthineers : µ¶ÀÏ
- NeuroLogica Corp. : ¹Ì±¹
- PCCT »óȲ¿¡¼ ÁÖ¿ä ±â¾÷
- ÁöÀûÀç»ê µ¿Çâ(2020-2024³â)
- ÁöÀûÀç»ê µ¿Ç⠺м®(2020-2024³â)
PCT ÀÌÇØ°ü°èÀÚÀÇ ÀÌ´Ï¼ÅÆ¼ºê
- PCT ¿¬±¸ °³¹ßÀ» Áö¿øÇÏ´Â ÁÖ¿ä ÀÚ±Ý(¼¼°è)(2020-2024³â)
- PCCT¸¦ µÑ·¯½Ñ Àü·«Àû °øµ¿ ¿¬±¸, Á¶»ç Á¦ÈÞ, ÇÕº´ ¹× Àμö
- PCCT : ±â¼ú ·Îµå¸Ê
CBCT ±â¼ú ºÐ¼®
CBCT ±â¼ú »óȲ
- Koning Health : ¹Ì±¹
- Planmed Oy : Çɶõµå
- CBCT¸¦ µÑ·¯½Ñ ÁÖ¿ä ±â¾÷
- ÁöÀûÀç»ê µ¿Çâ(2020-2024³â)
- ÁöÀûÀç»ê µ¿Ç⠺м®(2020-2024³â)
CBCT ÀÌÇØ°ü°èÀÚÀÇ ´ëó
- CBCT ¿¬±¸°³¹ßÀ» Áö¿øÇÏ´Â ÁÖ¿ä ÀÚ±Ý : ¼¼°è(2020-2024³â)
- CBCT ºÐ¾ß¿¡¼ÀÇ Àü·«Àû Á¦ÈÞ, ÇÕº´ ¹× Àμö
- CBCT : ±â¼ú ·Îµå¸Ê
CT ±â¼ú Çõ½ÅÀÇ ¼ºÀå ±âȸ ¿µ¿ª
- ¼ºÀå ±âȸ 1 : ÈÞ´ë¿ë ¹× Æ÷ÀÎÆ® ¿Àºê Äɾî À̹Ì¡
- ¼ºÀå ±âȸ 2 : CT Áø´Ü Á¤¹Ðµµ Çâ»óÀ» À§ÇÑ °íµµ È»ó À籸¼º
- ¼ºÀå ±âȸ 3 : Á¾ÇÕ Áø´ÜÀ» À§ÇÑ ÇÏÀ̺긮µå ¿µ»ó ½Ã½ºÅÛ
ºÎ·Ï
´ÙÀ½ ´Ü°è
- ¼ºÀå ±âȸÀÇ ÀåÁ¡ ¹× ¿µÇâ
- ´ÙÀ½ ´Ü°è
- ´ÙÀ½ ´Ü°è ³ª¾Æ°¡±â
- ¸éÃ¥»çÇ×
AJY
Technological Advances and Stakeholder Initiatives Enable Better Diagnostic Accuracy, Lower Radiation Exposure, and Cost Savings
Computed tomography (CT) is a sophisticated imaging technology that combines X-ray measurements obtained from multiple angles and processes them using computer algorithms to generate cross-sectional images or tomograms. The tomograms are further reconstructed into a 3D representation of organs or tissues, allowing precise visualization of the internal structures.
Frost & Sullivan's analysis shows that CT technology has experienced significant advancements, including dual-energy CT, which provides superior tissue characterization by using 2 X-ray beams with different energy levels. Photon counting CT (PCCT) uses advanced detectors to detect individual X-ray photons, resulting in improved spatial resolution, reduced background noise, and lower radiation doses.
Integrating artificial intelligence and machine learning into CT imaging enhances image reconstruction, detects anomalies, and provides more accurate diagnosis. AI-powered iterative reconstruction techniques help achieve better image quality while reducing the signal-to-noise ratio and radiation exposure.
The emergence of portable and point-of-care CT units has expanded the accessibility of CT imaging, enabling immediate diagnostic capabilities in emergency settings and remote locations. Fast-advancing CT technology has also significantly improved patient outcomes.
In this report, Frost & Sullivan aims to provide an in-depth analysis of these technological advancements, focusing on PCCT and cone beam CT, their current trends, research improvements, and future growth opportunities in the CT diagnostics space.
Table of Contents
Strategic Imperatives
- Why Is It Increasingly Difficult to Grow?
- The Strategic Imperative 8™
- The Impact of the Top 3 Strategic Imperatives on the Computed Tomography Industry
- Growth Opportunities Fuel the Growth Pipeline Engine™
- Research Methodology
Growth Opportunity Analysis
- Scope of Analysis
- Segmentation
Growth Generator
- Growth Drivers
- Growth Restraints
Technology Analysis
- CT Technology Introduction and Attributes
- CT System Components
PCCT Technology Analysis
- Energy Integrating Detectors and PCDs: Technology Comparison
PCCT Technology Landscape
- Siemens Healthineers, Germany
- NeuroLogica Corp., United States
- Primary Companies in the PCCT Landscape
- Intellectual Property Trends, 2020-2024
- Analysis of Intellectual Property Trends, 2020-2024
PCCT Stakeholders' Initiatives
- Major Funding Supporting PCCT R&D, Global, 2020-2024
- Strategic Collaborations, Research Partnerships, Mergers, and Acquisitions in the PCCT Landscape
- PCCT: A Technology Road Map
CBCT Technology Analysis
- CBCT: A Technology Overview
CBCT Technology Landscape
- Koning Health, United States
- Planmed Oy, Finland
- Primary Companies in the CBCT Landscape
- Intellectual Property Trends, 2020-2024
- Analysis of Intellectual Property Trends, 2020-2024
CBCT Stakeholders' Initiatives
- Major Funding Supporting CBCT R&D, Global, 2020-2024
- Strategic Collaborations, Mergers, and Acquisitions in the CBCT Landscape
- CBCT: A Technology Road Map
Growth Opportunity Universe in CT Technology Innovations
- Growth Opportunity 1: Portable and Point-of-care Imaging
- Growth Opportunity 2: Advanced Image Reconstruction for Enhancing CT Diagnostic Accuracy
- Growth Opportunity 3: Hybrid Imaging Systems for Comprehensive Diagnostics
Appendix
- Technology Readiness Levels (TRL): Explanation
Next Steps
- Benefits and Impacts of Growth Opportunities
- Next Steps
- Take the Next Step
- Legal Disclaimer