파워 일렉트로닉스는 더 이상 전문적인 용도로 제한되지 않습니다. 그 영향력은 현재 전기자동차, 신재생에너지 시스템, 산업 자동화, 데이터센터 인프라, 첨단 소비자 기기로 확대되고 있습니다. 이러한 부문을 연결하는 것은 에너지를 보다 효율적으로 그리고 더 높은 전력 밀도로 이동시킬 필요성입니다. 세계의 파워 일렉트로닉스 시장은 운송의 전기화, 신재생에너지 확대, 데이터센터 인프라에 대한 수요가 급증함에 따라 전례 없는 성장과 변화 가운데 있습니다. 이 역동적 인 부문은 전기자동차 파워트레인에서 그리드 규모의 에너지 저장 시스템에 이르기까지 거의 모든 현대 응용 분야에서 전력 변환 및 제어를 담당하는 중요 부품을 포함합니다. 시장 발전의 핵심은 기존 실리콘 기반 디바이스에서 와이드 밴드갭(WBG) 반도체와 특히 실리콘 카바이드(SiC)와 질화 갈륨(GaN)으로의 근본적인 기술 전환입니다. 이 패러다임 이동은 1980년대 IGBT 도입 이후 파워 일렉트로닉스에서 가장 중요한 진보가 되었습니다. SiC MOSFET은 실리콘 IGBT에 비해 고온 동작, 우수한 열전도성, 최대 5배의 고속 스위칭, 전기자동차의 항속 거리를 약 7% 향상시킬 가능성 등 압도적인 우위성을 제공합니다. 이러한 특성은 수동 부품이 적고 냉각 요구가 낮은 보다 콤팩트하고 효율적인 전력 변환 시스템을 가능하게 합니다.
전기자동차 부문은 파워 일렉트로닉스 수요의 첫 번째 촉진요인이 되었습니다. 주요 부품에는 트랙션 인버터, 차량용 충전기(OBC), DC-DC 컨버터가 있으며, 시장에서는 급속 충전과 효율 향상을 실현하기 위해 800V 아키텍처의 도입이 확대되고 있습니다. SiC MOSFET은 EV 인버터 시장에서 급속히 점유율을 확대하고 있으며, 2035년까지 주류 기술이 될 전망입니다. 한편, GaN 디바이스는 차재 충전기나 DC-DC 컨버터 등의 저전력 용도로 크게 진출하고 있으며 고주파 스위칭 특성에 의해 사이즈와 중량의 대폭적인 감소를 실현하고 있습니다.
파워 일렉트로닉스 공급망은 대규모 재건 과정에 있으며 수직 통합이 중요한 전략적 동향으로 부상하고 있습니다. 주요 자동차 제조업체 및 반도체 공급업체는 인수, 파트너십 및 SiC 기술의 내부 제조를 통해 공급을 확보하고 있습니다. SiC 웨이퍼의 150mm에서 200mm로의 전환은 생산 능력의 상당한 증가와 비용 절감을 달성하는 중요한 이정표이며, 세계 여러 공급업체들이 200mm 웨이퍼의 생산 확대를 추진하고 있습니다. 중국의 제조 업체는 적극적으로 시장에 진출하고 있으며 현재 4개 회사는 전 세계 전력 장치 공급업체의 상위 20개 회사에 포함되어 있습니다.
데이터센터는 전례 없는 전력 레벨을 요구하는 AI 워크로드를 통해 빠르게 확장되는 또 다른 용도입니다. 전원 공급 장치는 엄격한 효율 기준을 충족하도록 진화하고 있으며 80 PLUS Ruby 인증은 최대 96.5%의 효율을 요구합니다. 이 부문에서는 와이드 밴드갭의 도입이 가속화되고 있으며, 실리콘, SiC, GaN을 조합한 하이브리드 설계가 서로 다른 전력 변환 단계에서의 효율 극대화를 위한 바람직한 접근법으로 대두하고 있습니다.
업계는 또한 이산 변환기 설계에서 통합 시스템 레벨 접근법에 대한 사고 방식의 진화를 진행하고 있습니다. '파워 일렉트로닉스 2.0' 패러다임은 단순한 전력 변환을 넘어 에너지 관리를 중시하며 스마트 그리드 통합, 분산 제어 아키텍처 및 임무 지향 효율 지표를 통합합니다. 멀티셀 컨버터 아키텍처가 주목을 받고 있으며, 스위칭 주파수의 확장, 중복성 향상, 표준화의 이점 등의 우위성을 제공합니다.
와이드 밴드갭(WBG) 기술의 급속한 진보에도 불구하고, 실리콘 디바이스는 성숙도, 확립된 공급망 및 비용 이점으로 인해 여전히 큰 시장 점유율을 유지하고 있습니다. 시장은 특히 태양광 인버터 및 배터리 에너지 저장 시스템(BESS)과 같은 가격이 중요시되는 부문에서의 치열한 비용 압력을 특징으로 합니다. 향후 전망으로는 전기모빌리티의 지속적인 확대, 신재생에너지의 전개, 디지털 인프라 요구 증가에 의해 세계의 파워 일렉트로닉스 시장은 8% 이상의 CAGR로 성장하고, 시장의 규모는 2030년까지 150억 달러를 넘을 것으로 예측됩니다.
본 보고서는 세계의 파워 일렉트로닉스 시장에 대한 조사 및 분석을 통해 실리콘 기반 장치에서 실리콘 카바이드(SiC) MOSFET 및 질화 갈륨(GaN) HEMT를 포함한 와이드 밴드갭(WBG) 기술로의 혁신적인 전환을 검증합니다.
목차
제1장 주요 요약
보고서 개요 및 범위
분석 범위
조사 방법
주요 조사 결과 및 시장 하이라이트
세계의 파워 일렉트로닉스 시장 개요(2026-2036년)
기술 진화 : 실리콘에서 와이드 밴드갭으로
시장 규모 및 성장 예측 요약
지역 시장 분석 개요
주요 촉진요인 및 억제요인
제2장 시장 개요 및 정의
파워 일렉트로닉스의 기초
시장 세분화
성과 지표 및 통계
제3장 기술 분석
파워 일렉트로닉스 기술의 진화
실리콘 기반 파워 디바이스
실리콘 카바이드(SiC) 기술
질화갈륨(GaN) 기술
컨버터 토폴로지 해석
패키징 및 열 관리
제4장 용도 시장 분석
전기자동차(EV)
신재생에너지
데이터센터 및 컴퓨팅
그리드 인프라
공업용도
소비자용 전자기기
제5장 지역 시장 분석
중국
유럽
미국
일본 및 한국
기타 지역
제6장 공급망 분석
밸류체인 구조
SiC 공급망
GaN 공급망
실리콘 공급망
수동 부품 공급
패키징 모듈 조립
열 관리 공급망
공급망 탄력성 및 전략적 고려사항
제7장 시장 예측
주요 예측 전제조건
시장 전체 예측
전기자동차용 파워 일렉트로닉스 예측
데이터센터용 파워 일렉트로닉스 예측
신재생에너지 예측
공업 및 기타 용도 예측
반도체 기술 예측
지역 시장 예측
시나리오 분석
예측 요약
제8장 경쟁 구도
시장 점유율 분석
경쟁 전략
생산 능력 확대 계획
제9장 미래 기술 동향
파워 일렉트로닉스 2.0 비전
디바이스 기술 로드맵
시스템 레벨 혁신
수동 부품과 EMI 과제
미래 기술 요약
제10장 기업 프로파일
반도체 디바이스 제조업체(20개사 프로파일)
GaN 전문기업(7개사 프로파일)
SiC 웨이퍼 및 재료 공급자(10개사 프로파일)
Tier 1 자동차 공급업체(8개사 프로파일)
자사 개발 자동차 OEM(9개사 프로파일)
중국의 파워 일렉트로닉스 기업(9개사 프로파일)
모듈 및 시스템 인테그레이터(6개사 프로파일)
데이터센터 및 산업용 전력(7개사 프로파일)
기타 기업(8개사 프로파일)
제11장 참고문헌
CSM
영문 목차
영문목차
Power electronics is no longer confined to specialist applications. Its influence now spans electric vehicles, renewable energy systems, industrial automation, data-centre infrastructure and advanced consumer equipment. What links these sectors is the need to move energy more efficiently and at higher power densities. The global power electronics market is experiencing unprecedented growth and transformation, driven by the electrification of transportation, renewable energy expansion, and surging demand for data center infrastructure. This dynamic sector encompasses the critical components that convert and control electrical power across virtually every modern application, from electric vehicle powertrains to grid-scale energy storage systems. At the heart of this market evolution is a fundamental technology transition from traditional silicon-based devices to wide bandgap (WBG) semiconductors, specifically silicon carbide (SiC) and gallium nitride (GaN). This paradigm shift represents the most significant advancement in power electronics since the introduction of IGBTs in the 1980s. SiC MOSFETs offer compelling advantages over silicon IGBTs, including higher temperature operation, superior thermal conductivity, switching speeds up to five times faster, and the potential to increase electric vehicle range by approximately 7%. These characteristics enable more compact, efficient power conversion systems with smaller passive components and reduced cooling requirements.
The electric vehicle sector stands as the primary growth driver for power electronics demand. Key components include traction inverters, onboard chargers (OBCs), and DC-DC converters, with the market increasingly adopting 800V architectures to enable faster charging and improved efficiency. SiC MOSFETs are rapidly gaining market share in EV inverters, with projections indicating they will become the majority technology by 2035. Meanwhile, GaN devices are making significant inroads in lower-power applications such as onboard chargers and DC-DC converters, where their high-frequency switching capabilities enable dramatic reductions in size and weight.
The supply chain for power electronics is undergoing significant restructuring, with vertical integration emerging as a key strategic trend. Major automotive OEMs and semiconductor suppliers are securing supply through acquisitions, partnerships, and in-house development of SiC capabilities. The transition from 150mm to 200mm SiC wafers represents a critical milestone that will substantially increase production capacity and reduce costs, with multiple suppliers worldwide scaling up 200mm wafer production. Chinese manufacturers have entered the market aggressively, with four Chinese companies now ranking among the top 20 global power device suppliers.
Data centers represent another rapidly expanding application, driven by artificial intelligence workloads that demand unprecedented power levels. Power supply units are evolving to meet stringent efficiency standards, with the 80 PLUS Ruby certification requiring up to 96.5% efficiency. Wide bandgap adoption is accelerating in this sector, with hybrid designs combining silicon, SiC, and GaN emerging as the preferred approach for maximizing efficiency across different power conversion stages.
The industry is also witnessing a conceptual evolution from discrete converter design toward integrated system-level approaches. This "Power Electronics 2.0" paradigm emphasizes energy management over simple power conversion, incorporating smart grid integration, distributed control architectures, and mission-oriented efficiency metrics. Multi-cell converter architectures are gaining traction, offering advantages including switching frequency multiplication, improved redundancy, and standardization benefits.
Despite the rapid advancement of WBG technologies, silicon devices continue to hold significant market share due to their maturity, established supply chains, and cost advantages. The market is characterized by intense cost pressure, particularly in price-sensitive segments like solar inverters and battery energy storage systems. Looking forward, the global power electronics market is projected to grow with a compound annual growth rate exceeding 8%, adding more than $15 billion in market value by 2030, driven by the continued expansion of electric mobility, renewable energy deployment, and digital infrastructure requirements.
The Global Power Electronics Market 2026-2036 provides comprehensive analysis of the rapidly evolving power semiconductor industry, examining the transformative shift from silicon-based devices to wide bandgap (WBG) technologies including silicon carbide (SiC) MOSFETs and gallium nitride (GaN) HEMTs. This in-depth market intelligence report delivers granular 10-year forecasts covering market size in US dollars and gigawatts across key segments including electric vehicle inverters, onboard chargers, DC-DC converters, data center power supply units, renewable energy systems, and industrial applications.
The report analyzes critical technology trends driving market growth, including the transition from 400V to 800V EV architectures, the evolution from 150mm to 200mm SiC wafer production, and the emergence of integrated power electronics modules. Detailed supply chain analysis covers the complete value chain from raw materials and wafer production through device manufacturing, packaging, and system integration, with particular focus on vertical integration strategies and the rising influence of Chinese manufacturers in the global market.
Regional market analysis examines growth dynamics across China, Europe, North America, Japan, South Korea, and emerging markets, while competitive landscape assessment provides market share rankings, M&A activity tracking, and strategic partnership analysis. The report includes over 90 detailed company profiles spanning semiconductor device manufacturers, GaN specialists, SiC wafer suppliers, tier-1 automotive suppliers, automotive OEMs, and system integrators.
Report Contents include:
Market Analysis & Forecasts
Global power electronics market size and 10-year growth projections (2026-2036)
Device-level forecasts for Si IGBTs, SiC MOSFETs, and GaN devices by voltage class
Application-level forecasts for EV inverters, onboard chargers, and DC-DC converters in units, GW, and US$
Regional market forecasts for China, Europe, North America, and Asia-Pacific
Price trend analysis and cost reduction projections for WBG semiconductors
Technology Analysis
Comprehensive comparison of Si, SiC, and GaN semiconductor properties and performance
Technology S-curve analysis and paradigm shift to Power Electronics 2.0
Multi-cell converter architectures including parallel and series interleaving
Packaging evolution including single-sided and double-sided cooling technologies
150mm to 200mm SiC wafer transition timeline and cost advantages
Application Markets
Electric vehicle power electronics including 400V vs 800V architecture analysis
Traction inverter, onboard charger, and DC-DC converter technology benchmarking
Data center PSU market including AI server power requirements
Renewable energy applications covering solar PV, wind, and battery energy storage
Grid infrastructure including smart grid, solid-state transformers, and HVDC systems
Supply Chain Analysis
Complete Si, SiC, and GaN supply chain mapping from raw materials to end applications
SiC wafer supplier market share and 200mm production roadmap
Vertical integration trends and OEM acquisition strategies
Packaging and assembly supply chain including die attach technologies
Passive component technology roadmap for capacitors and magnetics
Competitive Landscape
Top 20 power device supplier rankings and market share analysis
Recent mergers, acquisitions, and strategic partnerships
Manufacturing capacity expansion plans by region and technology
OEM-supplier relationship mapping for SiC MOSFETs and Si IGBTs
Future Technology Trends
Power Electronics 2.0 vision: from converters to systems
SiC and GaN technology roadmaps through 2035
Emerging WBG materials including Ga2O3 and diamond
Virtual prototyping and digital twin design methodologies
Companies Profiled include ABB, Advanced Energy Industries, Alpha & Omega Semiconductor, Bimotal, BMW, BorgWarner, Bosch, BYD, Cambridge GaN Devices, China Resources Microelectronics (CR Micro), CM Materials, Coherent, CRRC Corporation, Dana Incorporated, Delta Electronics, Denso, Diodes Incorporated, Dynex Semiconductor, Dynolt Technologies, Eaton, Efficient Power Conversion (EPC), Entuple E-Mobility, Fuji Electric, General Motors, GlobalWafers, HBN Technology, Heron Power, Hitachi Astemo, Hitachi Energy, Huawei, Hyundai Motor Group, Infineon Technologies, Innoscience, Inovance Technology, Lite-On Technology, Littelfuse, Lucid Motors, Magna International, Microchip Technology, Mitsubishi Electric, Navitas Semiconductor, Nexperia, NXP Semiconductors, onsemi and more......
TABLE OF CONTENTS
1 EXECUTIVE SUMMARY
1.1 Report Introduction and Scope
1.2 Scope of Analysis
1.3 Methodology
1.4 Key Findings and Market Highlights
1.5 Global Power Electronics Market Overview 2026-2036
1.5.1 Market Structure
1.6 Technology Evolution: From Silicon to Wide Bandgap
1.6.1 The Technology S-Curve
1.7 Market Size and Growth Projections Summary
1.7.1 Device-Level Projections
1.7.2 Application-Level Projections
1.8 Regional Market Analysis Overview
1.8.1 China
1.8.2 Europe
1.8.3 United States
1.8.4 Japan and South Korea
1.9 Key Market Drivers and Challenges
1.9.1 Primary Market Drivers
1.9.2 Key Market Challenges
2 MARKET OVERVIEW AND DEFINITIONS
2.1 Power Electronics Fundamentals
2.1.1 What is Power Electronics?
2.1.2 Value Chain Economics and Margin Structure
2.1.3 Key Applications and End Markets
2.1.4 Electric Vehicle Power Electronics
2.1.5 Data Center Power Demand Transformation
2.1.6 Power Conversion Technologies Overview
2.1.7 ETH Zurich VIENNA Rectifier Development Generations
2.2 Market Segmentation
2.2.1 By Product Type (Inverters, Converters, Rectifiers)
2.2.1.1 Inverter Market Dynamics
2.2.1.2 DC-DC Converter Market Dynamics
2.2.1.3 Rectifier/Charger Market Dynamics
2.2.2 By Semiconductor Material (Si, SiC, GaN)
2.2.2.1 Silicon Market Dynamics
2.2.2.2 Silicon Carbide Market Dynamics
2.2.2.3 Gallium Nitride Market Dynamics
2.2.3 By Application Sector
2.2.3.1 Automotive & EV Sector Deep Dive
2.2.4 By Voltage Class
2.3 Performance Indices and Metrics
2.3.1 Power Density (kW/dm3)
2.3.2 Efficiency and Loss Analysis
2.3.3 Cost per kW Trends
2.3.4 Reliability and Failure Rate Metrics
3 TECHNOLOGY ANALYSIS
3.1 Evolution of Power Electronics Technology
3.1.1 Historical Development: SCRs to WBG
3.1.2 Technology S-Curve Analysis
3.1.2.1 Semiconductor S-Curves
3.1.2.2 Passive Component S-Curves
3.1.3 Paradigm Shift to Power Electronics 2.0
3.1.3.1 From Power to Energy Metrics
3.1.3.2 Multi-Objective Optimization and Pareto Fronts