샘플 요청 목록에 추가
바이오플라스틱 산업은 환경적 필요와 기술 혁신의 교차점에 위치한 혁신적인 투자 기회입니다. 기존 플라스틱 생산량이 연간 3억 9,400만 톤을 넘어서는 가운데, 지속가능한 대체품에 대한 절실한 요구가 장기적으로 매우 높은 성장세를 보일 것으로 예상되는 급성장 시장을 창출하고 있습니다. 2024년 바이오플라스틱 시장은 탄탄한 펀더멘털을 보이며, 생산량은 400만 톤을 넘어 2036년까지 1,500만 톤에서 1,800만 톤에 달할 가능성이 있습니다. 이러한 확대로 바이오플라스틱은 현재 1%에서 2036년까지 전체 폴리머 시장의 약 3-4%를 차지할 것으로 예측됩니다. 보수적인 예측에 따르면 현재의 성장세가 지속되고 생산 비용을 절감하는 기술 개선이 진행된다고 가정하면 2036년까지 시장 규모는 1,200억-1,500억 달러 이상에 달할 것으로 보입니다. 바이오 생분해성 폴리머가 가장 큰 부문을 차지할 수 있는 반면, 바이오 비생분해성 대체품은 기존 플라스틱의 드롭인 대체품으로 안정적인 성장을 유지할 것입니다.
2036년까지 바이오플라스틱 생산의 지역적 분포는 크게 변화할 것으로 예측됩니다. 북미는 25%의 연평균 복합 성장률(CAGR)로 공격적으로 생산능력을 확장하고 있으며, 2036년까지 전 세계 생산량의 25-30%를 차지할 수 있는 잠재력을 가지고 있습니다. 아시아가 주도권을 유지할 가능성이 높지만, 그 점유율은 약 45-50%까지 하락하고, 유럽은 현재의 정책적 지원에도 불구하고 15-18% 내외로 안정화될 가능성이 높습니다. 향후 10년은 폴리머의 성능과 비용 절감에 있으며, 기술적 혁신이 이루어질 것으로 예측됩니다. 고급 PHA 및 PLA 제제는 2030-2032년에 주요 용도에서 기존 플라스틱과 동등한 가격을 달성할 것으로 예측됩니다. 해양 분해성 고분자 및 2세대 원료 기술이 성숙하여 현재의 지속가능성에 대한 우려에 대응하는 동시에 새로운 시장 부문을 개발할 수 있습니다.
용도의 다양성은 포장과 섬유에 집중되어 있는 현재를 넘어 확장됩니다. 2036년까지 자동차 부품, 전자기기 인클로저, 의료용이 성능 특성 향상과 규제 승인 증가에 따라 시장의 20-25%를 차지할 것으로 예측됩니다. 여러 구조적 요인들이 2036년까지 투자 매력을 유지할 것으로 보입니다. 전 세계에서 규제 압력이 강화되고, 일회용 플라스틱 금지가 확대되고, 탄소 가격 책정 메커니즘은 바이오 대체품에 유리하게 작용할 것입니다. EU의 Horizon 2025에 의한 5억 유로의 약속은 초기 단계의 지원이며, 이후 자금 지원 주기는 크게 늘어날 가능성이 높습니다. 기업이 지속가능성 지표를 핵심 사업 전략에 통합함에 따라 기업의 채택이 가속화될 것으로 보입니다. PepsiCo와 Unilever와 같은 주요 브랜드는 공급망을 바이오소재로 전환하여 안정적이고 장기적인 수요를 창출하고 있습니다.
이 산업의 토지 이용 면적은 현재 전 세계 농지 면적의 0.013% 정도로 매우 작기 때문에 식량 생산과 경쟁하지 않고도 크게 확장할 수 있습니다. 폐기물에서 폴리머로의 전환과 조류 유래 원료의 기술 발전은 비용 경쟁력을 향상시키면서 자원의 제약을 더욱 줄일 수 있을 것으로 보입니다. 투자 고려사항으로는 기존 플라스틱에 비해 20-50% 비싼 생산비용이 있지만, 이 차이는 매년 줄어들고 있습니다. 규모 확장의 과제와 인프라 요구사항이 당면한 장애물인 반면, 재활용 시스템 통합은 아직 미개발 상태입니다. 그러나 이러한 도전은 초기 단계의 투자자들에게는 솔루션이 등장했을 때 가치를 얻을 수 있는 기회이기도 합니다.
바이오플라스틱 부문은 규제적 호재, 기술적 성숙도, 근본적인 수요 변화에 힘입어 2036년까지 매력적인 리스크 조정 후 이익률을 제공할 것으로 예측됩니다. 틈새 시장에서 주류로 진입하기 위한 산업의 진화는 원료 개발에서 최종 제품 생산에 이르기까지 밸류체인 전반에 걸쳐 여러 투자 진입점을 창출하고 있습니다. 이 확대되는 시장에서 전략적 포지셔닝을 취하는 투자자는 세계 경제에서 지속가능한 재료로의 돌이킬 수 없는 전환을 활용할 수 있습니다.
세계의 바이오플라스틱 시장에 대해 조사분석했으며, 주요 카테고리에서 생산능력, 기술개발, 원료의 이용 가능성, 지역 역학, 경쟁적 포지셔닝 등의 정보를 제공하고 있습니다.
목차
제1장 개요
바이오플라스틱이란?
세계의 플라스틱 시장과 공급
폴리머의 재활용
바이오 기반 생분해성/비생분해성 폴리머의 비교
지역의 분포
차세대 바이오 기반 폴리머
케미컬 재활용과의 통합
새로운 원료 공급원
폐기물의 바이오플라스틱으로의 변환
세계의 바이오플라스틱 생산능력
세계 시장 예측
환경에 대한 영향과 지속가능성
바이오 복합재
제2장 서론
바이오플라스틱의 유형
원료
관리의 연쇄(CoC)
화학 트레이서, 마커
바이오플라스틱 규제
제3장 바이오 기반 원료·중간체 시장
바이오리파이너리
바이오 기반 원료와 토지 이용
식물 유래
폐기물
미생물·미네랄원
가스
제4장 바이오 기반 폴리머
바이오 기반 또는 재생플라스틱
생분해성 퇴비화 가능한 플라스틱
유형
주요 시장 기업
합성 바이오 기반 폴리머
천연 바이오 기반 폴리머
천연 섬유
리그닌
제5장 바이오플라스틱 시장
포장(연포장·경질 포장)
소비재
자동차
건축·건설
텍스타일·섬유
전자
농업·원예
바이오폴리머 생산 : 지역별
제6장 기업 개요(기업 581사의 개요)
제7장 부록
제8장 참고 문헌
KSA
The bioplastics industry represents a transformative investment opportunity positioned at the intersection of environmental necessity and technological innovation. With conventional plastic production exceeding 394 million tonnes annually, the urgent need for sustainable alternatives has created a rapidly expanding market with exceptional long-term growth potential. The bioplastics market demonstrated robust fundamentals in 2024, exceeding 4 million tonnes in production, and potentially reaching 15-18 million tonnes by 2036, representing a four-fold increase from current levels. This expansion would position bioplastics to capture roughly 3-4% of the total polymer market by 2036, up from the current 1%. Conservative projections suggest the market value could exceed $120-150 billion by 2036, assuming the current growth momentum continues alongside technological improvements that reduce production costs. Bio-based biodegradable polymers, could represent the largest segment, while bio-based non-biodegradable alternatives maintain steady growth as drop-in replacements for conventional plastics.
By 2036, the geographic distribution of bioplastics production is expected to shift significantly. North America's aggressive 25% CAGR in capacity expansion suggests it could challenge Asia's current dominance, potentially capturing 25-30% of global production by 2036. Asia will likely maintain leadership but with a reduced share of approximately 45-50%, while Europe may stabilize around 15-18% despite current policy support. The next decade will witness substantial technological breakthroughs in polymer performance and cost reduction. Advanced PHA and PLA formulations are expected to achieve price parity with conventional plastics in key applications by 2030-2032. Marine-degradable polymers and second-generation feedstock technologies will mature, addressing current sustainability concerns while opening new market segments.
Application diversity will expand beyond current concentrations in packaging and fibers. By 2036, automotive components, electronics casings, and medical applications could represent 20-25% of the market as performance characteristics improve and regulatory approvals increase. Several structural factors will sustain investment attractiveness through 2036. Regulatory pressure will intensify globally, with single-use plastic bans expanding and carbon pricing mechanisms favoring bio-based alternatives. The EU's commitment of Euro-500 million through Horizon 2025 represents early-stage support, with subsequent funding cycles likely to increase substantially. Corporate adoption will accelerate as companies integrate sustainability metrics into core business strategies. Major brands including PepsiCo, Unilever, and others are transitioning supply chains toward bio-based materials, creating stable, long-term demand.
The industry's minimal land use footprint-currently 0.013% of global agricultural area-provides significant expansion capacity without competing with food production. Technological advances in waste-to-polymer conversion and algae-based feedstocks will further reduce resource constraints while improving cost competitiveness. Investment considerations include current production cost premiums of 20-50% over conventional plastics, though this gap is narrowing annually. Scaling challenges and infrastructure requirements present near-term obstacles, while recycling system integration remains underdeveloped. However, these challenges also represent opportunities for early-stage investors to capture value as solutions emerge.
The bioplastics sector offers compelling risk-adjusted returns through 2036, supported by regulatory tailwinds, technological maturation, and fundamental demand shifts. The industry's evolution from niche applications to mainstream adoption creates multiple investment entry points across the value chain, from feedstock development to end-product manufacturing. Investors positioning themselves strategically in this expanding market can capitalize on the irreversible transition toward sustainable materials in the global economy.
"The Global Bioplastics Market 2026-2036" provides an exhaustive analysis of the bioplastics landscape through 2036, offering strategic insights for investors, manufacturers, policymakers, and supply chain stakeholders navigating this transformative sector. With the global bioplastics market projected to reach significant scale by 2036, this report delivers critical market intelligence covering production capacities, technology developments, feedstock availability, regional dynamics, and competitive positioning across all major bioplastic categories. The analysis encompasses both bio-based and biodegradable polymers, natural fibers, lignin applications, and emerging next-generation materials reshaping the plastics industry.
Report Contents include:
Global plastics market supply analysis and bioplastics positioning
Comprehensive polymer recycling landscape assessment
Bio-based versus biodegradable polymer market segmentation
Regional distribution analysis with capacity utilization rates
Next-generation bio-polymer technology roadmap
Chemical recycling integration strategies
Novel feedstock source evaluation and waste-to-bioplastics conversion
Global Production Capacity Analysis (2024-2036)
Current production capacity assessment across all polymer types
Detailed capacity forecasts by polymer category and geographic region
Investment trend analysis and market forecasting methodologies
Capacity utilization optimization strategies
Environmental Impact & Sustainability Assessment
Life cycle assessment comparative analysis for major biopolymer types
Land use and feedstock sustainability impact evaluation
Carbon footprint comparison with fossil-based alternatives
Bio-composites environmental performance metrics
Feedstock & Intermediates Market Analysis
Comprehensive biorefinery process mapping and economic analysis
Plant-based feedstock categories including starch, sugar crops, lignocellulosic biomass, and plant oils
Waste stream utilization covering food waste, agricultural residues, forestry waste, and municipal solid waste
Microbial and mineral source applications
Gaseous feedstock integration including biogas and syngas utilization
Bio-based Polymer Technologies & Applications
Synthetic bio-based polymers including APC, PLA, Bio-PET, Bio-PTT, Bio-PEF, Bio-PA, Bio-PBAT, PBS, Bio-PE, Bio-PP, and superabsorbent polymers
Natural bio-based polymers featuring PHA, cellulose derivatives, protein-based polymers, algal and fungal materials, and chitosan applications
Natural fiber comprehensive analysis covering manufacturing methods, matrix materials, and commercial applications
Lignin technology applications and market opportunities
Market Applications & End-User Analysis
Packaging applications (flexible and rigid) with production volume forecasts
Consumer goods, automotive, building and construction sector applications
Textiles and fibers market penetration analysis
Electronics industry adoption patterns
Agriculture and horticulture market opportunities
Regional production analysis covering North America, Europe, Asia-Pacific, and Latin America
Company Profiles (575+ Companies): 3DBioFibR, 3M, 9Fiber Inc., ADBioplastics, Adriano di Marti/Desserto, Advanced Biochemical Thailand, Aeropowder Limited, Aemetis Inc., AEP Polymers, AGRANA Staerke GmbH, AgroRenew, Ahlstrom-Munksjo Oyj, Algaeing, Algenesis Corporation, Algal Bio, Algenol, Algenie, Alginor ASA, Algix LLC, AmphiStar, AMSilk GmbH, Ananas Anam Ltd., An Phat Bioplastics, Anellotech Inc., Andritz AG, Anqing He Xing Chemical, Ankor Bioplastics, ANPOLY Inc., Applied Bioplastics, Aquafil S.p.A., Aquapak Polymers Ltd, Archer Daniel Midland Company, Arctic Biomaterials Oy, Ardra Bio, Arekapak GmbH, Arkema S.A, Arlanxeo, Arrow Greentech, Attis Innovations LLC, Arzeda Corp., Asahi Kasei Chemicals Corporation, AVA Biochem AG, Avantium B.V., Avani Eco, Avient Corporation, Axcelon Biopolymers Corporation, Ayas Renewables Inc., Azolla, Bambooder Biobased Fibers B.V., BASF SE, Bast Fiber Technologies Inc., BBCA Biochemical & GALACTIC Lactic Acid, Bcomp ltd., Better Fibre Technologies, Betulium Oy, Beyond Leather Materials ApS, Bioextrax AB, Bio Fab NZ, BIO-FED, Biofibre GmbH, Biofine Technology LLC, Bio2Materials Sp. z o.o., Biokemik, Bioleather, BIOLO, BioLogiQ Inc., Biomass Resin Holdings, Biome Bioplastics, BioSolutions, Biosyntia, BIOTEC GmbH & Co. KG, Biofiber Tech Sweden AB, Bioform Technologies, BIO-LUTIONS International AG, Biophilica, Bioplastech Ltd, Bioplastix, Biopolax, Biotecam, Biotic Circular Technologies Ltd., Biotrem, Biovox, Bioweg, BlockTexx Pty Ltd., Bloom Biorenewables SA, BluCon Biotech GmbH, Blue BioFuels Inc., Blue Ocean Closures, Bluepha Beijing Lanjing Microbiology Technology, Bolt Threads, Borealis AG, Borregaard Chemcell, Bosk Bioproducts Inc., Bowil Biotech Sp. z o.o., B-PREG, Braskem SA, Bucha Bio Inc., Buyo Bioplastic Ltd., Burgo Group S.p.A., C16 Biosciences, Carbiolice, Carbios, Carbon Crusher, Carbonwave, Cardia Bioplastics Ltd., Cardolite, CARAPAC Company, Carapace Biopolymers, Cargill, Cass Materials Pty Ltd, Catalyxx, Cathay Industrial Biotech Ltd., Celanese Corporation, Cellicon B.V., Cellucomp Ltd., Celluforce, CellON, Cellugy, Cellutech AB (Stora Enso), ChainCraft, CH-Bioforce Oy, ChakraTech, Checkerspot Inc., Chempolis Oy, Chitelix, Chongqing Bofei Biochemical Products, Chuetsu Pulp & Paper, CIMV, Circa Group, Circular Systems, CJ Biomaterials Inc., CO2BioClean, Coastgrass ApS, COFCO Cooperation Ltd., Coffeeco Upcycle, Corn Next, Corumat Inc., Clariant AG, CreaFill Fibers Corporation, Cristal Union Group, Cruz Foam, CuanTec Ltd., Daesang, Daicel Corporation, Daicel Polymer Ltd., DaikyoNishikawa Corporation, Daio Paper Corporation, Daishowa Paper Products, DAK Americas LLC, Danimer Scientific LLC, DENSO Corporation, Diamond Green Diesel LLC, DIC Corporation, DIC Products Inc., Dispersa, DKS Co. Ltd., Domsjo Fabriker AB, Domtar Paper Company LLC, Dongnam Realize, Dongying Hebang Chemical Corp., Dow Inc., Royal DSM N.V., DuFor Resins B.V., DuPont, DuPont Tate & Lyle Bio Products, Eastman Chemical Ltd. Corporation, ecoGenie biotech, Ecopel, Ecoshell, Ecovia Renewables, Ecovance, Ecovative Design LLC, Eden Materials, EggPlant Srl, Ehime Paper Manufacturing, Emirates Biotech, EMS-Grivory, Enerkem Inc., Enkev, Eni S.p.A., Enviral, EnginZyme AB, Enzymit, Eranova, Esbottle Oy, EveryCarbon, Evolved By Nature, Evonik Industries AG, Evrnu, FabricNano, Fairbrics, Faircraft, Far Eastern New Century Corporation, Fermentalg, Fiberlean Technologies, Fiberight, Fillerbank Limited, Fiquetex S.A.S., FKuR Kunststoff GmbH, FlexSea, Flocus, Floreon, Foamplant BV, FP Innovations, Fraunhofer Center for Chemical-Biotechnological Processes CBP, Fraunhofer Institute for Silicate Research ISC, Fraunhofer Institute for Structural Durability and System Reliability LBF, Freyzein, Fruit Leather Rotterdam, Fuji Pigment, Full Cycle Bioplastics LLC, Furukawa Electric, Futerro, Futuramat Sarl, Futurity Bio-Ventures Ltd., Gaiamer Biotechnologies, Galatea Biotech Srl, G+E GETEC Holding GmbH, Gelatex Technologies OU, Gen3Bio, Genecis Bioindustries Inc., GeneusBiotech BV, Genomatica, Gevo Inc, Global Bioenergies SA, Grabio Greentech Corporation, Grado Zero Innovation, Granbio Technologies, Green Science Alliance, GRECO, Grupp MAIP, GS Alliance, Guangzhou Bio-plus Materials Technology, Haldor Topsoe A/S, Hattori Shoten K.K., Hebei Casda Biomaterials, Hebei Jiheng Chemical, Hebei Xinhua Lactic Acid, Heilongjiang Chenneng Bioengineering Ltd., Helian Polymers BV, Henan Jindan Lactic Acid Technology, Henan Xinghan Biological Technology, Hengshui Jinghua Chemical, Hengli Petrochemical, Hexa Chemical/Nature Gift, Hexas Biomass Inc., Hexion Inc, Hokuetsu Toyo Fibre, Honext Material SL, HTL Biotechnology, Hubei Guangshui National Chemical, Huitong Biomaterials, Humintech GmbH, Hunan Anhua Lactic Acid, Icytos, India Glycols Ltd., Indochine Bio Plastiques (ICBP) Sdn Bhd, Indorama Ventures Public, Ingevity, Inner Mettle, Infinited Fiber Company Oy, Iogen Corporation, Inovyn, Insempra, Inspidere B.V., Ioniqa, Itaconix, Intec Bioplastics, JeNaCell GmbH, and over 400 additional companies across the global bioplastics value chain representing feedstock suppliers, technology developers, polymer manufacturers, equipment providers, and end-user applications companies.
TABLE OF CONTENTS
1. EXECUTIVE SUMMARY
1.1. What are bioplastics?
1.2. Global Plastics Market and Supply
1.3. Recycling Polymers
1.4. Bio-based and Biodegradable vs. Non-biodegradable Polymers
1.5. Regional Distribution
1.6. Next Generation Bio-based Polymers
1.7. Integration with Chemical Recycling
1.8. Novel Feedstock Sources
1.9. Turning Waste into Bioplastics
1.10. Global Bioplastics Capacity
1.10.1. Production capacities 2024
1.10.2. Production capacities forecast 2025-2036
1.10.3. Production capacities by region 2024-2036
1.11. Global Market Forecasts
1.12. Environmental Impact and Sustainability
1.12.1. Plastics carbon footprint
1.12.2. Bioplastics carbon footprint
1.12.3. Life Cycle Assessment of Bioplastics
1.12.4. Use of renewables in production
1.12.5. Land Use and Feedstock Sustainability
1.12.6. Carbon Footprint Comparison with Fossil-based Alternatives
1.13. Bio-composites
1.13.1. Sustainable packaging
1.13.2. Enhanced biodegradation of bio-based polymers
1.13.3. Bio-composite manufacturing
2. INTRODUCTION
2.1. Types of bioplastics
2.1.1. Introduction
2.1.2. Polymer Types
2.1.2.1. Transition from fossil-based to bio-based polymers
2.1.2.2. Monosaccharides
2.1.2.3. Vegetable Oils
2.1.3. Bio-based monomers
2.1.3.1. Portfolio of available monomers
2.1.3.2. Emerging Monomer Technologies
2.1.4. The Green Premium
2.2. Feedstocks
2.2.1. Types
2.2.2. Prices
2.2.3. Alternative feedstocks for bioplastics
2.2.4. Food security, land use, and water resources
2.3. Chain of custody
2.4. Chemical tracers and markers
2.5. Bioplastics regulations
2.5.1. Overview
2.5.2. Extended producer responsibility (EPR)
2.5.3. United States
2.5.4. Europe
2.5.5. Asia-Pacific
3. BIO-BASED FEEDSTOCKS AND INTERMEDIATES MARKET
3.1. BIOREFINERIES
3.2. BIO-BASED FEEDSTOCK AND LAND USE
3.3. PLANT-BASED
3.3.1. STARCH
3.3.1.1. Overview
3.3.1.2. Sources
3.3.1.3. Global production
3.3.1.4. Lysine
3.3.1.4.1. Source
3.3.1.4.2. Applications
3.3.1.4.3. Global production
3.3.1.5. Glucose
3.3.1.5.1. HMDA
3.3.1.5.1.1. Overview
3.3.1.5.1.2. Sources
3.3.1.5.1.3. Applications
3.3.1.5.1.4. Global production
3.3.1.5.2. 1,5-diaminopentane (DA5)
3.3.1.5.2.1. Overview
3.3.1.5.2.2. Sources
3.3.1.5.2.3. Applications
3.3.1.5.2.4. Global production
3.3.1.5.3. Sorbitol
3.3.1.5.3.1. Isosorbide
3.3.1.5.3.1.1. Overview
3.3.1.5.3.1.2. Sources
3.3.1.5.3.1.3. Applications
3.3.1.5.3.1.4. Global production
3.3.1.5.4. Lactic acid
3.3.1.5.4.1. Overview
3.3.1.5.4.2. D-lactic acid
3.3.1.5.4.3. L-lactic acid
3.3.1.5.4.4. Lactide
3.3.1.5.5. Itaconic acid
3.3.1.5.5.1. Overview
3.3.1.5.5.2. Sources
3.3.1.5.5.3. Applications
3.3.1.5.5.4. Global production
3.3.1.5.6. 3-HP
3.3.1.5.6.1. Overview
3.3.1.5.6.2. Sources
3.3.1.5.6.3. Applications
3.3.1.5.6.4. Global production
3.3.1.5.6.5. Acrylic acid
3.3.1.5.6.5.1. Overview
3.3.1.5.6.5.2. Applications
3.3.1.5.6.5.3. Global production
3.3.1.5.6.6. 1,3-Propanediol (1,3-PDO)
3.3.1.5.6.6.1. Overview
3.3.1.5.6.6.2. Applications
3.3.1.5.6.6.3. Global production
3.3.1.5.7. Succinic Acid
3.3.1.5.7.1. Overview
3.3.1.5.7.2. Sources
3.3.1.5.7.3. Applications
3.3.1.5.7.4. Global production
3.3.1.5.7.5. 1,4-Butanediol (1,4-BDO)
3.3.1.5.7.5.1. Overview
3.3.1.5.7.5.2. Applications
3.3.1.5.7.5.3. Gobal production
3.3.1.5.7.6. Tetrahydrofuran (THF)
3.3.1.5.7.6.1. Overview
3.3.1.5.7.6.2. Applications
3.3.1.5.7.6.3. Global production
3.3.1.5.8. Adipic acid
3.3.1.5.8.1. Overview
3.3.1.5.8.2. Applications
3.3.1.5.8.3. Caprolactame
3.3.1.5.8.3.1. Overview
3.3.1.5.8.3.2. Applications
3.3.1.5.8.3.3. Global production
3.3.1.5.9. Isobutanol
3.3.1.5.9.1. Overview
3.3.1.5.9.2. Sources
3.3.1.5.9.3. Applications
3.3.1.5.9.4. Global production
3.3.1.5.9.5. p-Xylene
3.3.1.5.9.5.1. Overview
3.3.1.5.9.5.2. Sources
3.3.1.5.9.5.3. Applications
3.3.1.5.9.5.4. Global production
3.3.1.5.9.5.5. Terephthalic acid
3.3.1.5.9.5.6. Overview
3.3.1.5.10. 1,3 Proppanediol
3.3.1.5.10.1. Overview
3.3.1.5.10.2. Sources
3.3.1.5.10.3. Applications
3.3.1.5.10.4. Global production
3.3.1.5.11. Monoethylene glycol (MEG)
3.3.1.5.11.1. Overview
3.3.1.5.11.2. Sources
3.3.1.5.11.3. Applications
3.3.1.5.11.4. Global production
3.3.1.5.12. Ethanol
3.3.1.5.12.1. Overview
3.3.1.5.12.2. Sources
3.3.1.5.12.3. Applications
3.3.1.5.12.4. Global production
3.3.1.5.12.5. Ethylene
3.3.1.5.12.5.1. Overview
3.3.1.5.12.5.2. Applications
3.3.1.5.12.5.3. Global production
3.3.1.5.12.5.4. Propylene
3.3.1.5.12.5.5. Vinyl chloride
3.3.1.5.12.6. Methly methacrylate
3.3.2. SUGAR CROPS
3.3.2.1. Saccharose
3.3.2.1.1. Aniline
3.3.2.1.1.1. Overview
3.3.2.1.1.2. Applications
3.3.2.1.1.3. Global production
3.3.2.1.2. Fructose
3.3.2.1.2.1. Overview
3.3.2.1.2.2. Applications
3.3.2.1.2.3. Global production
3.3.2.1.2.4. 5-Hydroxymethylfurfural (5-HMF)
3.3.2.1.2.4.1. Overview
3.3.2.1.2.4.2. Applications
3.3.2.1.2.4.3. Global production
3.3.2.1.2.5. 5-Chloromethylfurfural (5-CMF)
3.3.2.1.2.5.1. Overview
3.3.2.1.2.5.2. Applications
3.3.2.1.2.5.3. Global production
3.3.2.1.2.6. Levulinic Acid
3.3.2.1.2.6.1. Overview
3.3.2.1.2.6.2. Applications
3.3.2.1.2.6.3. Global production
3.3.2.1.2.7. FDME
3.3.2.1.2.7.1. Overview
3.3.2.1.2.7.2. Applications
3.3.2.1.2.7.3. Global production
3.3.2.1.2.8. 2,5-FDCA
3.3.2.1.2.8.1. Overview
3.3.2.1.2.8.2. Applications
3.3.2.1.2.8.3. Global production
3.3.3. LIGNOCELLULOSIC BIOMASS
3.3.3.1. Levoglucosenone
3.3.3.1.1. Overview
3.3.3.1.2. Applications
3.3.3.1.3. Global production
3.3.3.2. Hemicellulose
3.3.3.2.1. Overview
3.3.3.2.2. Biochemicals from hemicellulose
3.3.3.2.3. Global production
3.3.3.2.4. Furfural
3.3.3.2.4.1. Overview
3.3.3.2.4.2. Applications
3.3.3.2.4.3. Global production
3.3.3.2.4.4. Furfuyl alcohol
3.3.3.2.4.4.1. Overview
3.3.3.2.4.4.2. Applications
3.3.3.2.4.4.3. Global production
3.3.3.3. Lignin
3.3.3.3.1. Overview
3.3.3.3.2. Sources
3.3.3.3.3. Applications
3.3.3.3.3.1. Aromatic compounds
3.3.3.3.3.1.1. Benzene, toluene and xylene
3.3.3.3.3.1.2. Phenol and phenolic resins
3.3.3.3.3.1.3. Vanillin
3.3.3.3.3.2. Polymers
3.3.3.3.4. Global production
3.3.4. PLANT OILS
3.3.4.1. Overview
3.3.4.2. Glycerol
3.3.4.2.1. Overview
3.3.4.2.2. Applications
3.3.4.2.3. Global production
3.3.4.2.4. MPG
3.3.4.2.4.1. Overview
3.3.4.2.4.2. Applications
3.3.4.2.4.3. Global production
3.3.4.2.5. ECH
3.3.4.2.5.1. Overview
3.3.4.2.5.2. Applications
3.3.4.2.5.3. Global production
3.3.4.3. Fatty acids
3.3.4.3.1. Overview
3.3.4.3.2. Applications
3.3.4.3.3. Global production
3.3.4.4. Castor oil
3.3.4.4.1. Overview
3.3.4.4.2. Sebacic acid
3.3.4.4.2.1. Overview
3.3.4.4.2.2. Applications
3.3.4.4.2.3. Global production
3.3.4.4.3. 11-Aminoundecanoic acid (11-AA)
3.3.4.4.3.1. Overview
3.3.4.4.3.2. Applications
3.3.4.4.3.3. Global production
3.3.4.5. Dodecanedioic acid (DDDA)
3.3.4.5.1. Overview
3.3.4.5.2. Applications
3.3.4.5.3. Global production
3.3.4.6. Pentamethylene diisocyanate
3.3.4.6.1. Overview
3.3.4.6.2. Applications
3.3.4.6.3. Global production
3.3.5. NON-EDIBIBLE MILK
3.3.5.1. Casein
3.3.5.1.1. Overview
3.3.5.1.2. Applications
3.3.5.1.3. Global production
3.4. WASTE
3.4.1. Food waste
3.4.1.1. Overview
3.4.1.2. Products and applications
3.4.1.3. Global production
3.4.2. Agricultural waste
3.4.2.1. Overview
3.4.2.2. Products and applications
3.4.2.3. Global production
3.4.3. Forestry waste
3.4.3.1. Overview
3.4.3.2. Products and applications
3.4.3.3. Global production
3.4.4. Aquaculture/fishing waste
3.4.4.1. Overview
3.4.4.2. Products and applications
3.4.4.3. Global production
3.4.5. Municipal solid waste
3.4.5.1. Overview
3.4.5.2. Products and applications
3.4.5.3. Global production
3.4.6. Industrial waste
3.4.6.1. Overview
3.4.6.2. Waste oils
3.4.6.3. Overview
3.4.6.4. Products and applications
3.4.6.5. Global production
3.5. MICROBIAL & MINERAL SOURCES
3.5.1. Microalgae
3.5.1.1. Overview
3.5.1.2. Products and applications
3.5.1.3. Global production
3.5.2. Macroalgae
3.5.2.1. Overview
3.5.2.2. Products and applications
3.5.2.3. Global production
3.5.3. Mineral sources
3.5.3.1. Overview
3.5.3.2. Products and applications
3.6. GASEOUS
3.6.1. Biogas
3.6.1.1. Overview
3.6.1.2. Products and applications
3.6.1.3. Global production
3.6.2. Syngas
3.6.2.1. Overview
3.6.2.2. Products and applications
3.6.2.3. Global production
3.6.3. Off gases - fermentation CO2, CO
3.6.3.1. Overview
3.6.3.2. Products and applications
4. BIO-BASED POLYMERS
4.1. BIO-BASED OR RENEWABLE PLASTICS
4.1.1. Drop-in bio-based plastics
4.1.2. Novel bio-based plastics
4.2. BIODEGRADABLE AND COMPOSTABLE PLASTICS
4.2.1. Biodegradability
4.2.2. Compostability
4.3. TYPES
4.4. KEY MARKET PLAYERS
4.5. SYNTHETIC BIO-BASED POLYMERS
4.5.1. Aliphatic polycarbonates (APC) - cyclic and linear
4.5.1.1. Market analysis
4.5.1.2. Production
4.5.1.3. Applications
4.5.1.4. Producers
4.5.2. Polylactic acid (Bio-PLA)
4.5.2.1. What is polylactic acid?
4.5.2.2. Market analysis
4.5.2.3. Applications
4.5.2.4. Production
4.5.2.5. Biomanufacturing of lactic acid (C3H6O3)
4.5.2.6. Bacterial fermentation
4.5.2.6.1. Lactic acid
4.5.2.6.2. Selection of optimal bacterial strains
4.5.2.6.3. Downstream processing of fermentation broth into PLA-grade lactic acid
4.5.2.7. PLA hydrolysis
4.5.2.8. Ocean degradation
4.5.2.9. PLA end-of-life
4.5.2.10. Producers and production capacities, current and planned
4.5.2.10.1. Lactic acid producers and production capacities
4.5.2.10.2. PLA producers and production capacities
4.5.2.10.3. Polylactic acid (Bio-PLA) production 2019-2036 (1,000 tonnes)
4.5.3. Polyethylene terephthalate (Bio-PET)
4.5.3.1. Market analysis
4.5.3.2. Bio-based MEG and PET
4.5.3.2.1. Monomer production
4.5.3.2.2. Applications
4.5.3.3. Producers and production capacities
4.5.3.4. Polyethylene terephthalate (Bio-PET) production 2019-2036 (1,000 tonnes)
4.5.4. Polytrimethylene terephthalate (Bio-PTT)
4.5.4.1. Market analysis
4.5.4.2. Producers and production capacities
4.5.4.3. Polytrimethylene terephthalate (PTT) production 2019-2036 (1,000 tonnes)
4.5.5. Polyethylene furanoate (Bio-PEF)
4.5.5.1. Market analysis
4.5.5.2. Comparative properties to PET
4.5.5.3. Producers and production capacities
4.5.5.3.1. FDCA and PEF producers and production capacities
4.5.5.3.2. Polyethylene furanoate (Bio-PEF) production 2019-2036 (1,000 tonnes)
4.5.6. Polyamides (Bio-PA)
4.5.6.1. Market analysis
4.5.6.2. Producers and production capacities
4.5.6.3. Polyamides (Bio-PA) production 2019-2036 (1,000 tonnes)
4.5.7. Poly(butylene adipate-co-terephthalate) (Bio-PBAT)
4.5.7.1. Market analysis
4.5.7.2. Producers and production capacities
4.5.7.3. Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2036 (1,000 tonnes)
4.5.8. Polybutylene succinate (PBS) and copolymers
4.5.8.1. Market analysis
4.5.8.2. Producers and production capacities
4.5.8.3. Polybutylene succinate (PBS) production 2019-2036 (1,000 tonnes)
4.5.9. Polyethylene (Bio-PE)
4.5.9.1. Market analysis
4.5.9.2. Producers and production capacities
4.5.9.3. Polyethylene (Bio-PE) production 2019-2036 (1,000 tonnes)
4.5.10. Polypropylene (Bio-PP)
4.5.10.1. Market analysis
4.5.10.2. Producers and production capacities
4.5.10.3. Polypropylene (Bio-PP) production 2019-2036 (1,000 tonnes)
4.5.11. Superabsorbent polymers
4.5.11.1. Market analysis
4.5.11.2. Production
4.5.11.3. Applications
4.5.11.4. Producers
4.6. NATURAL BIO-BASED POLYMERS
4.6.1. Polyhydroxyalkanoates (PHA)
4.6.1.1. Technology description
4.6.1.2. Types
4.6.1.2.1. PHB
4.6.1.2.2. PHBV
4.6.1.3. Synthesis and production processes
4.6.1.4. Market analysis
4.6.1.5. Commercially available PHAs
4.6.1.6. Markets for PHAs
4.6.1.6.1. Packaging
4.6.1.6.2. Cosmetics
4.6.1.6.2.1. PHA microspheres
4.6.1.6.3. Medical
4.6.1.6.3.1. Tissue engineering
4.6.1.6.3.2. Drug delivery
4.6.1.6.4. Agriculture
4.6.1.6.4.1. Mulch film
4.6.1.6.4.2. Grow bags
4.6.1.7. Producers and production capacities
4.6.1.8. PHA production capacities 2019-2036 (1,000 tonnes)
4.6.2. Cellulose
4.6.2.1. Cellulose acetate (CA)
4.6.2.1.1. Market analysis
4.6.2.1.2. Production
4.6.2.1.3. Applications
4.6.2.1.4. Producers
4.6.2.2. Microfibrillated cellulose (MFC)
4.6.2.2.1. Market analysis
4.6.2.2.2. Producers and production capacities
4.6.2.3. Nanocellulose
4.6.2.3.1. Cellulose nanocrystals
4.6.2.3.1.1. Synthesis
4.6.2.3.1.2. Properties
4.6.2.3.1.3. Production
4.6.2.3.1.4. Applications
4.6.2.3.1.5. Market analysis
4.6.2.3.1.6. Producers and production capacities
4.6.2.3.2. Cellulose nanofibers
4.6.2.3.2.1. Applications
4.6.2.3.2.2. Market analysis
4.6.2.3.2.3. Producers and production capacities
4.6.2.3.3. Bacterial Nanocellulose (BNC)
4.6.2.3.3.1. Production
4.6.2.3.3.2. Applications
4.6.3. Protein-based bio-polymers
4.6.3.1. Types, applications and producers
4.6.3.2. Casein polymers
4.6.3.2.1. Market analysis
4.6.3.2.2. Production
4.6.3.2.3. Applications
4.6.4. Algal and fungal
4.6.4.1. Algal
4.6.4.1.1. Advantages
4.6.4.1.2. Production
4.6.4.1.3. Producers
4.6.4.2. Mycelium
4.6.4.2.1. Properties
4.6.4.2.2. Applications
4.6.4.2.3. Commercialization
4.6.5. Chitosan
4.6.5.1. Technology description
4.7. NATURAL FIBERS
4.7.1. Manufacturing method, matrix materials and applications of natural fibers
4.7.2. Advantages of natural fibers
4.7.3. Commercially available next-gen natural fiber products
4.7.4. Market drivers for next-gen natural fibers
4.7.5. Challenges
4.7.6. Plants (cellulose, lignocellulose)
4.7.6.1. Seed fibers
4.7.6.1.1. Cotton
4.7.6.1.1.1. Production volumes 2018-2036
4.7.6.1.2. Kapok
4.7.6.1.2.1. Production volumes 2018-2036
4.7.6.1.3. Luffa
4.7.6.2. Bast fibers
4.7.6.2.1. Jute
4.7.6.2.2. Production volumes 2018-2036
4.7.6.2.2.1. Hemp
4.7.6.2.2.2. Production volumes 2018-2036
4.7.6.2.3. Flax
4.7.6.2.3.1. Production volumes 2018-2036
4.7.6.2.4. Ramie
4.7.6.2.4.1. Production volumes 2018-2036
4.7.6.2.5. Kenaf
4.7.6.2.5.1. Production volumes 2018-2036
4.7.6.3. Leaf fibers
4.7.6.3.1. Sisal
4.7.6.3.1.1. Production volumes 2018-2036
4.7.6.3.2. Abaca
4.7.6.3.2.1. Production volumes 2018-2036
4.7.6.4. Fruit fibers
4.7.6.4.1. Coir
4.7.6.4.1.1. Production volumes 2018-2036
4.7.6.4.2. Banana
4.7.6.4.2.1. Production volumes 2018-2036
4.7.6.4.3. Pineapple
4.7.6.5. Stalk fibers from agricultural residues
4.7.6.5.1. Rice fiber
4.7.6.5.2. Corn
4.7.6.6. Cane, grasses and reed
4.7.6.6.1. Switch grass
4.7.6.6.2. Sugarcane (agricultural residues)
4.7.6.6.3. Bamboo
4.7.6.6.3.1. Production volumes 2018-2036
4.7.6.6.4. Fresh grass (green biorefinery)
4.7.7. Animal (fibrous protein)
4.7.7.1. Wool
4.7.7.1.1. Alternative wool materials
4.7.7.1.2. Producers
4.7.7.2. Silk fiber
4.7.7.2.1. Alternative silk materials
4.7.7.3. Leather
4.7.7.3.1. Alternative leather materials
4.7.7.4. Fur
4.7.7.5. Down
4.7.7.5.1. Alternative down materials
4.7.8. Markets for natural fibers
4.7.8.1. Composites
4.7.8.2. Applications
4.7.8.3. Natural fiber injection moulding compounds
4.7.8.3.1. Properties
4.7.8.3.2. Applications
4.7.8.4. Non-woven natural fiber mat composites
4.7.8.4.1. Automotive
4.7.8.4.2. Applications
4.7.8.5. Aligned natural fiber-reinforced composites
4.7.8.6. Natural fiber biobased polymer compounds
4.7.8.7. Natural fiber biobased polymer non-woven mats
4.7.8.7.1. Flax
4.7.8.7.2. Kenaf
4.7.8.8. Natural fiber thermoset bioresin composites
4.7.8.9. Aerospace
4.7.8.9.1. Market overview
4.7.8.10. Automotive
4.7.8.10.1. Market overview
4.7.8.10.2. Applications of natural fibers
4.7.8.11. Building/construction
4.7.8.11.1. Market overview
4.7.8.11.2. Applications of natural fibers
4.7.8.12. Sports and leisure
4.7.8.12.1. Market overview
4.7.8.13. Textiles
4.7.8.13.1. Market overview
4.7.8.13.2. Consumer apparel
4.7.8.13.3. Geotextiles
4.7.8.14. Packaging
4.7.8.14.1. Market overview
4.7.9. Global production of natural fibers
4.8. LIGNIN
4.8.1. Introduction
4.8.1.1. What is lignin?
4.8.1.1.1. Lignin structure
4.8.1.2. Types of lignin
4.8.1.2.1. Sulfur containing lignin
4.8.1.2.2. Sulfur-free lignin from biorefinery process
4.8.1.3. Properties
4.8.1.4. The lignocellulose biorefinery
4.8.1.5. Markets and applications
4.8.1.6. Challenges for using lignin
4.8.2. Lignin production processes
4.8.2.1. Lignosulphonates
4.8.2.2. Kraft Lignin
4.8.2.2.1. LignoBoost process
4.8.2.2.2. LignoForce method
4.8.2.2.3. Sequential Liquid Lignin Recovery and Purification
4.8.2.2.4. A-Recovery+
4.8.2.3. Soda lignin
4.8.2.4. Biorefinery lignin
4.8.2.4.1. Commercial and pre-commercial biorefinery lignin production facilities and processes
4.8.2.5. Organosolv lignins
4.8.2.6. Hydrolytic lignin
4.8.3. Markets for lignin
4.8.3.1. Market drivers and trends for lignin
4.8.3.2. Production capacities
4.8.3.2.1. Technical lignin availability (dry ton/y)
4.8.3.2.2. Biomass conversion (Biorefinery)
4.8.3.3. Estimated consumption of lignin
4.8.3.4. Prices
4.8.3.5. Heat and power energy
4.8.3.6. Pyrolysis and syngas
4.8.3.7. Aromatic compounds
4.8.3.7.1. Benzene, toluene and xylene
4.8.3.7.2. Phenol and phenolic resins
4.8.3.7.3. Vanillin
4.8.3.8. Plastics and polymers
5. MARKETS FOR BIOPLASTICS
5.1. Packaging (Flexible and Rigid)
5.1.1. Processes for bioplastics in packaging
5.1.2. Applications
5.1.3. Flexible packaging
5.1.3.1. Production volumes 2019-2036
5.1.4. Rigid packaging
5.1.4.1. Production volumes 2019-2036
5.2. Consumer Goods
5.2.1. Applications
5.2.2. Production volumes 2019-2036
5.3. Automotive
5.3.1. Applications
5.3.2. Production volumes 2019-2036
5.4. Building and Construction
5.4.1. Applications
5.4.2. Production volumes 2019-2036
5.5. Textiles and Fibers
5.5.1. Apparel
5.5.2. Footwear
5.5.3. Medical textiles
5.5.4. Production volumes 2019-2036
5.6. Electronics
5.6.1. Applications
5.6.2. Production volumes 2019-2036
5.7. Agriculture and Horticulture
5.7.1. Production volumes 2019-2036
5.8. Production of Biopolymers, by region
5.8.1. North America
5.8.2. Europe
5.8.3. Asia-Pacific
5.8.4. Latin America
6. COMPANY PROFILES (581 company profiles)
7. APPENDIX
7.1. Research Methodology
7.2. Key terms and definitions
8. REFERENCES